1
|
Ravula AR, Yenugu S. Effect of a mixture of pyrethroids at doses similar to human exposure through food in the Indian context. J Biochem Mol Toxicol 2022; 36:e23132. [PMID: 35678313 DOI: 10.1002/jbt.23132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 11/11/2022]
Abstract
Residual amounts of pyrethroids were detected in rice and vegetables of the Indian market. Thus, consumers are exposed to a mixture of pyrethroids on a daily basis through food. Though a large number of studies reported the toxic effects of pyrethroids, there are no reports that used doses equivalent to human consumption. In this study, male Wistar rats were exposed daily to a mixture of pyrethroids for 1-15 months which is equivalent to the amount present in rice and vegetables consumed by an average Indian each day. The oxidant-antioxidant status (lipid peroxidation, nitric oxide; activities of catalase, glutathione peroxidase, glutathione S transferase, and superoxide dismutase) and anatomical changes in the general organs (liver, lung, and kidney) and male reproductive tract tissues (caput, cauda, testis, and prostate) were evaluated. Further, liver and kidney function tests, lipid profile, and complete blood picture were analyzed. Increased oxidative stress, perturbations in the antioxidant enzyme activities, and damage to the anatomical architecture were observed. Disturbances in the liver function and lipid profile were significant. Results of our study demonstrate that exposure to a mixture of pyrethroids at a dose that is equivalent to human consumption can cause systemic and reproductive toxicity, which may ultimately result in the development of lifestyle diseases. This first line of evidence will fuel further studies to determine the impact of food-based pyrethroid exposure on the long-term health of humans and to envisage policies to reduce pesticide content in food products.
Collapse
Affiliation(s)
- Anandha R Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Yamada T, Lake BG, Cohen SM. Evaluation of the human hazard of the liver and lung tumors in mice treated with permethrin based on mode of action. Crit Rev Toxicol 2022; 52:1-31. [PMID: 35275035 DOI: 10.1080/10408444.2022.2035316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Ogata K, Liu Y, Ohara A, Kawamoto K, Kondo M, Kobayashi K, Fukuda T, Asano H, Kitamoto S, Lake BG, Cohen SM, Yamada T. Club Cells Are the Primary Target for Permethrin-Induced Mouse Lung Tumor Formation. Toxicol Sci 2021; 184:15-32. [PMID: 34427685 DOI: 10.1093/toxsci/kfab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Permethrin has been shown to increase lung adenomas in female CD-1 mice, but not in male mice or Wistar rats. The proposed mode of action (MOA) for permethrin-induced female mouse lung tumor formation involves morphological changes in Club cells; increased Club cell proliferation; increased Club cell hyperplasia, and lung tumor formation. In this study, the treatment of female CD-1 mice with tumorigenic doses (2500 and 5000 ppm) of permethrin, but not with a nontumorigenic dose (20 ppm), for 14 and/or 28 days increased Club cell replicative DNA synthesis. Global gene expression analysis of female mouse lung samples demonstrated that permethrin treatment up-regulated 3 genes associated with cell proliferation, namely aldehyde dehydrogenase 3a1 (Aldh3a1), oxidative stress-induced growth inhibitor 1, and thioredoxin reductase 1. Treatment with 2500 and 5000 ppm, but not 20 ppm, permethrin for 7 days produced significant increases in mRNA levels of these 3 genes. Immunohistochemical analysis demonstrated that Club cell secretory protein, CYP2F2, and ALDH3A1 colocalized in Club cells; confirmed by flow cytometry analysis of lung cells employing KI67 as a cell proliferation marker. Overall, the present data extend the proposed MOA by demonstrating that Club cells are the primary initial target of permethrin administration in female mouse lungs. As humans are quantitatively much less sensitive to agents that increase Club cell proliferation and lung tumor formation in mice, it is most likely that permethrin could not produce lung tumors in humans. This conclusion is supported by available negative epidemiological data from several studies.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Yang Liu
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Ayako Ohara
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Kensuke Kawamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Miwa Kondo
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Kumiko Kobayashi
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Takako Fukuda
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| |
Collapse
|
4
|
Fransen LFH, Leonard MO. Small Airway Susceptibility to Chemical and Particle Injury. Respiration 2021; 101:321-333. [PMID: 34649249 DOI: 10.1159/000519344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Small airways (SA) in humans are commonly defined as those conducting airways <2 mm in diameter. They are susceptible to particle- and chemical-induced injury and play a major role in the development of airway disease such as COPD and asthma. Susceptibility to injury can be attributed in part to structural features including airflow dynamics and tissue architecture, but recent evidence may indicate a more prominent role for cellular composition in directing toxicological responses. Animal studies support the hypothesis that inherent cellular differences across the tracheobronchial tree, including metabolic CYP450 expression in the distal conducting airways, can influence SA susceptibility to injury. Currently, there is insufficient information in humans to make similar conclusions, prompting further necessary work in this area. An understanding of why the SA are more susceptible to certain chemical and particle exposures than other airway regions is fundamental to our ability to identify hazardous materials, their properties, and accompanying exposure scenarios that compromise lung function. It is also important for the ability to develop appropriate models for toxicity testing. Moreover, it is central to our understanding of SA disease aetiology and how interventional strategies for treatment may be developed. In this review, we will document the structural and cellular airway regional differences that are likely to influence airway susceptibility to injury, including the role of secretory club cells. We will also describe recent advances in single-cell sequencing of human airways, which have provided unprecedented details of cell phenotype, likely to impact airway chemical and particle injury.
Collapse
Affiliation(s)
| | - Martin Oliver Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
5
|
Yamada T. Application of humanized mice to toxicology studies: Evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). J Toxicol Pathol 2021; 34:283-297. [PMID: 34629731 PMCID: PMC8484926 DOI: 10.1293/tox.2021-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
The constitutive androstane receptor (CAR)-mediated mode of action (MOA) for phenobarbital (PB)-induced rodent liver tumor formation has been established, with increased hepatocyte proliferation, which is a key event in tumor formation. Previous studies have demonstrated that PB and other CAR-activators stimulate proliferation in cultured rodent hepatocytes, but not in cultured human hepatocytes. However, in the genetically humanized CAR and pregnane X receptor (PXR) mouse (hCAR/hPXR mouse, downstream genes are still mouse), PB increased hepatocyte proliferation and tumor production in vivo. In contrast to the hCAR/hPXR mouse, studies with chimeric mice with human hepatocytes (PXB-mouse, both receptor and downstream genes are human) demonstrated that PB did not increase human hepatocyte proliferation in vivo. PB increased hepatocyte proliferation in a chimeric mouse model with rat hepatocytes, indicating that the lack of human hepatocyte proliferation is not due to any functional defect in the chimeric mouse liver environment. Gene expression analysis demonstrated that the downstream genes of CAR/PXR activation were similar in hCAR/hPXR and CD-1 mice, but differed from those observed in chimeric mice with human hepatocytes. These findings strongly support the conclusion that the MOA for CAR-mediated rodent liver tumor formation is qualitatively implausible for humans. Indeed, epidemiological studies have found no causal link between PB and human liver tumors. There are many similarities with respect to hepatic effects and species differences between rodent CAR and peroxisome proliferator-activated receptor α activators. Based on our research, the chimeric mouse with human hepatocytes (PXB-mouse) is reliable for human cancer risk assessment of test chemicals.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
6
|
Kondo M, Kikumoto H, Osimitz TG, Cohen SM, Lake BG, Yamada T. An Evaluation of the Human Relevance of the Liver Tumors Observed in Female Mice Treated With Permethrin Based on Mode of Action. Toxicol Sci 2021; 175:50-63. [PMID: 32040184 DOI: 10.1093/toxsci/kfaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In 2-year studies, the nongenotoxic pyrethroid insecticide permethrin produced hepatocellular tumors in CD-1 mice but not in Wistar rats. Recently, we demonstrated that the mode of action (MOA) for mouse liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), resulting in a mitogenic effect. In the present study, the effects of permethrin and 2 major permethrin metabolites, namely 3-phenoxybenzoic acid and trans-dichlorochrysanthemic acid, on cytochrome P450 mRNA levels and cell proliferation (determined as replicative DNA synthesis) were evaluated in cultured CD-1 mouse, Wistar rat, and human hepatocytes. Permethrin and 3-phenoxybenzoic acid induced CYP4A mRNA levels in both mouse and human hepatocytes, with trans-dichlorochrysanthemic acid also increasing CYP4A mRNA levels in mouse hepatocytes. 3-Phenoxybenzoic acid induced CYP4A mRNA levels in rat hepatocytes, with trans-dichlorochrysanthemic acid increasing both CYP4A mRNA levels and replicative DNA synthesis. Permethrin, 3-phenoxybenzoic acid, and trans-dichlorochrysanthemic acid stimulated replicative DNA synthesis in mouse hepatocytes but not in human hepatocytes, demonstrating that human hepatocytes are refractory to the mitogenic effects of permethrin and these 2 metabolites. Thus, although some of the key (eg, PPARα activation) and associative (eg, CYP4A induction) events in the established MOA for permethrin-induced mouse liver tumor formation could occur in human hepatocytes at high doses of permethrin, 3-phenoxybenzoic acid, and/or trans-dichlorochrysanthemic acid, increased cell proliferation (an essential step in carcinogenesis by nongenotoxic PPARα activators) was not observed. These results provide additional evidence that the established MOA for permethrin-induced mouse liver tumor formation is not plausible for humans.
Collapse
Affiliation(s)
- Miwa Kondo
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroko Kikumoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | | | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
7
|
Abstract
Human and animal welfare primarily depends on the availability of food and surrounding environment. Over a century and half, the quest to identify agents that can enhance food production and protection from vector borne diseases resulted in the identification and use of a variety of pesticides, of which the pyrethroid based ones emerged as the best choice. Pesticides while improved the quality of life, on the other hand caused enormous health risks. Because of their percolation into drinking water and food chain and usage in domestic settings, humans unintentionally get exposed to the pesticides on a daily basis. The health hazards of almost all known pesticides at a variety of doses and exposure times are reported. This review provides a comprehensive summation on the historical, epidemiological, chemical and biological (physiological, biochemical and molecular) aspects of pyrethroid based insecticides. An overview of the available knowledge suggests that the synthetic pyrethroids vary in their chemical and toxic nature and pose health hazards that range from simple nausea to cancers. Despite large number of reports, studies that focused on identifying the health hazards using doses that are equivalent or relevant to human exposure are lacking. It is high time such studies are conducted to provide concrete evidence on the hazards of consuming pesticide contaminated food. Policy decisions to decrease the residual levels of pesticides in agricultural products and also to encourage organic farming is suggested.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Heusinkveld H, Braakhuis H, Gommans R, Botham P, Corvaro M, van der Laan JW, Lewis D, Madia F, Manou I, Schorsch F, Wolterink G, Woutersen R, Corvi R, Mehta J, Luijten M. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit Rev Toxicol 2020; 50:725-739. [DOI: 10.1080/10408444.2020.1841732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Harm Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robin Gommans
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | | | | | | | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Irene Manou
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Brussels, Belgium
| | | | - Gerrit Wolterink
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ruud Woutersen
- TNO Quality of Life, Zeist, and Wageningen University & Research, Wageningen, the Netherlands
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
9
|
Cohen SM, Zhongyu Y, Bus JS. Relevance of mouse lung tumors to human risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:214-241. [PMID: 32452303 DOI: 10.1080/10937404.2020.1763879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mouse lung is a common site for chemical tumorigenicity, but the relevance to human risk remains debated. Long-term bioassays need to be assessed for appropriateness of the dose, neither exceeding Maximum Tolerated Dose (MTD) nor Kinetically based Maximum Dose (KMD). An example of the KMD issue is 1,3-dichloropropene (1,3-D), which only produced an increased incidence of lung tumors at a dose exceeding the KMD. In addition, since mouse lung tumors are common (>1% incidence), the appropriate statistical significance is p < .01. Numerous differences exist for mouse lung and tumors compared to humans, including anatomy, respiratory rate, metabolism, tumor histogenesis, and metastatic frequency. The recent demonstration of the critical role of mouse lung specific Cyp2 F2 metabolism in mouse lung carcinogenicity including styrene or fluensulfone indicates that this tumor response is not qualitatively or quantitatively relevant to humans. For non-DNA reactive and non-mutagenic carcinogens, the mode of action involves direct mitogenicity such as for isoniazid, styrene, fluensulfone, permethrin or cytotoxicity with regeneration such as for naphthalene. However, the possibility of mixed mitogenic and cytotoxic modes of action cannot always be excluded. The numerous differences between mouse and human, combined with epidemiologic evidence of no increased cancer risk for several of these chemicals make the relevance of mouse lung tumors for human cancer risk dubious.
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, University of Nebraska Medical Center , Omaha, NE, USA
- University of Nebraska Medical Center , Omaha, NE, USA
| | | | | |
Collapse
|
10
|
Kawamoto K, Ogata K, Asano H, Miyata K, Sukata T, Utsumi T, Cohen SM, Yamada T. Cell proliferation analysis is a reliable predictor of lack of carcinogenicity: Case study using the pyrethroid imiprothrin on lung tumorigenesis in mice. Regul Toxicol Pharmacol 2020; 113:104646. [PMID: 32229244 DOI: 10.1016/j.yrtph.2020.104646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
In the mouse carcinogenicity study, an apparent increase in lung adenocarcinoma was observed in male mice at 7000 ppm. Based on the overall evaluation of toxicology, oncology, pathology and statistics, we concluded that the apparent increase in lung tumors is not relevant for evaluation of carcinogenicity of imiprothrin (Regul Toxicol Pharmacol, 105, 1-14, 2019). To investigate whether imiprothrin has any mitogenic effect on mouse Club cells, the present study examined its effects on replicative DNA synthesis of Club cells and lung histopathology in male mice treated with imiprothrin for 7 days at 3500 and 7000 ppm in the diet. Isoniazid, a known mouse lung mitogen and tumor inducer, was also examined at 1000 ppm in the diet as a positive control of Club cell mitogenesis and morphological changes. Neither imiprothrin nor isoniazid caused any necrotic changes in lung by light or electron microscopy. There were no increases observed in the bromodeoxyuridine (BrdU) labeling index in the imiprothrin groups, while there was a statistically significant increase in the BrdU labeling index in the isoniazid group. These findings demonstrate that imiprothrin does not induce mouse Club cell proliferation or morphologic changes, supporting our previous conclusion described above. Thus, imiprothrin should not be classified as a carcinogen. Furthermore, this study indicates that short-term studies focusing on cell proliferation can be reliable for predicting a lack of carcinogenic potential of test chemicals.
Collapse
Affiliation(s)
- Kensuke Kawamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Tokuo Sukata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Tooru Utsumi
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, Nebraska, 68198-3135, USA
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan.
| |
Collapse
|
11
|
Sax SN, Gentry PR, Van Landingham C, Clewell HJ, Mundt KA. Extended Analysis and Evidence Integration of Chloroprene as a Human Carcinogen. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:294-318. [PMID: 31524302 PMCID: PMC7028114 DOI: 10.1111/risa.13397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 05/11/2023]
Abstract
β-Chloroprene is used in the production of polychloroprene, a synthetic rubber. In 2010, Environmental Protection Agency (EPA) published the Integrated Risk Information System "Toxicological Review of Chloroprene," concluding that chloroprene was "likely to be carcinogenic to humans." This was based on findings from a 1998 National Toxicology Program (NTP) study showing multiple tumors within and across animal species; results from occupational epidemiological studies; a proposed mutagenic mode of action; and structural similarities with 1,3-butadiene and vinyl chloride. Using mouse data from the NTP study and assuming a mutagenic mode of action, EPA calculated an inhalation unit risk (IUR) for chloroprene of 5 × 10-4 per µg/m3 . This is among the highest IURs for chemicals classified by IARC or EPA as known or probable human carcinogens and orders of magnitude higher than the IURs for carcinogens such as vinyl chloride, benzene, and 1,3-butadiene. Due to differences in pharmacokinetics, mice appear to be uniquely responsive to chloroprene exposure compared to other animals, including humans, which is consistent with the lack of evidence of carcinogenicity in robust occupational epidemiological studies. We evaluated and integrated all lines of evidence for chloroprene carcinogenicity to assess whether the 2010 EPA IUR could be scientifically substantiated. Due to clear interspecies differences in carcinogenic response to chloroprene, we applied a physiologically based pharmacokinetic model for chloroprene to calculate a species-specific internal dose (amount metabolized/gram of lung tissue) and derived an IUR that is over 100-fold lower than the 2010 EPA IUR. Therefore, we recommend that EPA's IUR be updated.
Collapse
|
12
|
Clewell HJ, Campbell JL, Van Landingham C, Franzen A, Yoon M, Dodd DE, Andersen ME, Gentry PR. Incorporation of in vitro metabolism data and physiologically based pharmacokinetic modeling in a risk assessment for chloroprene. Inhal Toxicol 2020; 31:468-483. [PMID: 31992090 DOI: 10.1080/08958378.2020.1715513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: To develop a physiologically based pharmacokinetic (PBPK) model for chloroprene in the mouse, rat and human, relying only on in vitro data to estimate tissue metabolism rates and partitioning, and to apply the model to calculate an inhalation unit risk (IUR) for chloroprene.Materials and methods: Female B6C3F1 mice were the most sensitive species/gender for lung tumors in the 2-year bioassay conducted with chloroprene. The PBPK model included tissue metabolism rate constants for chloroprene estimated from results of in vitro gas uptake studies using liver and lung microsomes. To assess the validity of the PBPK model, a 6-hr, nose-only chloroprene inhalation study was conducted with female B6C3F1 mice in which both chloroprene blood concentrations and ventilation rates were measured. The PBPK model was then used to predict dose measures - amounts of chloroprene metabolized in lungs per unit time - in mice and humans.Results: The mouse PBPK model accurately predicted in vivo pharmacokinetic data from the 6-hr, nose-only chloroprene inhalation study. The PBPK model was used to conduct a cancer risk assessment based on metabolism of chloroprene to reactive epoxides in the lung, the target tissue in mice. The IUR was over100-fold lower than the IUR from the EPA Integrated Risk Information System (IRIS), which was based on inhaled chloroprene concentration. The different result from the PBPK model risk assessment arises from use of the more relevant tissue dose metric, amount metabolized, rather than inhaled concentrationDiscussion and conclusions: The revised chloroprene PBPK model is based on the best available science, including new test animal in vivo validation, updated literature review and a Markov-Chain Monte Carlo analysis to assess parameter uncertainty. Relying on both mouse and human metabolism data also provides an important advancement in the use of quantitative in vitro to in vivo extrapolation (QIVIVE). Inclusion of the best available science is especially important when deriving a toxicity value based on species extrapolation for the potential carcinogenicity of a reactive metabolite.
Collapse
Affiliation(s)
| | | | | | | | | | - Darol E Dodd
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA
| | - Melvin E Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
13
|
Yamada T, Asano H, Miyata K, Rhomberg LR, Haseman JK, Greaves P, Greim H, Berry C, Cohen SM. Toxicological evaluation of carcinogenicity of the pyrethroid imiprothrin in rats and mice. Regul Toxicol Pharmacol 2019; 105:1-14. [DOI: 10.1016/j.yrtph.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 01/07/2023]
|
14
|
Cohen SM, Boobis AR, Dellarco VL, Doe JE, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC. Chemical carcinogenicity revisited 3: Risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul Toxicol Pharmacol 2019; 103:100-105. [DOI: 10.1016/j.yrtph.2019.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/27/2023]
|
15
|
Tsuji JS, Chang ET, Gentry PR, Clewell HJ, Boffetta P, Cohen SM. Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Crit Rev Toxicol 2019; 49:36-84. [DOI: 10.1080/10408444.2019.1573804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ellen T. Chang
- Exponent, Inc., Menlo Park, CA and Stanford Cancer Institute, Stanford, CA, USA
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel M. Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Kondo M, Miyata K, Nagahori H, Sumida K, Osimitz TG, Cohen SM, Lake BG, Yamada T. Involvement of Peroxisome Proliferator-Activated Receptor-Alpha in Liver Tumor Production by Permethrin in the Female Mouse. Toxicol Sci 2019; 168:572-596. [DOI: 10.1093/toxsci/kfz012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Kayo Sumida
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | | | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | |
Collapse
|
17
|
Quist EM, Boorman GA, Cullen JM, Maronpot RR, Remick AK, Swenberg JA, Freshwater L, Hardisty JF. Reevaluation of Hepatocellular Neoplasms in CD-1 Mice from a 2-year Oral Carcinogenicity Study with Permethrin. Toxicol Pathol 2018; 47:11-17. [DOI: 10.1177/0192623318809304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A 24-month oral carcinogenicity study of permethrin was conducted by feeding male and female CD-1 mice diets containing concentrations of 0, 20, 500, and 2,000 ppm of permethrin (males) or 0, 20, 2,500, and 5,000 ppm of permethrin (females). After approximately two years on study, surviving mice were sacrificed for the evaluation of chronic toxicity and/or carcinogenicity. An expert panel of pathologists was convened as a Pathology Working Group (PWG) to review coded liver histology sections from male and female mice and to classify all liver neoplasms according to current nomenclature and diagnostic criteria guidelines. The PWG results indicate that permethrin induced a significant dose-dependent increase in the incidence of hepatocellular neoplasms in treated female mice ( p < .01) as well as a nonstatistically significant increase in the incidence of hepatocellular tumors in treated male mice. Given the continuum of the diagnoses of adenoma and carcinoma, and the difficulty in distinguishing some of the lesions, it is appropriate to consider only the combined incidences of hepatocellular tumors (adenoma and/or carcinoma) for biological significance and risk assessment.
Collapse
Affiliation(s)
- Erin M. Quist
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | | | - John M. Cullen
- North Carolina State University, Raleigh, North Carolina, USA
| | | | - Amera K. Remick
- Charles River Laboratories, Inc., Durham, North Carolina, USA
| | | | | | - Jerry F. Hardisty
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Abstract
No systematic reviews are available on data from humans on cancer risk from exposure to permethrin, a widely used insecticide for which some animal studies have reported positive findings based on mechanisms that may not be relevant to humans. We identified potentially relevant articles through a search of electronic databases which included all studies of pesticide exposure and human cancer. A total of 18 articles were selected, including six identified from the list of references of other articles. Most articles were based on analyzes of the Agriculture Health Study (AHS); they provided no evidence of an increased risk of cancers of colon, rectum, pancreas, lung, melanoma, female breast, prostate, urinary bladder, as well as non-Hodgkin lymphoma (including its main subtypes), and leukemia. An increased risk of multiple myeloma was reported among AHS members with the highest tertile of estimated permethrin exposure (odds ratio 5.01; 95% confidence interval 2.41-10.42; p for trend <0.01). A subsequent analysis with a larger number of cases found a less pronounced association between permethrin exposure and risk of multiple myeloma; no exposed cases were reported in a separate study. Two case-control studies of childhood leukemia reported an association with biological markers of permethrin metabolites; in another study self-reported exposure to permethrin was associated with risk in children below 1 year of age, but not in older children. In conclusion, permethrin exposure does not seem to entail a risk of cancer in humans. Results on multiple myeloma and childhood leukemia are weak and inconsistent, and require replication in independent populations.
Collapse
Affiliation(s)
- Paolo Boffetta
- a Tisch Cancer institute, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Vimi Desai
- a Tisch Cancer institute, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|