1
|
Campàs M, Reverté J, Tudó À, Alkassar M, Diogène J, Sureda FX. Automated Patch Clamp for the Detection of Tetrodotoxin in Pufferfish Samples. Mar Drugs 2024; 22:176. [PMID: 38667793 PMCID: PMC11050952 DOI: 10.3390/md22040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Jaume Reverté
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Àngels Tudó
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Mounira Alkassar
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Jorge Diogène
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Francesc X. Sureda
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| |
Collapse
|
2
|
Yang J, Sun W, Sun M, Cui Y, Wang L. Current Research Status of Azaspiracids. Mar Drugs 2024; 22:79. [PMID: 38393050 PMCID: PMC10890026 DOI: 10.3390/md22020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The presence and impact of toxins have been detected in various regions worldwide ever since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on marine resource utilization, marine environmental protection, and fishery production. Over the course of more than two decades of research and development, scientists from all over the world have conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over the past 20 years, along with their advantages and disadvantages. This effort will contribute to the future development of rapid detection technologies and the invention of detection devices for AZAs in marine environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China; (J.Y.); (W.S.); (M.S.); (Y.C.)
| |
Collapse
|
3
|
Park SY, Kang JH, Jung HJ, Hwang JH, Chun HS, Yoon YS, Oh SH. Okadaic Acid Is at Least as Toxic as Dinophysistoxin-1 after Repeated Administration to Mice by Gavage. Toxins (Basel) 2023; 15:587. [PMID: 37888618 PMCID: PMC10611360 DOI: 10.3390/toxins15100587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Okadaic acid (OA) and its analogues cause diarrhetic shellfish poisoning (DSP) in humans, and risk assessments of these toxins require toxicity equivalency factors (TEFs), which represent the relative toxicities of analogues. However, no human death by DSP toxin has been reported, and its current TEF value is based on acute lethality. To properly reflect the symptoms of DSP, such as diarrhea without death, the chronic toxicity of DSP toxins at sublethal doses should be considered. In this study, we obtained acute oral LD50 values for OA and dinophysistoxin-1 (DTX-1) (1069 and 897 μg/kg, respectively) to set sublethal doses. Mice were treated with sublethal doses of OA and DTX-1 for 7 days. The mice lost body weight, and the disease activity index and intestinal crypt depths increased. Furthermore, these changes were more severe in OA-treated mice than in the DTX-1-treated mice. Strikingly, ascites was observed, and its severity was greater in mice treated with OA. Our findings suggest that OA is at least as toxic as DTX-1 after repeated oral administration at a low dose. This is the first study to compare repeated oral dosing of DSP toxins. Further sub-chronic and chronic studies are warranted to determine appropriate TEF values for DSP toxins.
Collapse
Affiliation(s)
- Se Yong Park
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| |
Collapse
|
4
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
5
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
6
|
Boente-Juncal A, Raposo-García S, Louzao MC, Vale C, Botana LM. Targeting Chloride Ion Channels: New Insights into the Mechanism of Action of the Marine Toxin Azaspiracid. Chem Res Toxicol 2021; 34:865-879. [PMID: 33512997 DOI: 10.1021/acs.chemrestox.0c00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Azaspiracids (AZAs) are marine toxins produced by dinoflagellates belonging to the genera Azadinium and Amphidoma that caused human intoxications after consumption of contaminated fishery products, such as mussels. However, the exact mechanism for the AZA induced cytotoxic and neurotoxic effects is still unknown. In this study several pharmacological approaches were employed to evaluate the role of anion channels on the AZA effects that demonstrated that cellular anion dysregulation was involved in the toxic effects of these compounds. The results presented here demonstrated that volume regulated anion channels (VRACs) are affected by this group of toxins, and, because there is not any specific activator of VRACs besides the intracellular application of GTPγ-S molecule, this group of natural compounds could represent a powerful tool to analyze the role of these channels in cellular homeostasis. In addition to this, in this work, a detailed pharmacological approach was performed in order to elucidate the anion channels present in human HEK293 cells as well as their regulation by the marine toxins azaspiracids. Altogether, the data presented here demonstrated that the effect of azaspiracids in human cells was completely dependent on ATP-regulated anion channels, whose upregulation by these toxins could lead to regulatory volume decrease and underlie the reported toxicity of these compounds.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Sandra Raposo-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - M Carmen Louzao
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Luis M Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| |
Collapse
|
7
|
Biological Effects of the Azaspiracid-Producing Dinoflagellate Azadinium dexteroporum in Mytilus galloprovincialis from the Mediterranean Sea. Mar Drugs 2019; 17:md17100595. [PMID: 31652521 PMCID: PMC6835248 DOI: 10.3390/md17100595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Azaspiracids (AZAs) are marine biotoxins including a variety of analogues. Recently, novel AZAs produced by the Mediterranean dinoflagellate Azadinium dexteroporum were discovered (AZA-54, AZA-55, 3-epi-AZA-7, AZA-56, AZA-57 and AZA-58) and their biological effects have not been investigated yet. This study aimed to identify the biological responses (biomarkers) induced in mussels Mytilus galloprovincialis after the bioaccumulation of AZAs from A. dexteroporum. Organisms were fed with A. dexteroporum for 21 days and subsequently subjected to a recovery period (normal diet) of 21 days. Exposed organisms accumulated AZA-54, 3-epi-AZA-7 and AZA-55, predominantly in the digestive gland. Mussels' haemocytes showed inhibition of phagocytosis activity, modulation of the composition of haemocytic subpopulation and damage to lysosomal membranes; the digestive tissue displayed thinned tubule walls, consumption of storage lipids and accumulation of lipofuscin. Slight genotoxic damage was also observed. No clear occurrence of oxidative stress and alteration of nervous activity was detected in AZA-accumulating mussels. Most of the altered parameters returned to control levels after the recovery phase. The toxic effects detected in M. galloprovincialis demonstrate a clear biological impact of the AZAs produced by A. dexteroporum, and could be used as early indicators of contamination associated with the ingestion of seafood.
Collapse
|
8
|
Abstract
Azaspiracid-34 (AZA34) is a recently described structurally unique member of the azaspiracid class of marine neurotoxins. Its novel structure, tentatively assigned on the basis of MS and 1H NMR spectroscopy, is accompanied by a 5.5-fold higher level of toxicity against Jurkat T lymphocytes than AZA1. To completely assign the structure of AZA34 and provide material for in-depth biological evaluation and detection, synthetic access to AZA34 was targeted. This began with the convergent and stereoselective assembly of the C1-C19 domain of AZA34 designed to dovetail with the recent total synthesis approach to AZA3.
Collapse
Affiliation(s)
- Antony A Okumu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
9
|
Daguer H, Hoff RB, Molognoni L, Kleemann CR, Felizardo LV. Outbreaks, toxicology, and analytical methods of marine toxins in seafood. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
11
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2018; 57:805-809. [DOI: 10.1002/anie.201711006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/16/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
12
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
13
|
|
14
|
Toxic equivalency factors (TEFs) after acute oral exposure of azaspiracid 1, -2 and -3 in mice. Toxicol Lett 2017; 282:136-146. [PMID: 29107028 DOI: 10.1016/j.toxlet.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 11/22/2022]
Abstract
Azaspiracids (AZAs) are marine algal toxins that can be accumulated by edible shellfish to cause a foodborne gastrointestinal poisoning in humans. In the European Union, only AZA1, -2 and -3 are currently regulated and their concentration in shellfish is determined through their toxic equivalency factors (TEFs) derived from the intraperitoneal lethal potency in mice. Nevertheless, considering the potential human exposure by oral route, AZAs TEFs should be calculated by comparative oral toxicity data. Thus, the acute oral toxicity of AZA1, -2 and -3 was investigated in female CD-1 mice treated with different doses (AZA1: 135-1100μg/kg; AZA2 and AZA3: 300-1100μg/kg) and sacrificed after 24h or 14days. TEFs derived from the median lethal doses (LD50) were 1.0, 0.7 and 0.5, respectively for AZA1, -2 and -3. In fact, after 24h from gavage administration, LD50s were 443μg/kg (AZA1; 95% CL: 350-561μg/kg), 626μg/kg (AZA2; 95% CL: 430-911μg/kg) and 875μg/kg (AZA3; 95% CL: 757-1010μg/kg). Mice dead more than 5h after the treatment or those sacrificed after 24h (doses: ≥175μg AZA1/kg, ≥500μg AZA2/kg and ≥600μg AZA3/kg) showed enlarged pale liver, while increased serum markers of liver alteration were recorded even at the lowest doses. Blood chemistry revealed significantly increased serum levels of K+ ions (≥500mg/kg), whereas light microscopy showed tissue changes in the gastrointestinal tract, liver and spleen. No lethality, macroscopic, tissue or haematological changes were recorded two weeks post exposure, indicating reversible toxic effects. LC-MS/MS analysis of the main organs showed a dose-dependency in gastrointestinal absorption of these toxins: at 24h, the highest levels were detected in the stomach and, in descending order, in the intestinal content, liver, small intestine, kidneys, lungs, large intestine, heart as well as detectable traces in the brain. After 14days, AZA1 and AZA2 were still detectable in almost all the organs and intestinal content.
Collapse
|
15
|
Subacute immunotoxicity of the marine phycotoxin yessotoxin in rats. Toxicon 2017; 129:74-80. [DOI: 10.1016/j.toxicon.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/02/2017] [Accepted: 02/11/2017] [Indexed: 01/06/2023]
|
16
|
Botana LM, Hess P, Munday R, Nathalie A, DeGrasse SL, Feeley M, Suzuki T, van den Berg M, Fattori V, Garrido Gamarro E, Tritscher A, Nakagawa R, Karunasagar I. Derivation of toxicity equivalency factors for marine biotoxins associated with Bivalve Molluscs. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
In vivo cardiomyocyte response to YTX- and AZA-1-induced damage: autophagy versus apoptosis. Arch Toxicol 2016; 91:1859-1870. [DOI: 10.1007/s00204-016-1862-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
|
18
|
Doerr B, O'Halloran J, O'Brien N, van Pelt F. Investigation of the genotoxic potential of the marine biotoxins azaspiracid 1-3. Toxicon 2016; 121:61-69. [PMID: 27576062 DOI: 10.1016/j.toxicon.2016.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Azaspiracids (AZAs) are the most recently discovered group of biotoxins and are the cause of azaspiracid shellfish poisoning (AZP) in humans. To date over thirty analogues have been identified. However, toxicological studies of AZAs are limited due to the lack of availability of toxins and toxin standards. Most data available are on acute toxicity and there are no data available on genotoxicity of AZAs. This study presents an integrated approach investigating the genotoxic potential of AZA1-3 in cell culture systems using the Comet assay combined with assays to provide information on possible apoptotic processes, cytotoxicity and changes in cell number. Results demonstrate a time and dose dependent increase in DNA fragmentation in most cell lines, indicating a genotoxic effect of AZA1-3. However, a significant reduction in cell number and a clear shift from early to late apoptosis was observed for all analogues in Jurkat T cells and HepG-2 cells; CaCo-2 cells did not show a clear apoptotic profile. Late apoptotic/necrotic cells correlate well with the percentage of tail DNA for all analogues in all three cell lines. All data taken together indicate that AZA1-3 is not genotoxic per se and demonstrate apoptotic/necrotic processes to be involved to some extent in AZAs toxicity. The sensitivities of cell lines and the different potencies of AZA1-3 are in agreement with the literature available. The order of sensitivity for all three AZAs tested in the present study is, in increasing order, CaCo-2 cells < HepG-2 cells < Jurkat T cells. The order of potency of AZA1-3 varies among the cell lines.
Collapse
Affiliation(s)
- Barbara Doerr
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| | - John O'Halloran
- Environmental Research Institute, University College Cork, Cork, Ireland; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
| | - Nora O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.
| | - Frank van Pelt
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
19
|
How Safe Is Safe for Marine Toxins Monitoring? Toxins (Basel) 2016; 8:toxins8070208. [PMID: 27399774 PMCID: PMC4963841 DOI: 10.3390/toxins8070208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 11/17/2022] Open
Abstract
Current regulation for marine toxins requires a monitoring method based on mass spectrometric analysis. This method is pre-targeted, hence after searching for pre-assigned masses, it identifies those compounds that were pre-defined with available calibrants. Therefore, the scope for detecting novel toxins which are not included in the monitoring protocol are very limited. In addition to this, there is a poor comprehension of the toxicity of some marine toxin groups. Also, the validity of the current approach is questioned by the lack of sufficient calibrants, and by the insufficient coverage by current legislation of the toxins reported to be present in shellfish. As an example, tetrodotoxin, palytoxin analogs, or cyclic imines are mentioned as indicators of gaps in the system that require a solid comprehension to assure consumers are protected.
Collapse
|