1
|
Hill MD, Gill SS, Le-Niculescu H, MacKie O, Bhagar R, Roseberry K, Murray OK, Dainton HD, Wolf SK, Shekhar A, Kurian SM, Niculescu AB. Precision medicine for psychotic disorders: objective assessment, risk prediction, and pharmacogenomics. Mol Psychiatry 2024; 29:1528-1549. [PMID: 38326562 DOI: 10.1038/s41380-024-02433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Psychosis occurs inside the brain, but may have external manifestations (peripheral molecular biomarkers, behaviors) that can be objectively and quantitatively measured. Blood biomarkers that track core psychotic manifestations such as hallucinations and delusions could provide a window into the biology of psychosis, as well as help with diagnosis and treatment. We endeavored to identify objective blood gene expression biomarkers for hallucinations and delusions, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We were successful in identifying biomarkers that were predictive of high hallucinations and of high delusions states, and of future psychiatric hospitalizations related to them, more so when personalized by gender and diagnosis. Top biomarkers for hallucinations that survived discovery, prioritization, validation and testing include PPP3CB, DLG1, ENPP2, ZEB2, and RTN4. Top biomarkers for delusions include AUTS2, MACROD2, NR4A2, PDE4D, PDP1, and RORA. The top biological pathways uncovered by our work are glutamatergic synapse for hallucinations, as well as Rap1 signaling for delusions. Some of the biomarkers are targets of existing drugs, of potential utility in pharmacogenomics approaches (matching patients to medications, monitoring response to treatment). The top biomarkers gene expression signatures through bioinformatic analyses suggested a prioritization of existing medications such as clozapine and risperidone, as well as of lithium, fluoxetine, valproate, and the nutraceuticals omega-3 fatty acids and magnesium. Finally, we provide an example of how a personalized laboratory report for doctors would look. Overall, our work provides advances for the improved diagnosis and treatment for schizophrenia and other psychotic disorders.
Collapse
Affiliation(s)
- M D Hill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - S S Gill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - O MacKie
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - O K Murray
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H D Dainton
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - S K Wolf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Ohio State University Medical Center, Columbus, OH, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Office of the Dean, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indianapolis VA Medical Center, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Alavi MS, Al-Asady AM, Fanoudi S, Sadeghnia HR. Differential effects of antiseizure medications on neurogenesis: Evidence from cells to animals. Heliyon 2024; 10:e26650. [PMID: 38420427 PMCID: PMC10901100 DOI: 10.1016/j.heliyon.2024.e26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Neurogenesis, the process of generating functionally integrated neurons from neural stem and progenitor cells, is involved in brain development during embryonic stages but continues throughout life. Adult neurogenesis plays essential roles in many brain functions such as cognition, brain plasticity, and repair. Abnormalities in neurogenesis have been described in many neuropsychiatric and neurological disorders, including epilepsy. While sharing a common property of suppressing seizures, accumulating evidence has shown that some antiseizure medications (ASM) exhibit neuroprotective potential in the non-epileptic models including Parkinson's disease, Alzheimer's disease, cerebral ischemia, or traumatic brain injury. ASM are a heterogeneous group of medications with different mechanisms of actions. Therefore, it remains to be revealed whether neurogenesis is a class effect or related to them all. In this comprehensive literature study, we reviewed the literature data on the influence of ASM on the neurogenesis process during brain development and also in the adult brain under physiological or pathological conditions. Meanwhile, we discussed the underlying mechanisms associated with the neurogenic effects of ASM by linking the reported in vivo and in vitro studies. PubMed, Web of Science, and Google Scholar databases were searched until the end of February 2023. A total of 83 studies were used finally. ASM can modulate neurogenesis through the increase or decrease of proliferation, survival, and differentiation of the quiescent NSC pool. The present article indicated that the neurogenic potential of ASM depends on the administered dose, treatment period, temporal administration of the drug, and normal or disease context.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
| | - Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid R Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Bhagar R, Le-Niculescu H, Roseberry K, Kosary K, Daly C, Ballew A, Yard M, Sandusky GE, Niculescu AB. Temporal effects on death by suicide: empirical evidence and possible molecular correlates. DISCOVER MENTAL HEALTH 2023; 3:10. [PMID: 37861857 PMCID: PMC10501025 DOI: 10.1007/s44192-023-00035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 10/21/2023]
Abstract
Popular culture and medical lore have long postulated a connection between full moon and exacerbations of psychiatric disorders. We wanted to empirically analyze the hypothesis that suicides are increased during the period around full moons. We analyzed pre-COVID suicides from the Marion County Coroner's Office (n = 776), and show that deaths by suicide are significantly increased during the week of the full moon (p = 0.037), with older individuals (age ≥ 55) showing a stronger effect (p = 0.019). We also examined in our dataset which hour of the day (3-4 pm, p = 0.035), and which month of the year (September, p = 0.09) show the most deaths by suicide. We had blood samples on a subset of the subjects (n = 45), which enabled us to look at possible molecular mechanisms. We tested a list of top blood biomarkers for suicidality (n = 154) from previous studies of ours 7, to assess which of them are predictive. The biomarkers for suicidality that are predictive of death by suicide during full moon, peak hour of day, and peak month of year, respectively, compared to outside of those periods, appear to be enriched in circadian clock genes. For full moon it is AHCYL2, ACSM3, AK2, and RBM3. For peak hour it is GSK3B, AK2, and PRKCB. For peak month it is TBL1XR1 and PRKCI. Half of these genes are modulated in expression by lithium and by valproate in opposite direction to suicidality, and all of them are modulated by depression and alcohol in the same direction as suicidality. These data suggest that there are temporal effects on suicidality, possibly mediated by biological clocks, pointing to changes in ambient light (timing and intensity) as a therapeutically addressable target to decrease suicidality, that can be coupled with psychiatric pharmacological and addiction treatment preventive interventions.
Collapse
Affiliation(s)
- R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - K Kosary
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - C Daly
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - A Ballew
- Marion County Coroner's Office, Indianapolis, IN, USA
| | - M Yard
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA
| | - G E Sandusky
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA.
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indianapolis VA Medical Center, Indianapolis, USA.
| |
Collapse
|
4
|
Innovating human chemical hazard and risk assessment through an holistic approach. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Mennen R, Hallmark N, Pallardy M, Bars R, Tinwell H, Piersma A. Genome-wide expression screening in the cardiac embryonic stem cell test shows additional differentiation routes that are regulated by morpholines and piperidines. Curr Res Toxicol 2022; 3:100086. [PMID: 36157598 PMCID: PMC9489494 DOI: 10.1016/j.crtox.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The cardiac embryonic stem cell test (ESTc) is a well-studied non-animal alternative test method based on cardiac cell differentiation inhibition as a measure for developmental toxicity of tested chemicals. In the ESTc, a heterogenic cell population is generated besides cardiomyocytes. Using the full biological domain of ESTc may improve the sensitivity of the test system, possibly broadening the range of chemicals for which developmental effects can be detected in the test. In order to improve our knowledge of the biological and chemical applicability domains of the ESTc, we applied a hypothesis-generating data-driven approach on control samples as follows. A genome-wide expression screening was performed, using Next Generation Sequencing (NGS), to map the range of developmental pathways in the ESTc and to search for a predictive embryotoxicity biomarker profile, instead of the conventional read-out of beating cardiomyocytes. The detected developmental pathways included circulatory system development, skeletal system development, heart development, muscle and organ tissue development, and nervous system and cell development. Two pesticidal chemical classes, the morpholines and piperidines, were assessed for perturbation of differentiation in the ESTc using NGS. In addition to the anticipated impact on cardiomyocyte differentiation, the other developmental pathways were also regulated, in a concentration-response fashion. Despite the structural differences between the morpholine and piperidine pairs, their gene expression effect patterns were largely comparable. In addition, some chemical-specific gene regulation was also observed, which may help with future mechanistic understanding of specific effects with individual test compounds. These similar and unique regulations of gene expression profiles by the test compounds, adds to our knowledge of the chemical applicability domain, specificity and sensitivity of the ESTc. Knowledge of both the biological and chemical applicability domain contributes to the optimal placement of ESTc in test batteries and in Integrated Approaches to Testing and Assessment (IATA).
Collapse
Affiliation(s)
- R.H. Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - N. Hallmark
- Bayer AG Crop Science Division, Monheim, Germany
| | - M. Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM UMR996, Châtenay-Malabry 92296, France
| | - R. Bars
- Bayer Crop Science, Sophia-Antipolis, France
| | - H. Tinwell
- Bayer Crop Science, Sophia-Antipolis, France
| | - A.H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
6
|
Kowalski TW, Lord VO, Sgarioni E, Gomes JDA, Mariath LM, Recamonde-Mendoza M, Vianna FSL. Transcriptome meta-analysis of valproic acid exposure in human embryonic stem cells. Eur Neuropsychopharmacol 2022; 60:76-88. [PMID: 35635998 DOI: 10.1016/j.euroneuro.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drug not recommended in pregnancy because it is teratogenic. Many assays have assessed the impact of the VPA exposure on the transcriptome of human embryonic stem-cells (hESC), but the molecular perturbations that VPA exerts in neurodevelopment are not completely understood. This study aimed to perform a transcriptome meta-analysis of VPA-exposed hESC to elucidate the main biological mechanisms altered by VPA effects on the gene expression. Publicly available microarray and RNA-seq transcriptomes were selected in the Gene Expression Omnibus (GEO) repository. Samples were processed according to the standard pipelines for each technology in the Galaxy server and R. Meta-analysis was performed using the Fisher-P method. Overrepresented genes were obtained by evaluating ontologies, pathways, and phenotypes' databases. The meta-analysis performed in seven datasets resulted in 61 perturbed genes, 54 upregulated. Ontology and pathway enrichments suggested neurodevelopment and neuroinflammatory effects; phenotype overrepresentation included epilepsy-related genes, such as SCN1A and GABRB2. The NDNF gene upregulation was also identified; this gene is involved in neuron migration and survival during development. Sub-network analysis proposed TGFβ and BMP pathways activation. These results suggest VPA exerts effects in epilepsy-related genes even in embryonic cells. Neurodevelopmental genes, such as NDNF were upregulated and VPA might also disturb several development pathways. These mechanisms might help to explain the spectrum of VPA-induced congenital anomalies and the molecular effects on neurodevelopment.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil.
| | - Vinícius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Eduarda Sgarioni
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil
| | - Luiza Monteavaro Mariath
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil.
| |
Collapse
|
7
|
New Insights on Gene by Environmental Effects of Drugs of Abuse in Animal Models Using GeneNetwork. Genes (Basel) 2022; 13:genes13040614. [PMID: 35456420 PMCID: PMC9024903 DOI: 10.3390/genes13040614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Gene-by-environment interactions are important for all facets of biology, especially behaviour. Families of isogenic strains of mice, such as the BXD strains, are excellently placed to study these interactions, as the same genome can be tested in multiple environments. BXD strains are recombinant inbred mouse strains derived from crossing two inbred strains—C57BL/6J and DBA/2J mice. Many reproducible genometypes can be leveraged, and old data can be reanalysed with new tools to produce novel insights. We obtained drug and behavioural phenotypes from Philip et al. Genes, Brain and Behaviour 2010, and reanalysed their data with new genotypes from sequencing, as well as new models (Genome-wide Efficient Mixed Model Association (GEMMA) and R/qtl2). We discovered QTLs on chromosomes 3, 5, 9, 11, and 14, not found in the original study. We reduced the candidate genes based on their ability to alter gene expression or protein function. Candidate genes included Slitrk6 and Cdk14. Slitrk6, in a Chromosome14 QTL for locomotion, was found to be part of a co-expression network involved in voluntary movement and associated with neuropsychiatric phenotypes. Cdk14, one of only three genes in a Chromosome5 QTL, is associated with handling induced convulsions after ethanol treatment, that is regulated by the anticonvulsant drug valproic acid. By using families of isogenic strains, we can reanalyse data to discover novel candidate genes involved in response to drugs of abuse.
Collapse
|
8
|
Cayir A. RNA modifications as emerging therapeutic targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1702. [PMID: 34816607 DOI: 10.1002/wrna.1702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
The field of epitranscriptome, posttranscriptional modifications to RNAs, is still growing up and has presented substantial evidences for the role of RNA modifications in diseases. In terms of new drug development, RNA modifications have a great promise for therapy. For example, more than 170 type of modifications exist in various types of RNAs. Regulatory genes and their roles in critical biological process have been identified and they are associated with several diseases. Current data, for example, identification of inhibitors targeting RNA modifications regulatory genes, strongly support the idea that RNA modifications have potential as emerging therapeutic targets. Therefore, in this review, RNA modifications and regulatory genes were comprehensively documented in terms of drug development by summarizing the findings from previous studies. It was discussed how RNA modifications or regulatory genes can be targeted by altering molecular mechanisms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.,Akershus Universitetssykehus, Medical Department, Lørenskog, Norway
| |
Collapse
|
9
|
Kowalski TW, Gomes JDA, Feira MF, Dupont ÁDV, Recamonde-Mendoza M, Vianna FSL. Anticonvulsants and Chromatin-Genes Expression: A Systems Biology Investigation. Front Neurosci 2020; 14:591196. [PMID: 33328862 PMCID: PMC7732676 DOI: 10.3389/fnins.2020.591196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Embryofetal development is a critical process that needs a strict epigenetic control, however, perturbations in this balance might lead to the occurrence of congenital anomalies. It is known that anticonvulsants potentially affect epigenetics-related genes, however, it is not comprehended whether this unbalance could explain the anticonvulsants-induced fetal syndromes. In the present study, we aimed to evaluate the expression of epigenetics-related genes in valproic acid, carbamazepine, or phenytoin exposure. We selected these three anticonvulsants exposure assays, which used murine or human embryonic stem-cells and were publicly available in genomic databases. We performed a differential gene expression (DGE) and weighted gene co-expression network analysis (WGCNA), focusing on epigenetics-related genes. Few epigenetics genes were differentially expressed in the anticonvulsants' exposure, however, the WGCNA strategy demonstrated a high enrichment of chromatin remodeling genes for the three drugs. We also identified an association of 46 genes related to Fetal Valproate Syndrome, containing SMARCA2 and SMARCA4, and nine genes to Fetal Hydantoin Syndrome, including PAX6, NEUROD1, and TSHZ1. The evaluation of stem-cells under drug exposure can bring many insights to understand the drug-induced damage to the embryofetal development. The candidate genes here presented are potential biomarkers that could help in future strategies for the prevention of congenital anomalies.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Postgraduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Immunobiology and Immunogenetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Centro Universitário CESUCA, Cachoeirinha, Brazil.,Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Postgraduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Immunobiology and Immunogenetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Mariléa Furtado Feira
- Postgraduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Immunobiology and Immunogenetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Ágata de Vargas Dupont
- Laboratory of Immunobiology and Immunogenetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Immunobiology and Immunogenetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
10
|
Gebuijs IGE, Metz JR, Zethof J, Carels CEL, Wagener FADTG, Von den Hoff JW. The anti-epileptic drug valproic acid causes malformations in the developing craniofacial skeleton of zebrafish larvae. Mech Dev 2020; 163:103632. [PMID: 32668265 DOI: 10.1016/j.mod.2020.103632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
Valproic acid (VPA) is an anti-epileptic drug known to cause congenital craniofacial abnormalities, including orofacial clefts (OFC). The exact mechanisms by which VPA leads to craniofacial skeletal malformations are poorly understood. In this study, we investigated the effects of VPA on cartilage and bone formation in the zebrafish larval head during 1-13 hpf (early) and 25-37 hpf (late) development in which cranial neural crest cells (CNCCs) arise and then proliferate and differentiate, respectively. Double-staining for cartilage and bone at 5 dpf revealed that VPA reduced cartilage and bone formation in a dose-dependent manner after both early or late exposure. Several different CNCC-derived cartilage and bone elements were affected in both groups. In the early group (100 μM VPA), the posterior head length and the ethmoid plate were reduced in length (both p < 0.01), while mineralization of 4 out of 9 bone elements was often lacking (all p < 0.01). In the late group (100 μM VPA), also the posterior head length was reduced as well as the length of the ceratohyals (both p < 0.01). Similar to early exposure, mineralization of 3 out of 9 bone elements was often lacking (all p < 0.01). These results indicate that both CNCC formation (early) and differentiation (late) are hampered by VPA treatment, of which the consequences for bone and cartilage formation are persistent at 5 dpf. Indeed, we also found that the expression of several genes related to cartilage and bone was upregulated at 5 dpf. These data indicate a compensatory reaction to the lack of cartilage and bone. Altogether, VPA seems to induce craniofacial malformations via disturbed CNCC function leading to defects in cartilage and bone formation.
Collapse
Affiliation(s)
- I G E Gebuijs
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Animal Ecology and Physiology, Radboud University, Nijmegen, the Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, the Netherlands
| | - J Zethof
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, the Netherlands
| | - C E L Carels
- Department of Oral Health Sciences, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - F A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - J W Von den Hoff
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Liang S, Yin N, Faiola F. Human Pluripotent Stem Cells as Tools for Predicting Developmental Neural Toxicity of Chemicals: Strategies, Applications, and Challenges. Stem Cells Dev 2019; 28:755-768. [PMID: 30990109 DOI: 10.1089/scd.2019.0007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human central nervous system (CNS) is very sensitive to perturbations, since it performs sophisticated biological processes and requires cooperation from multiple neural cell types. Subtle interference from exogenous chemicals, such as environmental pollutants, industrial chemicals, drug components, food additives, and cosmetic constituents, may initiate severe developmental neural toxicity (DNT). Human pluripotent stem cell (hPSC)-based neural differentiation assays provide effective and promising tools to help evaluate potential DNT caused by those toxicants. In fact, the specification of neural lineages in vitro recapitulates critical CNS developmental processes, such as patterning, differentiation, neurite outgrowth, synaptogenesis, and myelination. Hence, the established protocols to generate a repertoire of neural derivatives from hPSCs greatly benefit the in vitro evaluation of DNT. In this review, we first dissect the various differentiation protocols inducing neural cells from hPSCs, with an emphasis on the signaling pathways and endpoint markers defining each differentiation stage. We then highlight the studies with hPSC-based protocols predicting developmental neural toxicants, and discuss remaining challenges. We hope this review can provide insights for the further progress of DNT studies.
Collapse
Affiliation(s)
- Shengxian Liang
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Liu K, Yu JCC, Dong H, Wu JCS, Hoffmann MR. Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12667-12674. [PMID: 30346735 PMCID: PMC6222555 DOI: 10.1021/acs.est.8b03916] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pharmaceutical wastes are considered to be important pollutants even at low concentrations. In this regard, carbamazepine has received significant attention due to its negative effect on both ecosystem and human health. However, the need for acidic conditions severely hinders the use of conventional Fenton reagent reactions for the control and elimination of carbamazepine in wastewater effluents and drinking water influents. Herein, we report of the synthesis and use of flexible bifunctional nanoelectrocatalytic textile materials, Fe3O4-NP@CNF, for the effective degradation and complete mineralization of carbamazepine in water. The nonwoven porous structure of the composite binder-free Fe3O4-NP@CNF textile is used to generate H2O2 on the carbon nanofiber (CNF) substrate by O2 reduction. In addition, ·OH radical is generated on the surface of the bonded Fe3O4 nanoparticles (NPs) at low applied potentials (-0.345 V). The Fe3O4-NPs are covalently bonded to the CNF textile support with a high degree of dispersion throughout the fiber matrix. The dispersion of the nanosized catalysts results in a higher catalytic reactivity than existing electro-Fenton systems. For example, the newly synthesized Fe3O4-NPs system uses an Fe loading that is 2 orders of magnitude less than existing electro-Fenton systems, coupled with a current efficiency that is higher than electrolysis using a boron-doped diamond electrode. Our test results show that this process can remove carbamazepine with high pseudo-first-order rate constants (e.g., 6.85 h-1) and minimal energy consumption (0.239 kW·h/g carbamazepine). This combination leads to an efficient and sustainable electro-Fenton process.
Collapse
Affiliation(s)
- Kai Liu
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91126, United States
| | - Joseph Che-Chin Yu
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91126, United States
- Department of Chemical Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Heng Dong
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91126, United States
| | - Jeffrey C. S. Wu
- Department of Chemical Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Michael R. Hoffmann
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91126, United States
- (M.R.H.)
Tel +1 626 395 4391; Fax +1 626 395 4391; e-mail
| |
Collapse
|
13
|
Miranda CC, Fernandes TG, Pinto SN, Prieto M, Diogo MM, Cabral JM. A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicol Lett 2018; 294:51-60. [DOI: 10.1016/j.toxlet.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
|
14
|
Komariah K, Manalu W, Kiranadi B, Winarto A, Handharyani E, Roeslan MO. Valproic Acid Exposure of Pregnant Rats During Organogenesis Disturbs Pancreas Development in Insulin Synthesis and Secretion of the Offspring. Toxicol Res 2018; 34:173-182. [PMID: 29686779 PMCID: PMC5903136 DOI: 10.5487/tr.2018.34.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/26/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Valproic acid (VPA) plays a role in histone modifications that eventually inhibit the activity of histone deacetylase (HDAC), and will affect the expressions of genes Pdx1, Nkx6.1, and Ngn3 during pancreatic organogenesis. This experiment was designed to study the effect of VPA exposure in pregnant rats on the activity of HDAC that controls the expression of genes regulating the development of beta cells in the pancreas to synthesize and secrete insulin. This study used 30 pregnant Sprague-Dawley rats, divided into 4 groups, as follows: (1) a control group of pregnant rats without VPA administration, (2) pregnant rats administered with 250 mg VPA on day 10 of pregnancy, (3) pregnant rats administered with 250 mg VPA on day 13 of pregnancy, and (4) pregnant rats administered with 250 mg VPA on day 16 of pregnancy. Eighty-four newborn rats born to control rats and rats administered with VPA on days 10, 13, and 16 of pregnancy were used to measure serum glucose, insulin, DNA, RNA, and ratio of RNA/DNA concentrations in the pancreas and to observe the microscopical condition of the pancreas at the ages of 4 to 32 weeks postpartum with 4-week intervals. The results showed that at the age of 32 weeks, the offspring of pregnant rats administered with 250 mg VPA on days 10, 13, and 16 of pregnancy had higher serum glucose concentrations and lower serum insulin concentrations, followed by decreased concentrations of RNA, and the ratio of RNA/DNA in the pancreas. Microscopical observations showed that the pancreas of the rats born to pregnant rats administered with VPA during pregnancy had low immunoreaction to insulin. The exposure of pregnant rats to VPA during pregnancy disturbs organogenesis of the pancreas of the embryos that eventually disturb the insulin production in the beta cells indicated by the decreased insulin secretion during postnatal life.
Collapse
Affiliation(s)
- Komariah Komariah
- Department of Histology, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | - Wasmen Manalu
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - Bambang Kiranadi
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - Adi Winarto
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - Ekowati Handharyani
- Department of Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, West Java, Indonesia
| | - M Orliando Roeslan
- Department of Biology Oral, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| |
Collapse
|
15
|
Yang B, Deng J, Yu G, Deng S, Li J, Zhu C, Zhuo Q, Duan H, Guo T. Effective degradation of carbamazepine using a novel electro-peroxone process involving simultaneous electrochemical generation of ozone and hydrogen peroxide. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
van Breda SG, Claessen SM, van Herwijnen M, Theunissen DH, Jennen DG, de Kok TM, Kleinjans JC. Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology 2018; 393:160-170. [DOI: 10.1016/j.tox.2017.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
|
17
|
Attoff K, Gliga A, Lundqvist J, Norinder U, Forsby A. Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation and validation of 30 neural mRNA biomarkers for estimation of developmental neurotoxicity. PLoS One 2017; 12:e0190066. [PMID: 29261810 PMCID: PMC5738075 DOI: 10.1371/journal.pone.0190066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Despite its high relevance, developmental neurotoxicity (DNT) is one of the least studied forms of toxicity. Current guidelines for DNT testing are based on in vivo testing and they require extensive resources. Transcriptomic approaches using relevant in vitro models have been suggested as a useful tool for identifying possible DNT-generating compounds. In this study, we performed whole genome microarray analysis on the murine progenitor cell line C17.2 following 5 and 10 days of differentiation. We identified 30 genes that are strongly associated with neural differentiation. The C17.2 cell line can be differentiated into a co-culture of both neurons and neuroglial cells, giving a more relevant picture of the brain than using neuronal cells alone. Among the most highly upregulated genes were genes involved in neurogenesis (CHRDL1), axonal guidance (BMP4), neuronal connectivity (PLXDC2), axonogenesis (RTN4R) and astrocyte differentiation (S100B). The 30 biomarkers were further validated by exposure to non-cytotoxic concentrations of two DNT-inducing compounds (valproic acid and methylmercury) and one neurotoxic chemical possessing a possible DNT activity (acrylamide). Twenty-eight of the 30 biomarkers were altered by at least one of the neurotoxic substances, proving the importance of these biomarkers during differentiation. These results suggest that gene expression profiling using a predefined set of biomarkers could be used as a sensitive tool for initial DNT screening of chemicals. Using a predefined set of mRNA biomarkers, instead of the whole genome, makes this model affordable and high-throughput. The use of such models could help speed up the initial screening of substances, possibly indicating alerts that need to be further studied in more sophisticated models.
Collapse
Affiliation(s)
- Kristina Attoff
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Lundqvist
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Anna Forsby
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| |
Collapse
|
18
|
Abstract
The development of stem cell biology has revolutionized regenerative medicine and its clinical applications. Another aspect through which stem cells would benefit human health is their use in toxicology. In fact, owing to their ability to differentiate into all the lineages of the human body, including germ cells, stem cells, and, in particular, pluripotent stem cells, can be utilized for the assessment, in vitro, of embryonic, developmental, reproductive, organ, and functional toxicities, relevant to human physiology, without employing live animal tests and with the possibility of high throughput applications. Thus, stem cell toxicology would tremendously assist in the toxicological evaluation of the increasing number of synthetic chemicals that we are exposed to, of which toxicity information is limited. In this review, we introduce stem cell toxicology, as an emerging branch of in vitro toxicology, which offers quick and efficient alternatives to traditional toxicology assessments. We first discuss the development of stem cell toxicology, and we then emphasize its advantages and highlight the achievements of human pluripotent stem cell-based toxicity research.
Collapse
Affiliation(s)
- Shuyu Liu
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| |
Collapse
|
19
|
Waldmann T, Grinberg M, König A, Rempel E, Schildknecht S, Henry M, Holzer AK, Dreser N, Shinde V, Sachinidis A, Rahnenführer J, Hengstler JG, Leist M. Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol 2016; 30:905-922. [PMID: 28001369 DOI: 10.1021/acs.chemrestox.6b00259] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Analysis of transcriptome changes has become an established method to characterize the reaction of cells to toxicants. Such experiments are mostly performed at compound concentrations close to the cytotoxicity threshold. At present, little information is available on concentration-dependent features of transcriptome changes, in particular, at the transition from noncytotoxic concentrations to conditions that are associated with cell death. Thus, it is unclear in how far cell death confounds the results of transcriptome studies. To explore this gap of knowledge, we treated pluripotent stem cells differentiating to human neuroepithelial cells (UKN1 assay) for short periods (48 h) with increasing concentrations of valproic acid (VPA) and methyl mercury (MeHg), two compounds with vastly different modes of action. We developed various visualization tools to describe cellular responses, and the overall response was classified as "tolerance" (minor transcriptome changes), "functional adaptation" (moderate/strong transcriptome responses, but no cytotoxicity), and "degeneration". The latter two conditions were compared, using various statistical approaches. We identified (i) genes regulated at cytotoxic, but not at noncytotoxic, concentrations and (ii) KEGG pathways, gene ontology term groups, and superordinate biological processes that were only regulated at cytotoxic concentrations. The consensus markers and processes found after 48 h treatment were then overlaid with those found after prolonged (6 days) treatment. The study highlights the importance of careful concentration selection and of controlling viability for transcriptome studies. Moreover, it allowed identification of 39 candidate "biomarkers of cytotoxicity". These could serve to provide alerts that data sets of interest may have been affected by cell death in the model system studied.
Collapse
Affiliation(s)
- Tanja Waldmann
- In Vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden Chair Foundation, University of Konstanz , 78457 Konstanz, Germany
| | - Marianna Grinberg
- Department of Statistics, Technical University of Dortmund , D-44221 Dortmund, Germany
| | - André König
- Department of Statistics, Technical University of Dortmund , D-44221 Dortmund, Germany
| | - Eugen Rempel
- Department of Statistics, Technical University of Dortmund , D-44221 Dortmund, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden Chair Foundation, University of Konstanz , 78457 Konstanz, Germany
| | - Margit Henry
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK) , D-50931 Cologne, Germany
| | - Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden Chair Foundation, University of Konstanz , 78457 Konstanz, Germany
| | - Nadine Dreser
- In Vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden Chair Foundation, University of Konstanz , 78457 Konstanz, Germany
| | - Vaibhav Shinde
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK) , D-50931 Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK) , D-50931 Cologne, Germany
| | - Jörg Rahnenführer
- Department of Statistics, Technical University of Dortmund , D-44221 Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund , D-44139 Dortmund, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden Chair Foundation, University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
20
|
Zeng Y, Kurokawa Y, Zeng Q, Win-Shwe TT, Nansai H, Zhang Z, Sone H. Effects of Polyamidoamine Dendrimers on a 3-D Neurosphere System Using Human Neural Progenitor Cells. Toxicol Sci 2016; 152:128-44. [DOI: 10.1093/toxsci/kfw068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
21
|
Robinson JF, Gormley MJ, Fisher SJ. A genomics-based framework for identifying biomarkers of human neurodevelopmental toxicity. Reprod Toxicol 2016; 60:1-10. [PMID: 26827931 PMCID: PMC4867143 DOI: 10.1016/j.reprotox.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
Abstract
Human embryonic stem cell (hESC) neural differentiation models have tremendous potential for evaluating environmental compounds in terms of their ability to induce neurodevelopmental toxicity. Genomic based-approaches are being applied to identify changes underlying normal human development (in vitro and in vivo) and the effects of environmental exposures. Here, we investigated whether mechanisms that are shared between hESC neural differentiation model systems and human embryos are candidate biomarkers of developmental toxicities for neurogenesis. We conducted a meta-analysis of transcriptomic datasets with the goal of identifying differentially expressed genes that were common to the hESC-model and human embryos. The overlapping NeuroDevelopmental Biomarker (NDB) gene set contained 304 genes which were enriched for their roles in neurogenesis. These genes were investigated for their utility as candidate biomarkers in the context of toxicogenomic studies focused on the effects of retinoic acid, valproic acid, or carbamazepine in hESC models of neurodifferentiation. The results revealed genes, including 13 common targets of the 3 compounds, that were candidate biomarkers of neurotoxicity in hESC-based studies of environmental toxicants.
Collapse
Affiliation(s)
- J F Robinson
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States.
| | - M J Gormley
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States
| | - S J Fisher
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States; Division of Maternal Fetal Medicine, University of California, San Francisco (UCSF), United States; Department of Anatomy, University of California, San Francisco (UCSF), United States; Human Embryonic Stem Cell Program, University of California, San Francisco (UCSF), United States
| |
Collapse
|
22
|
Schulpen SH, Theunissen PT, Pennings JL, Piersma AH. Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure. Reprod Toxicol 2015; 56:77-86. [DOI: 10.1016/j.reprotox.2015.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
|