1
|
Deng H, Zhang J, Liu L, Zhang H, Han Y, Wu L, Jing Y, Huang M, Zhao L. Discovery of Novel Mcl-1 Inhibitors with a 3-Substituted-1 H-indole-1-yl Moiety Binding to the P1-P3 Pockets to Induce Apoptosis in Acute Myeloid Leukemia Cells. J Med Chem 2024; 67:13925-13958. [PMID: 39121336 DOI: 10.1021/acs.jmedchem.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Mcl-1 is a main antiapoptotic protein in acute myeloid leukemia (AML) and is used as a target to develop inhibitors. Currently, potent Mcl-1 inhibitors primarily interact with the P2-P4 pockets of Mcl-1, but pharmacological modulation by targeting the P1 pocket is less explored. We designed a series of 1H-indole-2-carboxylic acid compounds as novel Mcl-1 inhibitors occupying the P1-P3 pockets and evaluated their Mcl-1 inhibition and apoptosis induction in AML cells. Two-dimensional 15N-HSQC spectroscopy indicated that 47 (Ki = 24 nM) bound to the BH3 binding groove, occupied the P1 pocket in Mcl-1, and formed interactions with Lys234 and Val249. 47 exhibited good microsomal stability and pharmacokinetic profiles, with low potential risk of cardiotoxicity. 47 inhibited tumor growth in HL-60 and THP-1 xenograft models with growth inhibition rate of 63.7% and 57.4%, respectively. Collectively, 47 represents a novel Mcl-1 inhibitor targeting the P1-P3 pockets with excellent antileukemia effects.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyi Zhang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linlin Wu
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Li X, Lin Y, Lin S, Huang J, Ruan Z. Advancements in understanding cardiotoxicity of EGFR- TKIs in non-small cell lung cancer treatment and beyond. Front Pharmacol 2024; 15:1404692. [PMID: 39211774 PMCID: PMC11357958 DOI: 10.3389/fphar.2024.1404692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) are a class of oral targeted anticancer drugs that have been demonstrated to significantly inhibit tumor progression and improve clinical prognosis in patients diagnosed with EGFR-mutated tumors, particularly in those with non-small cell lung cancer. However, the sustained usage of EGFR-TKIs may cause potential cardiotoxicity, thus limiting their applicability. The primary objective of this review is to systematically analyze the evolving landscape of research pertaining to EGFR-TKI-induced cardiotoxicity and elucidate its underlying mechanisms, such as PI3K signaling pathway inhibition, ion channel blockade, oxidative stress, inflammatory responses, and apoptosis. Additionally, the review includes an exploration of risk assessment for cardiotoxicity induced by EGFR-TKIs, along with management and response strategies. Prospective research directions are outlined, emphasizing the need for more accurate predictors of cardiotoxicity and the development of innovative intervention strategies. In summation, this review consolidates recent research advances, illuminates the risks associated with EGFR-TKI-induced cardiac toxicity and presents crucial insights for refining clinical dosage protocols, optimizing patient management strategies, and unraveling the intricate mechanisms governing EGFR-TKI-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Zhongbao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
3
|
Velayutham N, Garbern JC, Elwell HLT, Zhuo Z, Rüland L, Elcure Alvarez F, Frontini S, Rodriguez Carreras Y, Eichholtz M, Ricci‐Blair E, Shaw JY, Bouffard AH, Sokol M, Mancheño Juncosa E, Rhoades S, van den Berg D, Kreymerman A, Aoyama J, Höfflin J, Ryan H, Ho Sui S, Lee RT. P53 Activation Promotes Maturational Characteristics of Pluripotent Stem Cell-Derived Cardiomyocytes in 3-Dimensional Suspension Culture Via FOXO-FOXM1 Regulation. J Am Heart Assoc 2024; 13:e033155. [PMID: 38934864 PMCID: PMC11255683 DOI: 10.1161/jaha.123.033155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 μM), LOM612 (FOXO relocator, 5 μM), AS1842856 (FOXO inhibitor, 1 μM), or RCM-1 (FOXM1 inhibitor, 1 μM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
| | - Hannah L. T. Elwell
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Zhu Zhuo
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Laura Rüland
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Farid Elcure Alvarez
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Sara Frontini
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Yago Rodriguez Carreras
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Marie Eichholtz
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Elisabeth Ricci‐Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jeanna Y. Shaw
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Aldric H. Bouffard
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Estela Mancheño Juncosa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | - Daphne van den Berg
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | | | - Shannan Ho Sui
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
4
|
Dow R, DeLong C, Jiang G, Attili D, Creech J, Kraan R, Campbell K, Saraithong P, O’Shea S, Monteiro da Rocha A, McInnis MG, Herron TJ. Bipolar Patient-Specific In Vitro Diagnostic Test Reveals Underlying Cardiac Arrhythmia Phenotype Caused by Calcium Channel Genetic Risk Factor. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100296. [PMID: 38560725 PMCID: PMC10978474 DOI: 10.1016/j.bpsgos.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 04/04/2024] Open
Abstract
A common genetic risk factor for bipolar disorder is CACNA1C, a gene that is also critical for cardiac rhythm. The impact of CACNA1C mutations on bipolar patient cardiac rhythm is unknown. Here, we report the cardiac electrophysiological implications of a bipolar disorder-associated genetic risk factor in CACNA1C using patient induced pluripotent stem cell-derived cardiomyocytes. Results indicate that the CACNA1C bipolar disorder-related mutation causes cardiac electrical impulse conduction slowing mediated by impaired intercellular coupling via connexin 43 gap junctions. In vitro gene therapy to restore connexin 43 expression increased cardiac electrical impulse conduction velocity and protected against thioridazine-induced QT prolongation. Patients positive for bipolar disorder CACNA1C genetic risk factors may have elevated proarrhythmic risk for adverse events in response to psychiatric medications that slow conduction or prolong the QT interval. This in vitro diagnostic tool enables cardiac testing specific to patients with psychiatric disorders to determine their sensitivity to off-target effects of psychiatric medications.
Collapse
Affiliation(s)
- Rachel Dow
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Cindy DeLong
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Guihua Jiang
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Durga Attili
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Jeffery Creech
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Rachel Kraan
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Katherine Campbell
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Prakaimuk Saraithong
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Internal Medicine-Cardiology, University of Michigan, Ann Arbor, Michigan
| | - Sue O’Shea
- Michigan Medicine, Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Psychiatry Department, University of Michigan, Ann Arbor, Michigan
| | - Andre Monteiro da Rocha
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Internal Medicine-Cardiology, University of Michigan, Ann Arbor, Michigan
| | - Melvin G. McInnis
- Michigan Medicine, Psychiatry Department, University of Michigan, Ann Arbor, Michigan
| | - Todd J. Herron
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Internal Medicine-Cardiology, University of Michigan, Ann Arbor, Michigan
- Michigan Medicine, Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Deng H, Han Y, Liu L, Zhang H, Liu D, Wen J, Huang M, Zhao L. Targeting Myeloid Leukemia-1 in Cancer Therapy: Advances and Directions. J Med Chem 2024; 67:5963-5998. [PMID: 38597264 DOI: 10.1021/acs.jmedchem.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Kim Y, Wang K, Lock RI, Nash TR, Fleischer S, Wang BZ, Fine BM, Vunjak-Novakovic G. BeatProfiler: Multimodal In Vitro Analysis of Cardiac Function Enables Machine Learning Classification of Diseases and Drugs. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:238-249. [PMID: 38606403 PMCID: PMC11008807 DOI: 10.1109/ojemb.2024.3377461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
Goal: Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. Methods: We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset. We further confirm its ability to robustly characterize disease and dose-dependent drug response. We then demonstrate that the data acquired by our automatic acquisition pipeline can be further harnessed for machine learning (ML) analysis to phenotype a disease model of restrictive cardiomyopathy and profile cardioactive drug functional response. To accurately classify between these biological signals, we apply feature-based ML and deep learning models (temporal convolutional-bidirectional long short-term memory model or TCN-BiLSTM). Results: Benchmarking against existing tools revealed that BeatProfiler detected and analyzed contraction and calcium signals better than existing tools through improved sensitivity in low signal data, reduction in false positives, and analysis speed increase by 7 to 50-fold. Of signals accurately detected by published methods (PMs), BeatProfiler's extracted features showed high correlations to PMs, confirming that it is reliable and consistent with PMs. The features extracted by BeatProfiler classified restrictive cardiomyopathy cardiomyocytes from isogenic healthy controls with 98% accuracy and identified relax90 as a top distinguishing feature in congruence with previous findings. We also show that our TCN-BiLSTM model was able to classify drug-free control and 4 cardiac drugs with different mechanisms of action at 96% accuracy. We further apply Grad-CAM on our convolution-based models to identify signature regions of perturbations by these drugs in calcium signals. Conclusions: We anticipate that the capabilities of BeatProfiler will help advance in vitro studies in cardiac biology through rapid phenotyping, revealing mechanisms underlying cardiac health and disease, and enabling objective classification of cardiac disease and responses to drugs.
Collapse
Affiliation(s)
- Youngbin Kim
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Kunlun Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Roberta I. Lock
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Trevor R. Nash
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Sharon Fleischer
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Bryan Z. Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Barry M. Fine
- Department of MedicineDivision of CardiologyColumbia University Medical CenterNew YorkNY10032USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
- Department of MedicineDivision of CardiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
7
|
Quagliariello V, Passariello M, Bisceglia I, Paccone A, Inno A, Maurea C, Rapuano Lembo R, Manna L, Iovine M, Canale ML, Scherillo M, Ascierto PA, Gabrielli D, De Lorenzo C, Maurea N. Combinatorial immune checkpoint blockade increases myocardial expression of NLRP-3 and secretion of H-FABP, NT-Pro-BNP, interleukin-1β and interleukin-6: biochemical implications in cardio-immuno-oncology. Front Cardiovasc Med 2024; 11:1232269. [PMID: 38322766 PMCID: PMC10844473 DOI: 10.3389/fcvm.2024.1232269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Background Immune checkpoint blockade in monotherapy or combinatorial regimens with chemotherapy or radiotherapy have become an integral part of oncology in recent years. Monoclonal antibodies against CTLA-4 or PD-1 or PDL-1 are the most studied ICIs in randomized clinical trials, however, more recently, an anti-LAG3 (Lymphocyte activation gene-3) antibody, Relatlimab, has been approved by FDA in combination with Nivolumab for metastatic melanoma therapy. Moreover, Atezolizumab is actually under study in association with Ipilimumab for therapy of metastatic lung cancer. Myocarditis, vasculitis and endothelitis are rarely observed in these patients on monotherapy, however new combination therapies could expose patients to more adverse cardiovascular events. Methods Human cardiomyocytes co-cultured with human peripheral blood lymphocytes (hPBMCs) were exposed to monotherapy and combinatorial ICIs (PD-L1 and CTLA-4 or PD-1 and LAG-3 blocking agents, at 100 nM) for 48 h. After treatments, cardiac cell lysis and secretion of biomarkers of cardiotoxicity (H-FABP, troponin-T, BNP, NT-Pro-BNP), NLRP3-inflammasome and Interleukin 1 and 6 were determined through colorimetric and enzymatic assays. Mitochondrial functions were studied in cardiomyocyte cell lysates through quantification of intracellular Ca++, ATP content and NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) levels. Histone deacetylases type 4 (HDAC-4) protein levels were also determined in cardiomyocyte cell lysates to study potential epigenetic changes induced by immunotherapy regimens. Results Both combinations of immune checkpoint inhibitors exert more potent cardiotoxic side effects compared to monotherapies against human cardiac cells co-cultured with human lymphocytes. LDH release from cardiac cells was 43% higher in PD-L1/CTLA-4 blocking agents, and 35.7% higher in PD-1/LAG-3 blocking agents compared to monotherapies. HDAC4 and intracellular Ca++ levels were increased, instead ATP content and Ndufs1 were reduced in myocardial cell lysates (p < 0.001 vs. untreated cells). Troponin-T, BNP, NT-Pro-BNP and H-FABP, were also strongly increased in combination therapy compared to monotherapy regimen. NLRP3 expression, IL-6 and IL-1β levels were also increased by PDL-1/CTLA-4 and PD-1/LAG-3 combined blocking agents compared to untreated cells and monotherapies. Conclusions Data of the present study, although in vitro, indicate that combinatorial immune checkpoint blockade, induce a pro- inflammatory phenotype, thus indicating that these therapies should be closely monitored by the multidisciplinary team consisting of oncologists, cardiologists and immunologists.
Collapse
Affiliation(s)
- V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M. Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - I. Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - A. Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A. Inno
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - C. Maurea
- Medical Oncology, Ospedale del Mare, Naples, Italy
| | - R. Rapuano Lembo
- Department of Molecular Medicine, Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - L. Manna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - M. Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M. L. Canale
- U.O.C. Cardiologia, Ospedale Versilia, Lido di Camaiore (LU), Camaiore, Italy
| | - M. Scherillo
- Cardiologia Interventistica e UTIC, A.O. San Pio, Presidio Ospedaliero Gaetano Rummo, Benevento, Italy
| | - P. A. Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy
| | - D. Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Roma – Fondazione per il Tuo Cuore – Heart Care Foundation, Firenze, Italy
| | - C. De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Department of Molecular Medicine, Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
8
|
Arzt M, Gao B, Mozneb M, Pohlman S, Cejas RB, Liu Q, Huang F, Yu C, Zhang Y, Fan X, Jenkins A, Giuliano AE, Burridge PW, Cui X, Sharma A. Protein-encapsulated doxorubicin reduces cardiotoxicity in hiPSC-cardiomyocytes and cardiac spheroids while maintaining anticancer efficacy. Stem Cell Reports 2023; 18:1913-1924. [PMID: 37657447 PMCID: PMC10656302 DOI: 10.1016/j.stemcr.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023] Open
Abstract
The chemotherapeutic doxorubicin (DOX) detrimentally impacts the heart during cancer treatment. This necessitates development of non-cardiotoxic delivery systems that retain DOX anticancer efficacy. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), endothelial cells (hiPSC-ECs), cardiac fibroblasts (hiPSC-CFs), multi-lineage cardiac spheroids (hiPSC-CSs), patient-specific hiPSCs, and multiple human cancer cell lines to compare the anticancer efficacy and reduced cardiotoxicity of single protein encapsulated DOX (SPEDOX-6), to standard unformulated (UF) DOX. Cell viability assays and immunostaining in human cancer cells, hiPSC-ECs, and hiPSC-CFs revealed robust uptake of SPEDOX-6 and efficacy in killing these proliferative cell types. In contrast, hiPSC-CMs and hiPSC-CSs exhibited substantially lower cytotoxicity during SPEDOX-6 treatment compared with UF DOX. SPEDOX-6-treated hiPSC-CMs and hiPSC-CSs maintained their functionality, as indicated by sarcomere contractility assessment, calcium imaging, multielectrode arrays, and RNA sequencing. This study demonstrates the potential of SPEDOX-6 to alleviate cardiotoxic side effects associated with UF DOX, while maintaining its anticancer potency.
Collapse
Affiliation(s)
- Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephany Pohlman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; CIRM Bridges to Stem Cell Research Program, California State University, Channel Islands, CA, USA
| | - Romina B Cejas
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qizhi Liu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Changjun Yu
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA; Sunstate Biosciences LLC, Monrovia, CA, USA
| | - Yi Zhang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xuemo Fan
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amelia Jenkins
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaojiang Cui
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Demin S, Peschiulli A, Velter AI, Vos A, De Boeck B, Miller B, Rombouts FJR, Reuillon T, Lento W, Blanco MD, Jouffroy M, Steyvers H, Bekkers M, Altrocchi C, Pietrak B, Koo SJ, Szewczuk L, Attar R, Philippar U. Macrocyclic Carbon-Linked Pyrazoles As Novel Inhibitors of MCL-1. ACS Med Chem Lett 2023; 14:955-961. [PMID: 37465311 PMCID: PMC10351060 DOI: 10.1021/acsmedchemlett.3c00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Myeloid cell leukemia-1 (MCL-1) is a member of the antiapoptotic BCL-2 proteins family and a key regulator of mitochondrial homeostasis. Overexpression of MCL-1 is found in many cancer cells and contributes to tumor progression, which makes it an attractive therapeutic target. Pursuing our previous study of macrocyclic indoles for the inhibition of MCL-1, we report herein the impact of both pyrazole and indole isomerism on the potency and overall properties of this family of compounds. We demonstrated that the incorporation of a fluorine atom on the naphthalene moiety was a necessary step to improve cellular potency and that, combined with the introduction of various side chains on the pyrazole, it enhanced solubility significantly. This exploration culminated in the discovery of compounds (Ra)-10 and (Ra)-15, possessing remarkable cellular potency and properties.
Collapse
Affiliation(s)
- Samuël Demin
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Aldo Peschiulli
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Adriana I. Velter
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Ann Vos
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Benoît De Boeck
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Bradley Miller
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Frederik J. R. Rombouts
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Tristan Reuillon
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - William Lento
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Maria Dominguez Blanco
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Matthieu Jouffroy
- Chemical
Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V., Beerse B-2340, Belgium
| | - Helena Steyvers
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Mariette Bekkers
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Cristina Altrocchi
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Beth Pietrak
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Seong Joo Koo
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Lawrence Szewczuk
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Ricardo Attar
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Ulrike Philippar
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| |
Collapse
|
10
|
Dokuchaev A, Kursanov A, Balakina-Vikulova NA, Katsnelson LB, Solovyova O. The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes. Front Physiol 2023; 14:1187956. [PMID: 37362439 PMCID: PMC10285544 DOI: 10.3389/fphys.2023.1187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Populations of in silico electrophysiological models of human cardiomyocytes represent natural variability in cell activity and are thoroughly calibrated and validated using experimental data from the human heart. The models have been shown to predict the effects of drugs and their pro-arrhythmic risks. However, excitation and contraction are known to be tightly coupled in the myocardium, with mechanical loads and stretching affecting both mechanics and excitation through mechanisms of mechano-calcium-electrical feedback. However, these couplings are not currently a focus of populations of cell models. Aim: We investigated the role of cardiomyocyte mechanical activity under different mechanical conditions in the generation, calibration, and validation of a population of electro-mechanical models of human cardiomyocytes. Methods: To generate a population, we assumed 11 input parameters of ionic currents and calcium dynamics in our recently developed TP + M model as varying within a wide range. A History matching algorithm was used to generate a non-implausible parameter space by calibrating the action potential and calcium transient biomarkers against experimental data and rejecting models with excitation abnormalities. The population was further calibrated using experimental data on human myocardial force characteristics and mechanical tests involving variations in preload and afterload. Models that passed the mechanical tests were validated with additional experimental data, including the effects of drugs with high or low pro-arrhythmic risk. Results: More than 10% of the models calibrated on electrophysiological data failed mechanical tests and were rejected from the population due to excitation abnormalities at reduced preload or afterload for cell contraction. The final population of accepted models yielded action potential, calcium transient, and force/shortening outputs consistent with experimental data. In agreement with experimental and clinical data, the models demonstrated a high frequency of excitation abnormalities in simulations of Dofetilide action on the ionic currents, in contrast to Verapamil. However, Verapamil showed a high frequency of failed contractions at high concentrations. Conclusion: Our results highlight the importance of considering mechanoelectric coupling in silico cardiomyocyte models. Mechanical tests allow a more thorough assessment of the effects of interventions on cardiac function, including drug testing.
Collapse
Affiliation(s)
- Arsenii Dokuchaev
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander Kursanov
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Nathalie A. Balakina-Vikulova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Leonid B. Katsnelson
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Olga Solovyova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
11
|
Tabata T, Masumura Y, Higo S, Kunimatsu S, Kameda S, Inoue H, Okuno S, Ogawa S, Takashima S, Watanabe M, Miyagawa S, Hikoso S, Sakata Y. Multiplexed measurement of cell type-specific calcium kinetics using high-content image analysis combined with targeted gene disruption. Biochem Biophys Res Commun 2022; 637:40-49. [PMID: 36375249 DOI: 10.1016/j.bbrc.2022.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Kinetic analysis of intracellular calcium (Ca2+) in cardiomyocytes is commonly used to determine the pathogenicity of genetic mutations identified in patients with dilated cardiomyopathy (DCM). Conventional methods for measuring Ca2+ kinetics target whole-well cultured cardiomyocytes and therefore lack information concerning individual cells. Results are also affected by heterogeneity in cell populations. Here, we developed an analytical method using CRISPR/Cas9 genome editing combined with high-content image analysis (HCIA) that links cell-by-cell Ca2+ kinetics and immunofluorescence images in thousands of cardiomyocytes at a time. After transfecting cultured mouse cardiomyocytes that constitutively express Cas9 with gRNAs, we detected a prolonged action potential duration specifically in Serca2a-depleted ventricular cardiomyocytes in mixed culture. To determine the phenotypic effect of a frameshift mutation in PKD1 in a patient with DCM, we introduced the mutation into Cas9-expressing cardiomyocytes by gRNA transfection and found that it decreases the expression of PKD1-encoded PC1 protein that co-localizes specifically with Serca2a and L-type voltage-gated calcium channels. We also detected the suppression of Ca2+ amplitude in ventricular cardiomyocytes with decreased PC1 expression in mixed culture. Our HCIA method provides comprehensive kinetic and static information on individual cardiomyocytes and allows the pathogenicity of mutations to be determined rapidly.
Collapse
Affiliation(s)
- Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuki Masumura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Suzuka Kunimatsu
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Kameda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Inoue
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shota Okuno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shou Ogawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Zhu Y, Zheng B, Cai C, Lin Z, Qin H, Liu H, Cui C, Chen M. Febuxostat increases ventricular arrhythmogenesis through calcium handling dysregulation in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2022; 189:216-224. [PMID: 35866629 DOI: 10.1093/toxsci/kfac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Febuxostat is a xanthine oxidase inhibitor used to reduce the formation of uric acid and prevent gout attacks. Previous studies have suggested that febuxostat was associated with a higher risk of cardiovascular events, including atrial fibrillation, compared with allopurinol, another anti-hyperuricemia drug. Whereas in our clinical practice, we identified two cases of febuxostat-associated ventricular tachycardia events. The proarrhythmogenic effects of febuxostat on human cardiomyocytes and underlined mechanisms remain poorly understood. In this study, we employed real time cell analysis (RTCA) and calcium transient to investigate the effects of febuxostat on the cytotoxicity and electrophysiology properties of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Up to 10 μM febuxostat treatment did not show toxicity to cell viability. However, 48-hour febuxostat exposure generated dose-dependent increased irregular calcium transients and decreased calcium transient amplitude. Furthermore, RNA-seq analysis indicated that the MAPK signaling pathway was enriched in the febuxostat-treated group, especially the protein kinases JNK. Western blotting of three main protein kinases demonstrated that JNK activation is related to febuxostat-induced arrythmia rather than ERK or p38. The dysfunctional calcium dynamics of febuxostat-treated hiPSC-CMs could be ameliorated by SP600125, the inhibitor of JNK. In conclusion, our study demonstrated that febuxostat increases the predisposition to ventricular arrythmia by dysregulating calcium dynamics.
Collapse
Affiliation(s)
- Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingyu Zheng
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cheng Cai
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqiao Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huiyuan Qin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
13
|
Lu HR, Kreir M, Karel VA, Tekle F, Geyskens D, Teisman A, Gallacher DJ. Identifying Acute Cardiac Hazard in Early Drug Discovery Using a Calcium Transient High-Throughput Assay in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2022; 13:838435. [PMID: 35547580 PMCID: PMC9083324 DOI: 10.3389/fphys.2022.838435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Mohamed Kreir
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Van Ammel Karel
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Fetene Tekle
- Discovery and Nonclinical Safety Statistics, Statistics and Decision Sciences, Quantitative Sciences, Janssen R&D, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Danny Geyskens
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| |
Collapse
|
14
|
Pisanu A, Reid G, Fusco D, Sileo A, Robles Diaz D, Tarhini H, Putame G, Massai D, Isu G, Marsano A. Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor. iScience 2022; 25:104297. [PMID: 35586070 PMCID: PMC9108516 DOI: 10.1016/j.isci.2022.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Functional three-dimensional (3D) engineered cardiac tissue (ECT) models are essential for effective drug screening and biological studies. Application of physiological cues mimicking those typical of the native myocardium is known to promote the cardiac maturation and functionality in vitro. Commercially available bioreactors can apply one physical force type at a time and often in a restricted loading range. To overcome these limitations, a millimetric-scale microscope-integrated bioreactor was developed to deliver multiple biophysical stimuli to ECTs. In this study, we showed that the single application of auxotonic loading (passive) generated a bizonal ECT with a unique cardiac maturation pattern. Throughout the statically cultured constructs and in the ECT region exposed to high passive loading, cardiomyocytes predominantly displayed a round morphology and poor contractility ability. The ECT region with a low passive mechanical stimulation instead showed both rat- and human-origin cardiac cell maturation and organization, as well as increased ECT functionality. Mid-throughput culture platform to engineer reproducible 3D cardiac in vitro models 3D culture under multiphysical stimuli mimicking the in vivo heart environment Passive loading leads to bizonal constructs with different cardiac maturation stages
Collapse
|
15
|
Murata K, Masumoto H. Systems for the functional evaluation of human heart tissues derived from pluripotent stem cells. Stem Cells 2022; 40:537-545. [PMID: 35303744 PMCID: PMC9216506 DOI: 10.1093/stmcls/sxac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022]
Abstract
Human pluripotent stem cells (hPSCs) are expected to be a promising cell source in regenerative medicine and drug discovery for the treatment of various intractable diseases. An approach for creating a three-dimensional (3D) structure from hPSCs that mimics human cardiac tissue functions has made it theoretically possible to conduct drug discovery and cardiotoxicity tests by assessing pharmacological responses in human cardiac tissues by a screening system using a compound library. The myocardium functions as a tissue composed of organized vascular networks, supporting stromal cells and cardiac muscle cells. Considering this, the reconstruction of tissue structure by various cells of cardiovascular lineages, such as vascular cells and cardiac muscle cells, is desirable for the ideal conformation of hPSC-derived cardiac tissues. Heart-on-a-chip, an organ-on-a-chip system to evaluate the physiological pump function of 3D cardiac tissues might hold promise in medical researches such as drug discovery and regenerative medicine. Here, we review various modalities to evaluate the function of human stem cell-derived cardiac tissues and introduce heart-on-a-chip systems that can recapitulate physiological parameters of hPSC-derived cardiac tissues.
Collapse
Affiliation(s)
- Kozue Murata
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Tanaka Y, Seto M, Kakegawa K, Takami K, Kikuchi F, Yamamoto T, Nakamura M, Daini M, Murakami M, Ohashi T, Kasahara T, Wang J, Ikeda Z, Wada Y, Puenner F, Fujii T, Inazuka M, Sato S, Suzaki T, Oak JH, Takai Y, Kohara H, Kimoto K, Oki H, Mikami S, Sasaki M, Tanaka Y. Discovery of Brain-Penetrant Glucosylceramide Synthase Inhibitors with a Novel Pharmacophore. J Med Chem 2022; 65:4270-4290. [PMID: 35188773 DOI: 10.1021/acs.jmedchem.1c02078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhibition of glucosylceramide synthase (GCS) is a major therapeutic strategy for Gaucher's disease and has been suggested as a potential target for treating Parkinson's disease. Herein, we report the discovery of novel brain-penetrant GCS inhibitors. Assessment of the structure-activity relationship revealed a unique pharmacophore in this series. The lipophilic ortho-substituent of aromatic ring A and the appropriate directionality of aromatic ring B were key for potency. Optimization of the absorption, distribution, metabolism, elimination, toxicity (ADMETox) profile resulted in the discovery of T-036, a potent GCS inhibitor in vivo. Pharmacophore-based scaffold hopping was performed to mitigate safety concerns associated with T-036. The ring opening of T-036 resulted in another potent GCS inhibitor with a lower toxicological risk, T-690, which reduced glucosylceramide in a dose-dependent manner in the plasma and cortex of mice. Finally, we discuss the structural aspects of the compounds that impart a unique inhibition mode and lower the cardiovascular risk.
Collapse
Affiliation(s)
- Yuta Tanaka
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaki Seto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuaki Takami
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Fumiaki Kikuchi
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Yamamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Nakamura
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaki Daini
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masataka Murakami
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Ohashi
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahito Kasahara
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Junsi Wang
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Zenichi Ikeda
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasufumi Wada
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Florian Puenner
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Fujii
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masakazu Inazuka
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sho Sato
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiko Suzaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jeong-Ho Oak
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuichi Takai
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Kohara
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouya Kimoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Oki
- Axcelead Drug Discovery Partners, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Mikami
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuta Tanaka
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
17
|
Matsui T, Shinozawa T. Human Organoids for Predictive Toxicology Research and Drug Development. Front Genet 2021; 12:767621. [PMID: 34790228 PMCID: PMC8591288 DOI: 10.3389/fgene.2021.767621] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organoids are three-dimensional structures fabricated in vitro from pluripotent stem cells or adult tissue stem cells via a process of self-organization that results in the formation of organ-specific cell types. Human organoids are expected to mimic complex microenvironments and many of the in vivo physiological functions of relevant tissues, thus filling the translational gap between animals and humans and increasing our understanding of the mechanisms underlying disease and developmental processes. In the last decade, organoid research has attracted increasing attention in areas such as disease modeling, drug development, regenerative medicine, toxicology research, and personalized medicine. In particular, in the field of toxicology, where there are various traditional models, human organoids are expected to blaze a new path in future research by overcoming the current limitations, such as those related to differences in drug responses among species. Here, we discuss the potential usefulness, limitations, and future prospects of human liver, heart, kidney, gut, and brain organoids from the viewpoints of predictive toxicology research and drug development, providing cutting edge information on their fabrication methods and functional characteristics.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
18
|
Gomez‐Galeno J, Okolotowicz K, Johnson M, McKeithan WL, Mercola M, Cashman JR. Human-induced pluripotent stem cell-derived cardiomyocytes: Cardiovascular properties and metabolism and pharmacokinetics of deuterated mexiletine analogs. Pharmacol Res Perspect 2021; 9:e00828. [PMID: 34327875 PMCID: PMC8322572 DOI: 10.1002/prp2.828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Prolongation of the cardiac action potential (AP) and early after depolarizations (EADs) are electrical anomalies of cardiomyocytes that can lead to lethal arrhythmias and are potential liabilities for existing drugs and drug candidates in development. For example, long QT syndrome-3 (LQTS3) is caused by mutations in the Nav 1.5 sodium channel that debilitate channel inactivation and cause arrhythmias. We tested the hypothesis that a useful drug (i.e., mexiletine) with potential liabilities (i.e., potassium channel inhibition and adverse reactions) could be re-engineered by dynamic medicinal chemistry to afford a new drug candidate with greater efficacy and less toxicity. Human cardiomyocytes were generated from LQTS3 patient-derived induced pluripotent stem cells (hIPSCs) and normal hIPSCs to determine beneficial (on-target) and detrimental effects (off-target) of mexiletine and synthetic analogs, respectively. The approach combined "drug discovery" and "hit to lead" refinement and showed that iterations of medicinal chemistry and physiological testing afforded optimized compound 22. Compared to mexiletine, compound 22 showed a 1.85-fold greater AUC and no detectable CNS toxicity at 100 mg/kg. In vitro hepatic metabolism studies showed that 22 was metabolized via cytochrome P-450, as previously shown, and by the flavin-containing monooxygenase (FMO). Deuterated-22 showed decreased metabolism and showed acceptable cardiovascular and physicochemical properties.
Collapse
Affiliation(s)
| | - Karl Okolotowicz
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Mark Johnson
- Human BioMolecular Research InstituteSan DiegoCAUSA
| | - Wesley L. McKeithan
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Mark Mercola
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | | |
Collapse
|
19
|
Johnson M, Gomez-Galeno J, Ryan D, Okolotowicz K, McKeithan WL, Sampson KJ, Kass RS, Mercola M, Cashman JR. Human iPSC-derived cardiomyocytes and pyridyl-phenyl mexiletine analogs. Bioorg Med Chem Lett 2021; 46:128162. [PMID: 34062251 DOI: 10.1016/j.bmcl.2021.128162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
In the United States, approximately one million individuals are hospitalized every year for arrhythmias, making arrhythmias one of the top causes of healthcare expenditures. Mexiletine is currently used as an antiarrhythmic drug but has limitations. The purpose of this work was to use normal and Long QT syndrome Type 3 (LQTS3) patient-derived human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to identify an analog of mexiletine with superior drug-like properties. Compared to racemic mexiletine, medicinal chemistry optimization of substituted racemic pyridyl phenyl mexiletine analogs resulted in a more potent sodium channel inhibitor with greater selectivity for the sodium over the potassium channel and for late over peak sodium current.
Collapse
Affiliation(s)
- Mark Johnson
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Daniel Ryan
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - John R Cashman
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA.
| |
Collapse
|
20
|
Cashman JR, Ryan D, McKeithan WL, Okolotowicz K, Gomez-Galeno J, Johnson M, Sampson KJ, Kass RS, Pezhouman A, Karagueuzian HS, Mercola M. Antiarrhythmic Hit to Lead Refinement in a Dish Using Patient-Derived iPSC Cardiomyocytes. J Med Chem 2021; 64:5384-5403. [PMID: 33942619 DOI: 10.1021/acs.jmedchem.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ventricular cardiac arrhythmia (VA) arises in acquired or congenital heart disease. Long QT syndrome type-3 (LQT3) is a congenital form of VA caused by cardiac sodium channel (INaL) SCN5A mutations that prolongs cardiac action potential (AP) and enhances INaL current. Mexiletine inhibits INaL and shortens the QT interval in LQT3 patients. Above therapeutic doses, mexiletine prolongs the cardiac AP. We explored structure-activity relationships (SAR) for AP shortening and prolongation using dynamic medicinal chemistry and AP kinetics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using patient-derived LQT3 and healthy hiPSC-CMs, we resolved distinct SAR for AP shortening and prolongation effects in mexiletine analogues and synthesized new analogues with enhanced potency and selectivity for INaL. This resulted in compounds with decreased AP prolongation effects, increased metabolic stability, increased INaL selectivity, and decreased avidity for the potassium channel. This study highlights using hiPSC-CMs to guide medicinal chemistry and "drug development in a dish".
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Daniel Ryan
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California 94305, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, California 92037, United States
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Mark Johnson
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Arash Pezhouman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hrayr S Karagueuzian
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California 94305, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, California 92037, United States
| |
Collapse
|
21
|
Paci M, Koivumäki JT, Lu HR, Gallacher DJ, Passini E, Rodriguez B. Comparison of the Simulated Response of Three in Silico Human Stem Cell-Derived Cardiomyocytes Models and in Vitro Data Under 15 Drug Actions. Front Pharmacol 2021; 12:604713. [PMID: 33841140 PMCID: PMC8033762 DOI: 10.3389/fphar.2021.604713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hua Rong Lu
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Chirikian O, Goodyer WR, Dzilic E, Serpooshan V, Buikema JW, McKeithan W, Wu H, Li G, Lee S, Merk M, Galdos F, Beck A, Ribeiro AJS, Paige S, Mercola M, Wu JC, Pruitt BL, Wu SM. CRISPR/Cas9-based targeting of fluorescent reporters to human iPSCs to isolate atrial and ventricular-specific cardiomyocytes. Sci Rep 2021; 11:3026. [PMID: 33542270 PMCID: PMC7862643 DOI: 10.1038/s41598-021-81860-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Generating cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) has represented a significant advance in our ability to model cardiac disease. Current differentiation protocols, however, have limited use due to their production of heterogenous cell populations, primarily consisting of ventricular-like CMs. Here we describe the creation of two chamber-specific reporter hiPSC lines by site-directed genomic integration using CRISPR-Cas9 technology. In the MYL2-tdTomato reporter, the red fluorescent tdTomato was inserted upstream of the 3′ untranslated region of the Myosin Light Chain 2 (MYL2) gene in order faithfully label hiPSC-derived ventricular-like CMs while avoiding disruption of endogenous gene expression. Similarly, in the SLN-CFP reporter, Cyan Fluorescent Protein (CFP) was integrated downstream of the coding region of the atrial-specific gene, Sarcolipin (SLN). Purification of tdTomato+ and CFP+ CMs using flow cytometry coupled with transcriptional and functional characterization validated these genetic tools for their use in the isolation of bona fide ventricular-like and atrial-like CMs, respectively. Finally, we successfully generated a double reporter system allowing for the isolation of both ventricular and atrial CM subtypes within a single hiPSC line. These tools provide a platform for chamber-specific hiPSC-derived CM purification and analysis in the context of atrial- or ventricular-specific disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Orlando Chirikian
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Biotechnology Graduate Program, California State University Channel Islands, Camarillo, CA, USA.,Biomolecular, Science, and Engineering, University California, Santa Barbara, CA, USA
| | - William R Goodyer
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA
| | - Elda Dzilic
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Lazarettstraße 36, 80636, Munich, Germany.,Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, Lothstraße 11, 80636, Munich, Germany
| | - Vahid Serpooshan
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jan W Buikema
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Cardiology, Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - Wesley McKeithan
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - HaoDi Wu
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Guang Li
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Soah Lee
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Markus Merk
- Biomolecular, Science, and Engineering, University California, Santa Barbara, CA, USA
| | - Francisco Galdos
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Aimee Beck
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Biotechnology Graduate Program, California State University Channel Islands, Camarillo, CA, USA
| | - Alexandre J S Ribeiro
- Stanford University, Stanford, CA, USA.,Departments of Bioengineering and of Mechanical Engineering, Stanford University, Stanford, USA
| | - Sharon Paige
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA
| | - Mark Mercola
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA
| | - Joseph C Wu
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA
| | - Beth L Pruitt
- Stanford University, Stanford, CA, USA.,Departments of Bioengineering and of Mechanical Engineering, Stanford University, Stanford, USA.,Department of Mechanical Engineering, University California, Santa Barbara, CA, USA
| | - Sean M Wu
- Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford, CA, USA. .,Stanford University School of Medicine, Stanford, CA, USA. .,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA. .,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Gintant G, Kaushik EP, Feaster T, Stoelzle-Feix S, Kanda Y, Osada T, Smith G, Czysz K, Kettenhofen R, Lu HR, Cai B, Shi H, Herron TJ, Dang Q, Burton F, Pang L, Traebert M, Abassi Y, Pierson JB, Blinova K. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regul Toxicol Pharmacol 2020; 117:104756. [PMID: 32822771 DOI: 10.1016/j.yrtph.2020.104756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.
Collapse
Affiliation(s)
- Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, 60064, USA.
| | | | - Tromondae Feaster
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | | | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan.
| | | | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | | | - Ralf Kettenhofen
- Fraunhofer-Institute for Biomed Engineering IBMT, Sulzbach, Germany.
| | - Hua Rong Lu
- Nonclinical Safety, Johnson & Johnson R&D, Beerse, Belgium.
| | - Beibei Cai
- Takeda California, Inc., San Diego, CA, 92121, USA.
| | - Hong Shi
- Bristol-Myers Squibb, New York, NY, 10016, USA.
| | - Todd Joseph Herron
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Qianyu Dang
- Office of Biostatistics, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Francis Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| | | | - Yama Abassi
- Agilent Technologies, San Diego, CA, 92121, USA.
| | | | - Ksenia Blinova
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
24
|
McKeithan WL, Feyen DAM, Bruyneel AAN, Okolotowicz KJ, Ryan DA, Sampson KJ, Potet F, Savchenko A, Gómez-Galeno J, Vu M, Serrano R, George AL, Kass RS, Cashman JR, Mercola M. Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic Potential and Reduce Toxicity. Cell Stem Cell 2020; 27:813-821.e6. [PMID: 32931730 DOI: 10.1016/j.stem.2020.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023]
Abstract
Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.
Collapse
Affiliation(s)
- Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Dries A M Feyen
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arne A N Bruyneel
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel A Ryan
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Franck Potet
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alex Savchenko
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Michelle Vu
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Serrano
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA.
| |
Collapse
|
25
|
Matsui T, Miyamoto N, Saito F, Shinozawa T. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Cells and their Application for Drug Safety Study. Curr Pharm Biotechnol 2020; 21:807-828. [PMID: 32321398 DOI: 10.2174/1389201021666200422090952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced toxicity remains one of the leading causes of discontinuation of the drug candidate and post-marketing withdrawal. Thus, early identification of the drug candidates with the potential for toxicity is crucial in the drug development process. With the recent discovery of human- Induced Pluripotent Stem Cells (iPSC) and the establishment of the differentiation protocol of human iPSC into the cell types of interest, the differentiated cells from human iPSC have garnered much attention because of their potential applicability in toxicity evaluation as well as drug screening, disease modeling and cell therapy. In this review, we expanded on current information regarding the feasibility of human iPSC-derived cells for the evaluation of drug-induced toxicity with a focus on human iPSCderived hepatocyte (iPSC-Hep), cardiomyocyte (iPSC-CMs) and neurons (iPSC-Neurons). Further, we CSAHi, Consortium for Safety Assessment using Human iPS Cells, reported our gene expression profiling data with DNA microarray using commercially available human iPSC-derived cells (iPSC-Hep, iPSC-CMs, iPSC-Neurons), their relevant human tissues and primary cultured human cells to discuss the future direction of the three types of human iPSC-derived cells.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Norimasa Miyamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Fumiyo Saito
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | | |
Collapse
|
26
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
27
|
Collins LR, Shepard KA. CIRM tools and technologies: Breaking bottlenecks to the development of stem cell therapies. Stem Cells Transl Med 2020; 9:1129-1136. [PMID: 32619326 PMCID: PMC7519770 DOI: 10.1002/sctm.20-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
The California Institute for Regenerative Medicine (CIRM) has a mission to accelerate stem cell treatments to patients with unmet medical needs. This perspective describes successful examples of work funded by CIRM's New Cell Lines and Tools and Technologies Initiatives, which were developed to address bottlenecks to stem cell research and translation. The tools developed through these programs evolved from more discovery-oriented technologies, such as disease models, differentiation processes, and assays, to more translation focused tools, including scalable good manufacturing processes, animal models, and tools for clinical cell delivery. These tools are available to the research community and many are facilitating translation of regenerative therapeutics today.
Collapse
Affiliation(s)
- Lila R. Collins
- California Institute for Regenerative MedicineOaklandCaliforniaUSA
| | - Kelly A. Shepard
- California Institute for Regenerative MedicineOaklandCaliforniaUSA
| |
Collapse
|
28
|
Bedut S, Kettenhofen R, D'Angelo JM. Voltage-sensing optical recording: A method of choice for high-throughput assessment of cardiotropic effects. J Pharmacol Toxicol Methods 2020; 105:106888. [PMID: 32579903 DOI: 10.1016/j.vascn.2020.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/20/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Voltage and calcium-sensing optical recording (VSOR and CSOR, respectively) from human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been validated for in vitro evaluation of cardiotropic effects of drugs. When compared to electrophysiological devices like microelectrode array, multi-well optical recordings present a lower sample rate that may limit their capacity to detect fast depolarization or propagation velocity alterations. Additionally, the respective sensitivities of VSOR and CSOR to different cardiac electrophysiological effects have not been compared in the same conditions. METHODS FluoVolt and Cal520 dyes were used in 96 well format on hPSC-CMs to report sodium channel block by lidocaine and propagation slowing by the junctional uncoupler carbenoxolone at three recording frequencies (60, 120 and 200 Hz) as well as their sensitivity to early and late repolarization delay. RESULTS Sodium channel block led to a dose-dependent decrease of the VSOR signal rising slope that was improved by an increased sampling frequency. In contrast, the CSOR signal rising slope was only decreased at the highest concentration with no influence from the sampling rate. A similar result was obtained with carbenoxolone. Early repolarization delay by Bay K8644 showed the same effects on VSOR and CSOR signal durations while repolarization slowing by dofetilide had a significantly stronger prolongating effect on the VSOR signal at the lowest concentration. DISCUSSION VSOR showed a higher capacity to detect sodium channel block, propagation slowing and modest late repolarization delay than CSOR. Increasing the sampling rate improved the detection threshold of VSOR for excitability and conduction velocity alterations.
Collapse
Affiliation(s)
- Stéphane Bedut
- E-physervices, 1 rue de la Collégiale, 75005 Paris, France.
| | - Ralf Kettenhofen
- Fraunhofer-Institut für Biomedizinische Technik IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | | |
Collapse
|
29
|
Paci M, Passini E, Klimas A, Severi S, Hyttinen J, Rodriguez B, Entcheva E. All-Optical Electrophysiology Refines Populations of In Silico Human iPSC-CMs for Drug Evaluation. Biophys J 2020; 118:2596-2611. [PMID: 32298635 PMCID: PMC7231889 DOI: 10.1016/j.bpj.2020.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action potentials (APs) and Ca2+ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Optically obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug conditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously recorded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug effects and occurrence of adverse episodes, even though the population was optimized only based on control data and in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic insights; e.g., through simulations, bepridil's more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electrophysiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-throughput in vitro and population in silico approaches.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, D.C
| |
Collapse
|
30
|
Panda A, Gurusamy N, Rajasingh S, Carter HK, Thomas EL, Rajasingh J. Non-viral reprogramming and induced pluripotent stem cells for cardiovascular therapy. Differentiation 2020; 112:58-66. [PMID: 31954271 DOI: 10.1016/j.diff.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Despite significant effort devoted to developing new treatments and procedures, cardiac disease is still one of the leading causes of death in the world. The loss of myocytes due to ischemic injury remains a major therapeutic challenge. However, cell-based therapy to repair the injured heart has shown significant promise in basic and translation research and in clinical trials. Embryonic stem cells have been successfully used to improve cardiac outcomes. Unfortunately, treatment with these cells is complicated by ethical and legal issues. Recent progress in developing induced pluripotent stem cells (iPSCs) using non-viral vectors has made it possible to derive cardiomyocytes for therapy. This review will focus on these non-integration-based approaches for reprogramming and their therapeutic advantages for cardiovascular medicine.
Collapse
Affiliation(s)
- Arunima Panda
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hannah-Kaye Carter
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Edwin L Thomas
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
31
|
Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020; 21:ijms21020507. [PMID: 31941149 PMCID: PMC7013592 DOI: 10.3390/ijms21020507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.
Collapse
Affiliation(s)
- Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Lucio Barile
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Claudia Altomare
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Correspondence:
| |
Collapse
|
32
|
Bub G, Daniels MJ. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart. Curr Pharm Biotechnol 2020; 21:752-764. [PMID: 30961485 PMCID: PMC7527548 DOI: 10.2174/1389201020666190405182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
In 1791, Galvani established that electricity activated excitable cells. In the two centuries that followed, electrode stimulation of neuronal, skeletal and cardiac muscle became the adjunctive method of choice in experimental, electrophysiological, and clinical arenas. This approach underpins breakthrough technologies like implantable cardiac pacemakers that we currently take for granted. However, the contact dependence, and field stimulation that electrical depolarization delivers brings inherent limitations to the scope and experimental scale that can be achieved. Many of these were not exposed until reliable in vitro stem-cell derived experimental materials, with genotypes of interest, were produced in the numbers needed for multi-well screening platforms (for toxicity or efficacy studies) or the 2D or 3D tissue surrogates required to study propagation of depolarization within multicellular constructs that mimic clinically relevant arrhythmia in the heart or brain. Here the limitations of classical electrode stimulation are discussed. We describe how these are overcome by optogenetic tools which put electrically excitable cells under the control of light. We discuss how this enables studies in cardiac material from the single cell to the whole heart scale. We review the current commercial platforms that incorporate optogenetic stimulation strategies, and summarize the global literature to date on cardiac applications of optogenetics. We show that the advantages of optogenetic stimulation relevant to iPS-CM based screening include independence from contact, elimination of electrical stimulation artefacts in field potential measuring approaches such as the multi-electrode array, and the ability to print re-entrant patterns of depolarization at will on 2D cardiomyocyte monolayers.
Collapse
Affiliation(s)
| | - Matthew J. Daniels
- Address correspondence to this author at the Institute of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK; Tel: +441865234913; E-mails: ;
| |
Collapse
|
33
|
Takasuna K, Kazusa K, Hayakawa T. Comprehensive Cardiac Safety Assessment using hiPS-cardiomyocytes (Consortium for Safety Assessment using Human iPS Cells: CSAHi). Curr Pharm Biotechnol 2019; 21:829-841. [PMID: 31749424 DOI: 10.2174/1389201020666191024172425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
Abstract
Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Heart Team, Japan
| | - Katsuyuki Kazusa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| | - Tomohiro Hayakawa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| |
Collapse
|
34
|
Garbern JC, Helman A, Sereda R, Sarikhani M, Ahmed A, Escalante GO, Ogurlu R, Kim SL, Zimmerman JF, Cho A, MacQueen L, Bezzerides VJ, Parker KK, Melton DA, Lee RT. Inhibition of mTOR Signaling Enhances Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells via p53-Induced Quiescence. Circulation 2019; 141:285-300. [PMID: 31707831 PMCID: PMC7009740 DOI: 10.1161/circulationaha.119.044205] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Current differentiation protocols to produce cardiomyocytes from human induced pluripotent stem cells (iPSCs) are capable of generating highly pure cardiomyocyte populations as determined by expression of cardiac troponin T. However, these cardiomyocytes remain immature, more closely resembling the fetal state, with a lower maximum contractile force, slower upstroke velocity, and immature mitochondrial function compared with adult cardiomyocytes. Immaturity of iPSC-derived cardiomyocytes may be a significant barrier to clinical translation of cardiomyocyte cell therapies for heart disease. During development, cardiomyocytes undergo a shift from a proliferative state in the fetus to a more mature but quiescent state after birth. The mechanistic target of rapamycin (mTOR)-signaling pathway plays a key role in nutrient sensing and growth. We hypothesized that transient inhibition of the mTOR-signaling pathway could lead cardiomyocytes to a quiescent state and enhance cardiomyocyte maturation. METHODS Cardiomyocytes were differentiated from 3 human iPSC lines using small molecules to modulate the Wnt pathway. Torin1 (0 to 200 nmol/L) was used to inhibit the mTOR pathway at various time points. We quantified contractile, metabolic, and electrophysiological properties of matured iPSC-derived cardiomyocytes. We utilized the small molecule inhibitor, pifithrin-α, to inhibit p53 signaling, and nutlin-3a, a small molecule inhibitor of MDM2 (mouse double minute 2 homolog) to upregulate and increase activation of p53. RESULTS Torin1 (200 nmol/L) increased the percentage of quiescent cells (G0 phase) from 24% to 48% compared with vehicle control (P<0.05). Torin1 significantly increased expression of selected sarcomere proteins (including TNNI3 [troponin I, cardiac muscle]) and ion channels (including Kir2.1) in a dose-dependent manner when Torin1 was initiated after onset of cardiomyocyte beating. Torin1-treated cells had an increased relative maximum force of contraction, increased maximum oxygen consumption rate, decreased peak rise time, and increased downstroke velocity. Torin1 treatment increased protein expression of p53, and these effects were inhibited by pifithrin-α. In contrast, nutlin-3a independently upregulated p53, led to an increase in TNNI3 expression and worked synergistically with Torin1 to further increase expression of both p53 and TNNI3. CONCLUSIONS Transient treatment of human iPSC-derived cardiomyocytes with Torin1 shifts cells to a quiescent state and enhances cardiomyocyte maturity.
Collapse
Affiliation(s)
- Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (J.C.G., R.O., V.J.B.)
| | - Aharon Helman
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA
| | - Rebecca Sereda
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA
| | - Mohsen Sarikhani
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA
| | - Aishah Ahmed
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA
| | - Gabriela O Escalante
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA
| | - Roza Ogurlu
- Department of Cardiology, Boston Children's Hospital, MA (J.C.G., R.O., V.J.B.)
| | - Sean L Kim
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA.,Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences (S.L.K., J.F.Z., A.C., L.M., K.K.P.), Harvard University, Cambridge, MA
| | - John F Zimmerman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences (S.L.K., J.F.Z., A.C., L.M., K.K.P.), Harvard University, Cambridge, MA
| | - Alexander Cho
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences (S.L.K., J.F.Z., A.C., L.M., K.K.P.), Harvard University, Cambridge, MA
| | - Luke MacQueen
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences (S.L.K., J.F.Z., A.C., L.M., K.K.P.), Harvard University, Cambridge, MA
| | | | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences (S.L.K., J.F.Z., A.C., L.M., K.K.P.), Harvard University, Cambridge, MA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (R.T.L.)
| |
Collapse
|
35
|
Kopljar I, Lu HR, Van Ammel K, Otava M, Tekle F, Teisman A, Gallacher DJ. Development of a Human iPSC Cardiomyocyte-Based Scoring System for Cardiac Hazard Identification in Early Drug Safety De-risking. Stem Cell Reports 2019; 11:1365-1377. [PMID: 30540961 PMCID: PMC6294263 DOI: 10.1016/j.stemcr.2018.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising cardiac safety platform, demonstrated by numerous validation studies using drugs with known cardiac adverse effects in humans. However, the challenge remains to implement hiPSC-CMs into cardiac de-risking of new chemical entities (NCEs) during preclinical drug development. Here, we used the calcium transient screening assay in hiPSC-CMs to develop a hazard score system for cardiac electrical liabilities. Tolerance interval calculations and evaluation of different classes of cardio-active drugs enabled us to develop a weighted scoring matrix. This approach allowed the translation of various pharmacological effects in hiPSC-CMs into a single hazard label (no, low, high, or very high hazard). Evaluation of 587 internal NCEs and good translation to ex vivo and in vivo models for a subset of these NCEs highlight the value of the cardiac hazard scoring in facilitating the selection of compounds during early drug safety screening. Scoring system identifies different degrees of cardiac hazard Can be applied within R&D to cardiac safety screening of NCEs Controls and reference drugs are essential for development of scoring matrix Analysis can be applied to other in vitro drug safety assays
Collapse
Affiliation(s)
- Ivan Kopljar
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Hua Rong Lu
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Karel Van Ammel
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Martin Otava
- Statistics and Decision Sciences, Quantitative Sciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Quantitative Sciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
36
|
HiPSC-CMs from different sex and ethnic origin donors exhibit qualitatively different responses to several classes of pharmacological challenges. J Pharmacol Toxicol Methods 2019; 99:106598. [DOI: 10.1016/j.vascn.2019.106598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022]
|
37
|
Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Ribeiro AJS, Zabka T, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Adverse Drug-Induced Inotropic Effects in Early Drug Development. Part 1: General Considerations for Development of Novel Testing Platforms. Front Pharmacol 2019; 10:884. [PMID: 31447679 PMCID: PMC6697071 DOI: 10.3389/fphar.2019.00884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Drug-induced effects on cardiac contractility can be assessed through the measurement of the maximal rate of pressure increase in the left ventricle (LVdP/dtmax) in conscious animals, and such studies are often conducted at the late stage of preclinical drug development. Detection of such effects earlier in drug research using simpler, in vitro test systems would be a valuable addition to our strategies for identifying the best possible drug development candidates. Thus, testing platforms with reasonably high throughput, and affordable costs would be helpful for early screening purposes. There may also be utility for testing platforms that provide mechanistic information about how a given drug affects cardiac contractility. Finally, there could be in vitro testing platforms that could ultimately contribute to the regulatory safety package of a new drug. The characteristics needed for a successful cell or tissue-based testing platform for cardiac contractility will be dictated by its intended use. In this article, general considerations are presented with the intent of guiding the development of new testing platforms that will find utility in drug research and development. In the following article (part 2), specific aspects of using human-induced stem cell-derived cardiomyocytes for this purpose are addressed.
Collapse
Affiliation(s)
- Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Tanja Zabka
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
38
|
Lu HR, Zeng H, Kettenhofen R, Guo L, Kopljar I, van Ammel K, Tekle F, Teisman A, Zhai J, Clouse H, Pierson J, Furniss M, Lagrutta A, Sannajust F, Gallacher DJ. Assessing Drug-Induced Long QT and Proarrhythmic Risk Using Human Stem-Cell-Derived Cardiomyocytes in a Ca2+ Imaging Assay: Evaluation of 28 CiPA Compounds at Three Test Sites. Toxicol Sci 2019; 170:345-356. [PMID: 31020317 PMCID: PMC6657578 DOI: 10.1093/toxsci/kfz102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The goal of this research consortium including Janssen, MSD, Ncardia, FNCR/LBR, and Health and Environmental Sciences Institute (HESI) was to evaluate the utility of an additional in vitro assay technology to detect potential drug-induced long QT and torsade de pointes (TdP) risk by monitoring cytosolic free Ca2+ transients in human stem-cell-derived cardiomyocytes (hSC-CMs). The potential proarrhythmic risks of the 28 comprehensive in vitro proarrhythmia assay (CiPA) drugs linked to low, intermediate, and high clinical TdP risk were evaluated in a blinded manner using Ca2+-sensitive fluorescent dye assay recorded from a kinetic plate reader system (Hamamatsu FDSS/µCell and FDSS7000) in 2D cultures of 2 commercially available hSC-CM lines (Cor.4U and CDI iCell Cardiomyocytes) at 3 different test sites. The Ca2+ transient assay, performed at the 3 sites using the 2 different hSC-CMs lines, correctly detected potential drug-induced QT prolongation among the 28 CiPA drugs and detected cellular arrhythmias-like/early afterdepolarization in 7 of 8 high TdP-risk drugs (87.5%), 6 of 11 intermediate TdP-risk drugs (54.5%), and 0 of 9 low/no TdP-risk drugs (0%). The results were comparable among the 3 sites and from 2 hSC-CM cell lines. The Ca2+ transient assay can serve as a user-friendly and higher throughput alternative to complement the microelectrode array and voltage-sensing optical action potential recording assays used in the HESI-CiPA study for in vitro assessment of drug-induced long QT and TdP risk.
Collapse
Affiliation(s)
- Hua Rong Lu
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | - Haoyu Zeng
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | | | - Liang Guo
- Frederick National Laboratory for Cancer Research (FNLCR)/Leidos Biomedical Research (LBR), Inc., Frederick, Maryland 21702
| | - Ivan Kopljar
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | | | - Fetene Tekle
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | - Ard Teisman
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | - Jin Zhai
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | - Holly Clouse
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | - Jennifer Pierson
- HESI, Cardiac Safety Technical Committee, Washington, District of Columbia 20005
| | - Michael Furniss
- Frederick National Laboratory for Cancer Research (FNLCR)/Leidos Biomedical Research (LBR), Inc., Frederick, Maryland 21702
| | - Armando Lagrutta
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | - Frederick Sannajust
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | | |
Collapse
|
39
|
Pfeiffer-Kaushik ER, Smith GL, Cai B, Dempsey GT, Hortigon-Vinagre MP, Zamora V, Feng S, Ingermanson R, Zhu R, Hariharan V, Nguyen C, Pierson J, Gintant GA, Tung L. Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. J Pharmacol Toxicol Methods 2019; 99:106612. [PMID: 31319140 DOI: 10.1016/j.vascn.2019.106612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays. METHODS Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs). Acquisition technologies included CMOS camera and photometry; fluorescent voltage sensors included di-4-ANEPPS, FluoVolt and genetically encoded QuasAr2. The experimental protocol was standardized with respect to cell lines, plating and maintenance media, blinded compounds, and action potential parameters measured. Serum-free media was used to study the action of drugs, but the exact composition and the protocols for cell preparation and drug additions varied among sites. RESULTS Baseline AP waveforms differed across platforms and between cell types. Despite these differences, the relative responses to four selective ion channel blockers (E-4031, nifedipine, mexiletine, and JNJ 303 blocking IKr, ICaL, INa, and IKs, respectively) were similar across all platforms and cell lines although the absolute changes differed. Similarly, four mixed ion channel blockers (flecainide, moxifloxacin, quinidine, and ranolazine) had comparable effects in all platforms. Differences in repolarisation time course and response to drugs could be attributed to cell type and experimental method differences such as composition of the assay media, stimulated versus spontaneous activity, and single versus cumulative compound addition. DISCUSSION In conclusion, VSOs represent a powerful and appropriate method to assess the electrophysiological effects of drugs on iPSC-CMs for the evaluation of proarrhythmic risk. Protocol considerations and recommendations are provided toward standardizing conditions to reduce variability of baseline AP waveform characteristics and drug responses.
Collapse
Affiliation(s)
| | - Godfrey L Smith
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Beibei Cai
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Graham T Dempsey
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Maria P Hortigon-Vinagre
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Shuyun Feng
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Randall Ingermanson
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Venkatesh Hariharan
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Cuong Nguyen
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, D.C. 20009, USA.
| | - Gary A Gintant
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, IL 60064-6119, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Koivisto JT, Gering C, Karvinen J, Maria Cherian R, Belay B, Hyttinen J, Aalto-Setälä K, Kellomäki M, Parraga J. Mechanically Biomimetic Gelatin-Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20589-20602. [PMID: 31120238 PMCID: PMC6750838 DOI: 10.1021/acsami.8b22343] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/17/2019] [Indexed: 05/07/2023]
Abstract
To promote the transition of cell cultures from 2D to 3D, hydrogels are needed to biomimic the extracellular matrix (ECM). One potential material for this purpose is gellan gum (GG), a biocompatible and mechanically tunable hydrogel. However, GG alone does not provide attachment sites for cells to thrive in 3D. One option for biofunctionalization is the introduction of gelatin, a derivative of the abundant ECM protein collagen. Unfortunately, gelatin lacks cross-linking moieties, making the production of self-standing hydrogels difficult under physiological conditions. Here, we explore the functionalization of GG with gelatin at biologically relevant concentrations using semiorthogonal, cytocompatible, and facile chemistry based on hydrazone reaction. These hydrogels exhibit mechanical behavior, especially elasticity, which resembles the cardiac tissue. The use of optical projection tomography for 3D cell microscopy demonstrates good cytocompatibility and elongation of human fibroblasts (WI-38). In addition, human-induced pluripotent stem cell-derived cardiomyocytes attach to the hydrogels and recover their spontaneous beating in 24 h culture. Beating is studied using in-house-built phase contrast video analysis software, and it is comparable with the beating of control cardiomyocytes under regular culture conditions. These hydrogels provide a promising platform to transition cardiac tissue engineering and disease modeling from 2D to 3D.
Collapse
Affiliation(s)
- Janne T. Koivisto
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Christine Gering
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jennika Karvinen
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Reeja Maria Cherian
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Birhanu Belay
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Jari Hyttinen
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Heart
Hospital, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Kellomäki
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jenny Parraga
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
41
|
Zeng H, Wang J, Clouse H, Lagrutta A, Sannajust F. Human-induced pluripotent stem cell-derived cardiomyocytes have limited I Ks for repolarization reserve as revealed by specific KCNQ1/KCNE1 blocker. JRSM Cardiovasc Dis 2019; 8:2048004019854919. [PMID: 31217965 PMCID: PMC6558757 DOI: 10.1177/2048004019854919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 01/18/2023] Open
Abstract
Objective We investigated if there is IKs, and if there is repolarization
reserve by IKs in human-induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs). Design We used a specific KCNQ1/KCNE1 channel blocker, L-000768673, with an
IC50 of 9 nM, and four hERG-specific blockers, astemizole,
cisapride, dofetilide, and E-4031 to investigate the issue. Results L-000768673 concentration-dependently prolonged feature point duration
(FPD)―a surrogate signal of action potential duration―from 1 to 30 nM
without pacing or paced at 1.2 Hz, resulting from IKs blockade in
hiPSC-CMs. At higher concentrations, the effect of L-000768673 on
IKs was mitigated by its effect on ICa-L,
resulting in shortened FPD, reduced impedance amplitude, and increased
beating rate at 1 µM and above, recapitulating the self-limiting properties
of L-000768673 on action potentials. All four hERG-specific blockers
prolonged FPD as expected. Co-application of L-000768673 at sub-threshold
(0.1 and 0.3 nM) and threshold (1 nM) concentrations failed to
synergistically enhance the effects of hERG blockers on FPD prolongation,
rather it showed additive effects, inconsistent with the repolarization
reserve role of IKs in mature human myocytes that enhanced
IKr response, implying a difference between hiPSC-CMs used in
this study and mature human cardiomyocytes. Conclusion There was IKs current in hiPSC-CMs, and blockade of IKs
current caused prolongation of action potential of hiPSC-CMs. However, we
could not demonstrate any synergistic effects on action potential duration
prolongation of hiPSC-CMs by blocking hERG current and IKs
current simultaneously, implying little or no repolarization reserve by
IKs current in hiPSC-CMs used in this study.
Collapse
Affiliation(s)
- Haoyu Zeng
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | - Jixin Wang
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | - Holly Clouse
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | - Armando Lagrutta
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | | |
Collapse
|
42
|
Isobe T, Honda M, Komatsu R, Tabo M. Cardiac safety assessment with motion field imaging analysis of human iPS cell-derived cardiomyocytes is improved by an integrated evaluation with cardiac ion channel profiling. J Toxicol Sci 2019; 44:859-870. [DOI: 10.2131/jts.44.859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takehito Isobe
- Research Division, Chugai Pharmaceutical Co., Ltd
- Translational Research Division, Chugai Pharmaceutical Co., Ltd
| | - Masaki Honda
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | | | |
Collapse
|
43
|
Zeng H, Wang J, Clouse H, Lagrutta A, Sannajust F. Resolving the Reversed Rate Effect of Calcium Channel Blockers on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes and the Impact on In Vitro Cardiac Safety Evaluation. Toxicol Sci 2018; 167:573-580. [PMID: 30365015 DOI: 10.1093/toxsci/kfy264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Haoyu Zeng
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Jixin Wang
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Holly Clouse
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Armando Lagrutta
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Frederick Sannajust
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| |
Collapse
|
44
|
Bruyneel AA, McKeithan WL, Feyen DA, Mercola M. Will iPSC-cardiomyocytes revolutionize the discovery of drugs for heart disease? Curr Opin Pharmacol 2018; 42:55-61. [PMID: 30081259 DOI: 10.1016/j.coph.2018.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease remains the largest single cause of mortality in the Western world, despite significant advances in clinical management over the years. Unfortunately, the development of new cardiovascular medicines is stagnating and can in part be attributed to the difficulty of screening for novel therapeutic strategies due to a lack of suitable models. The advent of human induced pluripotent stem cells and the ability to make limitless numbers of cardiomyocytes could revolutionize heart disease modeling and drug discovery. This review summarizes the state of the art in the field, describes the strengths and weaknesses of the technology, and applications where the model system would be most appropriate.
Collapse
Affiliation(s)
- Arne An Bruyneel
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wesley L McKeithan
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dries Am Feyen
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Mercola
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
45
|
Paci M, Pölönen RP, Cori D, Penttinen K, Aalto-Setälä K, Severi S, Hyttinen J. Automatic Optimization of an in Silico Model of Human iPSC Derived Cardiomyocytes Recapitulating Calcium Handling Abnormalities. Front Physiol 2018; 9:709. [PMID: 29997516 PMCID: PMC6028769 DOI: 10.3389/fphys.2018.00709] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
The growing importance of human induced pluripotent stem cell-derived cardiomyoyctes (hiPSC-CMs), as patient-specific and disease-specific models for studying cellular cardiac electrophysiology or for preliminary cardiotoxicity tests, generated better understanding of hiPSC-CM biophysical mechanisms and great amount of action potential and calcium transient data. In this paper, we propose a new hiPSC-CM in silico model, with particular attention to Ca2+ handling. We used (i) the hiPSC-CM Paci2013 model as starting point, (ii) a new dataset of Ca2+ transient measurements to tune the parameters of the inward and outward Ca2+ fluxes of sarcoplasmic reticulum, and (iii) an automatic parameter optimization to fit action potentials and Ca2+ transients. The Paci2018 model simulates, together with the typical hiPSC-CM spontaneous action potentials, more refined Ca2+ transients and delayed afterdepolarizations-like abnormalities, which the old Paci2013 was not able to predict due to its mathematical formulation. The Paci2018 model was validated against (i) the same current blocking experiments used to validate the Paci2013 model, and (ii) recently published data about effects of different extracellular ionic concentrations. In conclusion, we present a new and more versatile in silico model, which will provide a platform for modeling the effects of drugs or mutations that affect Ca2+ handling in hiPSC-CMs.
Collapse
Affiliation(s)
- Michelangelo Paci
- Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| | - Risto-Pekka Pölönen
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Dario Cori
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Kirsi Penttinen
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Jari Hyttinen
- Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
46
|
McDonough PM, Prigozhina NL, Basa RCB, Price JH. Assay of Calcium Transients and Synapses in Rat Hippocampal Neurons by Kinetic Image Cytometry and High-Content Analysis: An In Vitro Model System for Postchemotherapy Cognitive Impairment. Assay Drug Dev Technol 2018; 15:220-236. [PMID: 28723268 DOI: 10.1089/adt.2017.797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Postchemotherapy cognitive impairment (PCCI) is commonly exhibited by cancer patients treated with a variety of chemotherapeutic agents, including the endocrine disruptor tamoxifen (TAM). The etiology of PCCI is poorly understood. Our goal was to develop high-throughput assay methods to test the effects of chemicals on neuronal function applicable to PCCI. Rat hippocampal neurons (RHNs) were plated in 96- or 384-well dishes and exposed to test compounds (forskolin [FSK], 17β-estradiol [ES]), TAM or fulvestrant [FUL], aka ICI 182,780) for 6-14 days. Kinetic Image Cytometry™ (KIC™) methods were developed to quantify spontaneously occurring intracellular calcium transients representing the activity of the neurons, and high-content analysis (HCA) methods were developed to quantify the expression, colocalization, and puncta formed by synaptic proteins (postsynaptic density protein-95 [PSD-95] and presynaptic protein Synapsin-1 [Syn-1]). As quantified by KIC, FSK increased the occurrence and synchronization of the calcium transients indicating stimulatory effects on RHN activity, whereas TAM had inhibitory effects. As quantified by HCA, FSK also increased PSD-95 puncta and PSD-95:Syn-1 colocalization, whereas ES increased the puncta of both PSD-95 and Syn-1 with little effect on colocalization. The estrogen receptor antagonist FUL also increased PSD-95 puncta. In contrast, TAM reduced Syn-1 and PSD-95:Syn-1 colocalization, consistent with its inhibitory effects on the calcium transients. Thus TAM reduced activity and synapse formation by the RHNs, which may relate to the ability of this agent to cause PCCI. The results illustrate that KIC and HCA can be used to quantify neurotoxic and neuroprotective effects of chemicals in RHNs to investigate mechanisms and potential therapeutics for PCCI.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H Price
- 1 Vala Sciences Inc. , San Diego, California.,3 The Scintillon Institute , San Diego, California
| |
Collapse
|
47
|
Horváth A, Lemoine MD, Löser A, Mannhardt I, Flenner F, Uzun AU, Neuber C, Breckwoldt K, Hansen A, Girdauskas E, Reichenspurner H, Willems S, Jost N, Wettwer E, Eschenhagen T, Christ T. Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:822-833. [PMID: 29429959 PMCID: PMC5918194 DOI: 10.1016/j.stemcr.2018.01.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs.
Collapse
Affiliation(s)
- András Horváth
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Marc D Lemoine
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Alexandra Löser
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ahmet Umur Uzun
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Erich Wettwer
- Institute of Pharmacology, University Duisburg-Essen, 45122 Essen, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
48
|
Yang X, Papoian T. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity. J Appl Toxicol 2018; 38:1166-1176. [PMID: 29484688 DOI: 10.1002/jat.3611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 01/19/2023]
Abstract
Drug-induced cardiotoxicity is a potentially severe side effect that can adversely affect myocardial contractility through structural or electrophysiological changes in cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising human cardiac in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new drug candidates. The scalable differentiation of hiPSCs into cardiomyocytes provides a renewable cell source that overcomes species differences present in current animal models of drug toxicity testing. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm shift for proarrhythmic risk assessment, and hiPSC-CMs are an integral component of that paradigm. The recent advancements in hiPSC-CMs will not only impact safety decisions for possible drug-induced proarrhythmia, but should also facilitate risk assessment for non-proarrhythmic cardiotoxicity, where current non-clinical approaches are limited in detecting this risk before initiation of clinical trials. Importantly, emerging evidence strongly suggests that the use of hiPSC-CMs with cardiac physiological relevant measurements in vitro improves the detection of structural cardiotoxicity. Here we review high-throughput drug screening using the hiPSC-CM model as an experimentally feasible approach to assess potential contractile and structural cardiotoxicity in early phase drug development. We also suggest that the assessment of structural cardiotoxicity can be added to electrophysiological tests in the same platform to complement the Comprehensive in vitro Proarrhythmia Assay for regulatory use. Ideally, application of these novel tools in early drug development will allow for more reliable risk assessment and lead to more informed regulatory decisions in making safe and effective drugs available to the public.
Collapse
Affiliation(s)
- Xi Yang
- Center for Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Thomas Papoian
- Center for Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| |
Collapse
|
49
|
Kopljar I, Hermans AN, Teisman A, Gallacher DJ, Lu HR. Impact of calcium-sensitive dyes on the beating properties and pharmacological responses of human iPS-derived cardiomyocytes using the calcium transient assay. J Pharmacol Toxicol Methods 2018; 91:80-86. [PMID: 29421525 DOI: 10.1016/j.vascn.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. METHODS We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/μCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. RESULTS We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). DISCUSSION In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool.
Collapse
Affiliation(s)
- Ivan Kopljar
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - An N Hermans
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
50
|
Zeng H, Balasubramanian B, Lagrutta A, Sannajust F. Response of human induced pluripotent stem cell-derived cardiomyocytes to several pharmacological agents when intrinsic syncytial pacing is overcome by acute external stimulation. J Pharmacol Toxicol Methods 2018; 91:18-26. [PMID: 29330131 DOI: 10.1016/j.vascn.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023]
Abstract
We challenged human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) syncytia, mainly, CDI iCells with several classes of well-characterized pharmacological agents (including hERG blocker, Nav1.5 blocker, Cav1.2 blocker and opener, β-adrenergic agonist, and If blocker) under pacing conditions, utilizing the Cardio-ECR instrument, a non-invasive platform featuring simultaneous and continuous measurement of synchronized beating rate and contractility (both signals were acquired simultaneously and well aligned). We found that: 1) with increasing acute stimulation rates (no pacing; 1, 1.5, and 2Hz), beat interval was gradually shortened mainly in the relaxation phase of each beat cycle; 2) typical responses of iCells hiPSC-CMs to all tested pharmacological agents were either attenuated or even eliminated by pacing, in a concentration- and stimulation rate-dependent manner; and 3) when iCells were influenced by pharmacological agents and cannot follow pacing rates, they still beat regularly at exactly 1/2 or 1/3 of pacing rates. We concluded that when intrinsic syncytial pacing was overcome by faster, external stimulations, beat intervals of hiPSC-CMs were mainly shortened in the relaxation phase, instead of proportionally in each beat cycle, with increasing pacing rates. In addition, in response to pharmacological agents upon pacing, hiPSC-CMs exhibited distinct patterns of refractoriness, manifested by skipped beats in pacing-rate dependent manner, and attenuation (or even abolition) of the typical response evoked under spontaneous beating.
Collapse
Affiliation(s)
- Haoyu Zeng
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, PA, USA.
| | | | - Armando Lagrutta
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, PA, USA
| | - Frederick Sannajust
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, PA, USA
| |
Collapse
|