1
|
Selinger SJ, Montgomery D, Wiseman S, Hecker M, Weber L, Brinkmann M, Janz D. Acute cardiorespiratory effects of 6PPD-quinone on juvenile rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107288. [PMID: 39961199 DOI: 10.1016/j.aquatox.2025.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) is an environmental transformation product of the widely used rubber tire antioxidant, 6PPD. Found in stormwater runoff, 6PPD-quinone has been reported to cause acute lethality at ≤1 μg/L in salmonids like coho salmon, rainbow trout, and brook trout. Conversely, other species such as Arctic char and brown trout are insensitive, even when exposed to significantly greater concentrations (3.8-50 μg/L). Sensitive species exhibit symptoms such as gasping, spiraling, increased ventilation, and loss of equilibrium, suggesting a possible impact on cardiorespiratory physiology. This study investigated sublethal 6PPD-quinone toxicities, focusing on cardiovascular and metabolic effects in two salmonids of varying sensitivity: a sensitive species, rainbow trout (Oncorhynchus mykiss) and a tolerant species, Arctic char (Salvelinus alpinus). Fish were exposed to measured concentrations of 0.59 or 7.15 μg/L 6PPD-quinone, respectively, in respirometry chambers for 48 h to assess temporal changes in resting oxygen consumption compared to unexposed controls. Following exposure, cardiac ultrasound and electrocardiography characterized cardiac function in vivo, while blood gas analysis examined blood composition changes. In both species, changes in resting oxygen consumption were observed. In rainbow trout only, a decrease in end systolic volume and an increase in passive ventricular filling, cardiac output, and PR interval length were observed, indicating cardiac stimulation. Cardiorespiratory symptoms observed following rainbow trout exposure might partly be driven by a significant increase in methemoglobin, resulting in an impaired ability to oxygenate tissues. This study is the first to examine the effects of 6PPD-quinone exposure on the cardiorespiratory system of salmonid fishes and provides information invaluable to a better understanding of the mechanism of 6PPD-quinone toxicity.
Collapse
Affiliation(s)
- Summer J Selinger
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David Montgomery
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steve Wiseman
- Department of Biological Sciences, Faculty of Arts and Science, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada.
| | - David Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
2
|
Peixoto Mendes M, Cupe-Flores B, Woolhouse K, Fernandes S, Liber K. The influence of sampling method and season on modeling of selenium into coldwater fish and implications on tissue-based water quality benchmarks. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025; 21:39-51. [PMID: 37909268 DOI: 10.1002/ieam.4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Selenium (Se) contamination of aquatic ecosystems has led to the local extirpation of some Se-sensitive fish species. Although Se exposure occurs primarily via diet, considerable uncertainty lies in modeling Se transfer and bioaccumulation from sediment, detritus, and/or periphyton through benthic macroinvertebrates (BMI) to fish. Here we estimated Se concentrations in four coldwater fish species (northern pike, white sucker, lake whitefish, and ninespine stickleback) inhabiting boreal lakes downstream from a uranium mill in northern Canada. In addition, we evaluated the potential effects of BMI and periphyton sampling methods (artificial substrates vs. grab samples), seasons (summer vs. winter), and models (USEPA vs. Assessment of the Dispersion and Effects of Parameter Transport) on the estimated Se concentrations in fish tissue. Results were compared with site-specific benchmarks and observed Se concentrations in resident fish. In summer 2019, periphyton and BMI were sampled at 10 sampling stations (two in Vulture Lake and eight in McClean Lake) using artificial substrates (n = 4) and sediment grab samples (n = 3). In winter 2021, samples were collected in McClean Lake (n = 3) through ice holes using a sediment grab sampler. Estimated Se concentrations in fish tissue depended on the surface sediment or periphyton Se concentrations used in the models. At Vulture Lake, Se concentrations in northern pike muscle estimated using the grab sample data (17.3 ± 11.5 µg/g DW), but not the artificial substrates (34.5 ± 1.2 µg/g DW), were comparable with the observed mean concentration (19.0 ± 1.4 µg/g DW) in this species. At McClean Lake, Se body burdens in forage fish estimated using data from both sampling methods were comparable with measured data. Significantly lower mean whole-body Se concentrations were estimated for all fish species in winter (1.0 ± 0.3 µg/g DW) relative to summer (4.8 ± 1.6 µg/g DW). Further investigation is necessary to understand how potential seasonal shifts in dietary Se exposure relate to fish reproduction and early life stages.
Collapse
Affiliation(s)
| | | | | | - Stacey Fernandes
- Canada North Environmental Services (CanNorth), CanNorth, Saskatoon, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
3
|
Eliason EJ, Hardison EA. The impacts of diet on cardiac performance under changing environments. J Exp Biol 2024; 227:jeb247749. [PMID: 39392076 PMCID: PMC11491816 DOI: 10.1242/jeb.247749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Natural and anthropogenic stressors are dramatically altering environments, impacting key animal physiological traits, including cardiac performance. Animals require energy and nutrients from their diet to support cardiac performance and plasticity; however, the nutritional landscape is changing in response to environmental perturbations. Diet quantity, quality and options vary in space and time across heterogeneous environments, over the lifetime of an organism and in response to environmental stressors. Variation in dietary energy and nutrients (e.g. lipids, amino acids, vitamins, minerals) impact the heart's structure and performance, and thus whole-animal resilience to environmental change. Notably, many animals can alter their diet in response to environmental cues, depending on the context. Yet, most studies feed animals ad libitum using a fixed diet, thus underestimating the role of food in impacting cardiac performance and resilience. By applying an ecological lens to the study of cardiac plasticity, this Commentary aims to further our understanding of cardiac function in the context of environmental change.
Collapse
Affiliation(s)
- Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Faculty of Science, Kwantlen Polytechnic University, Langley, BC, Canada, V3W 2M8
| | - Emily A. Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Uddin MH, Ritu JR, Putnala SK, Rachamalla M, Chivers DP, Niyogi S. Selenium toxicity in fishes: A current perspective. CHEMOSPHERE 2024; 364:143214. [PMID: 39214409 DOI: 10.1016/j.chemosphere.2024.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activities have led to increased levels of contaminants that pose significant threats to aquatic organisms, particularly fishes. One such contaminant is Selenium (Se), a metalloid which is released by various industrial activities including mining and fossil fuel combustion. Selenium is crucial for various physiological functions, however it can bioaccumulate and become toxic at elevated concentrations. Given that fishes are key predators in aquatic ecosystems and a major protein source for humans, Se accumulation raises considerable ecological and food safety concerns. Selenium induces toxicity at the cellular level by disrupting the balance between reactive oxygen species (ROS) production and antioxidant capacity leading to oxidative damage. Chronic exposure to elevated Se impairs a wide range of critical physiological functions including metabolism, growth and reproduction. Selenium is also a potent teratogen and induces various types of adverse developmental effects in fishes, mainly due to its maternal transfer to the eggs. Moreover, that can persist across generations. Furthermore, Se-induced oxidative stress in the brain is a major driver of its neurotoxicity, which leads to impairment of several ecologically important behaviours in fishes including cognition and memory functions, social preference and interactions, and anxiety response. Our review provides an up-to-date and in-depth analysis of the various adverse physiological effects of Se in fishes, while identifying knowledge gaps that need to be addressed in future research for greater insights into the impact of Se in aquatic ecosystems.
Collapse
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
5
|
Kodzhahinchev V, Rachamalla M, Al-Dissi A, Niyogi S, Weber LP. Examining the subchronic (28-day) effects of aqueous Cd-BaP co-exposure on detoxification capacity and cardiac function in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106672. [PMID: 37672889 DOI: 10.1016/j.aquatox.2023.106672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
The present study aimed to examine the effects of environmentally relevant concentrations of cadmium (Cd) and Benzo[a]Pyrene (BaP) in the adult zebrafish (Danio rerio). To this end, fish were exposed to either 1 or 10 μg/L Cd or 0.1 or 1 μg/L BaP in isolation, or a co-exposure containing a mixture of the two toxicants. Our results showed extensive modulation of the expression of key antioxidant genes (GPx, SOD1, catalase), detoxifying genes (MT1, MT2, CYP1A1) and a stress biomarker (HSP70) differing between control, single toxicant groups and co-exposure groups. We additionally carried out histopathological analysis of the gills, liver, and hearts of exposed animals, noting no differences in tissue necrosis or apoptosis. Finally, we carried out ultrasonographic analysis of cardiac function, noting a significant decrease of E-wave peak velocity and end diastolic volume in exposed fish. This in turn was accompanied by a decrease in stroke volume and ejection fraction, but not cardiac output in co-exposed fish. The present study is the first to demonstrate that a subchronic aqueous exposure to a Cd-BaP mixture can extensively modulate detoxification capacity and cardiac function in adult zebrafish in a tissue-specific manner.
Collapse
Affiliation(s)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ahmad Al-Dissi
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn P Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Shalihat A, Lesmana R, Hasanah AN, Mutakin M. Selenium Organic Content Prediction in Jengkol ( Archidendron pauciflorum) and Its Molecular Interaction with Cardioprotection Receptors PPAR-γ, NF-κB, and PI3K. Molecules 2023; 28:molecules28103984. [PMID: 37241725 DOI: 10.3390/molecules28103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium (Se) is a trace mineral found in plants with a distinct sulfuric odor that is cardioprotective and reported to have low toxicity. West Java, Indonesia, has a variety of plants with a distinct odor that are consumed raw, such as jengkol (Archidendron pauciflorum). This study is conducted to determine the Se content of jengkol using the fluorometric method, where the jengkol extract is separated, and the Se content is detected using high-pressure liquid chromatography (HPLC), combined with fluorometry. Two fractions with the highest Se concentration (A and B) are found and characterized using liquid chromatography mass spectrometry to predict the organic Se content by comparing the results with those in the external literature. The Se content of fraction (A) is found to be selenomethionine (m/z 198), gamma glutamyl-methyl-selenocysteine-(GluMetSeCys; m/z 313), and the Se-sulfur (S) conjugate of cysteine-selenoglutathione (m/z 475). Furthermore, these compounds are docked on receptors involved in cardioprotection. The receptors are peroxisome proliferator-activated receptor-γ (PPAR-γ), nuclear factor kappa-B (NF-κB), and phosphoinositide 3-kinase (PI3K/AKT). The interaction of receptor and ligan that has the lowest binding energy of the docking simulation is measured with molecular dynamic simulation. MD is performed to observe bond stability and conformation based on root mean square deviation, root mean square fluctuation, radius gyration, and MM-PBSA parameters. The results of the MD simulation show that the stability of the complex organic Se compounds tested with the receptors is lower than that of the native ligand, while the binding energy is lower than that of the native ligand based on the MM-PSBA parameter. This indicates that the predicted organic Se in jengkol, i.e., gamma-GluMetSeCys to PPAR-γ, gamma-GluMetSeCys AKT/PI3K, and Se-S conjugate of cysteine-selenoglutathione to NF-κB, has the best interaction results and provides a cardioprotection effect, compared to the molecular interaction of the test ligands with the receptors.
Collapse
Affiliation(s)
- Ayu Shalihat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
7
|
Peixoto Mendes M, Cupe-Flores B, Panigrahi B, Liber K. Application of autonomous sensor technology to estimate selenium exposure and a site-specific selenium threshold in a Canadian boreal lake. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:395-411. [PMID: 35665593 DOI: 10.1002/ieam.4644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing trend in the use of real-time sensor technology to remotely monitor aquatic ecosystems. Commercially available probes, however, are currently not able to measure aqueous selenium (Se) concentrations. Because of the well-described bioaccumulation potential and associated toxicity of Se in oviparous vertebrates, it is crucial to monitor Se concentrations at sites receiving continuous effluent Se input. This study aimed to estimate Se concentrations in a boreal lake (McClean Lake) downstream from a Saskatchewan uranium mill using real-time electrical conductivity (EC) data measured by autonomous sensors. Additionally, this study aimed to derive a site-specific total aqueous Se (TSe) threshold based on Se concentrations in periphyton and benthic macroinvertebrates sampled from the same lake. To characterize effluent distribution within the lake, eight Smart Water (Libelium) sensor units were programmed to report EC and temperature for five and seven consecutive weeks in 2018 and 2019, respectively. In parallel, periphyton and benthic macroinvertebrates were sampled with Hester-Dendy's artificial substrate samplers (n = 4) at the same sites and subsequently analyzed for Se concentrations. Electrical conductivity was measured with a handheld field meter for sensor data validation and adjusted to the median lake water temperature (13 °C) registered for the deployment periods. Results demonstrated good accuracy of sensor readings relative to handheld field meter readings and the successful use of real-time EC in estimating TSe exposure (r = 0.87; r2 = 0.84). Linear regression equations derived for Se in detritivores versus Se in periphyton and Se in periphyton versus sensor-estimated TSe were used to estimate a site-specific TSe threshold of 0.7 µg/L (±0.2). Moreover, mean Se concentrations in periphyton (16.7 ± 4.4 µg/g dry weight [d.w.]) and benthic detritivores (6.0 ± 0.4 µg/g d.w.) from one of the exposure sites helped identify an area with potential for high Se bioaccumulation and toxicity in aquatic organisms in McClean Lake. Integr Environ Assess Manag 2023;19:395-411. © 2022 SETAC.
Collapse
Affiliation(s)
| | | | | | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Zhao G, Zhu Y, Hu J, Gao M, Hong Y. l-selenomethionine induces zebrafish embryo cardiovascular defects via down-regulating expression of lrp2b. CHEMOSPHERE 2022; 290:133351. [PMID: 34933029 DOI: 10.1016/j.chemosphere.2021.133351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Selenium plays crucial roles in maintaining the growth and development of vertebrates including humans. However, excessive selenium in cells will lead to developmental defects and disease. Selenium has been reported to cause severe malformation in zebrafish embryos, but there are few studies on the mechanism of selenium excess-induced cardiovascular defects. In this study, the fertilized zebrafish embryos were treated with selenium for 96 h post fertilization (hpf). Under selenium stress, wild-type embryos showed pericardial edema, heart rate decrease, ectopic accumulation of hemoglobin; fli1-eGFP transgenic zebrafish displayed intersegmental vessel injury; and myl7-eGFP transgenic zebrafish exhibited atrial area increase. RNA-seq data and qRT-PCR results indicated that the expressions of cardiovascular development genes were up-regulated in selenium-stressed embryos. The expressions of lipid metabolism-related and selenium metabolism-related genes were evaluated in embryos. Among the tested genes, the expression of lrp2b was down-regulated in both 24 hpf and 96 hpf embryos. Furthermore, lrp2b-knockdown embryos exhibited the cardiac defects similar to selenium-stress embryos, and the over-expression of lrp2b rescued the selenium-induced defects, indicating that lrp2b might play a key role in regulating selenium cardiotoxicity. In summary, our research evaluates the cardiotoxicity of excessive selenium, and reveals the molecular mechanism of cardiovascular defects in selenium-exposed zebrafish embryos.
Collapse
Affiliation(s)
- Guang Zhao
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Yuejie Zhu
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Jun Hu
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Meng Gao
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Yijiang Hong
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Li X, Liu H, Li D, Lei H, Wei X, Schlenk D, Mu J, Chen H, Yan B, Xie L. Dietary Seleno-l-Methionine Causes Alterations in Neurotransmitters, Ultrastructure of the Brain, and Behaviors in Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11894-11905. [PMID: 34488355 DOI: 10.1021/acs.est.1c03457] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elevated concentrations of dietary selenium (Se) cause abnormalities and extirpation of fish inhabiting in Se-contaminated environments. However, its effect on fish behavior and the underlying mechanisms remain largely unknown. In this study, two-month-old zebrafish (Danio rerio) was fed seleno-l-methionine (Se-Met) at environmentally relevant concentrations (i.e., control (2.61), low (5.43), medium (12.16), and high (34.61) μg Se/g dry weight (dw), respectively, corresponding to the C, L, M, and H treatments) for 60 days. Targeted metabolomics, histopathological, and targeted transcriptional endpoints were compared to behavioral metrics to evaluate the effects of dietary exposure to Se-Met . The results showed that the levels of total Se and malondialdehyde in fish brains were increased in a dose-dependent pattern. Meanwhile, mitochondrial damages and decreased activities of the mitochondria respiratory chain complexes were observed in the neurons at the M and H treatments. In addition, dietary Se-Met affected neurotransmitters, metabolites, and transcripts of the genes associated with the dopamine, serotonin, gamma-aminobutyric acid, acetylcholine, and histamine signaling pathways in zebrafish brains at the H treatments. The total swimming distance and duration in the Novel Arm were lowered in fish from the H treatment. This study has demonstrated that dietary Se-Met affects the ultrastructure of the zebrafish brain, neurotransmitters, and associated fish behaviors and may help enhance adverse outcome pathways for neurotransmitter-behavior key events in zebrafish.
Collapse
Affiliation(s)
- Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92507, United States
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
10
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
11
|
Brandt JE, Roberts JJ, Stricker CA, Rogers HA, Nease P, Schmidt TS. Temporal Influences on Selenium Partitioning, Trophic Transfer, and Exposure in a Major U.S. River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3645-3656. [PMID: 33617249 DOI: 10.1021/acs.est.0c06582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrologic and irrigation regimes mediate the timing of selenium (Se) mobilization to rivers, but the extent to which patterns in Se uptake and trophic transfer through recipient food webs reflect the temporal variation in Se delivery is unknown. We investigated Se mobilization, partitioning, and trophic transfer along approximately 60 river miles of the selenium-impaired segment of the Lower Gunnison River (Colorado, USA) during six sampling trips between June 2015 and October 2016. We found temporal patterns in Se partitioning and trophic transfer to be independent of those in dissolved Se concentrations and that the recipient food web sustained elevated Se concentrations from earlier periods of high Se mobilization. Using an ecosystem-scale Se accumulation model tailored to the Lower Gunnison River, we predicted that the endangered Razorback Sucker (Xyrauchen texanus) and Colorado Pikeminnow (Ptychocheilus lucius) achieve whole-body Se concentrations exceeding aquatic life protection criteria during periods of high runoff and irrigation activity (April-August) that coincide with susceptible phases of reproduction and early-life development. The results of this study challenge assumptions about Se trophodynamics in fast-flowing waters and introduce important considerations for the management of Se risks for biota in river ecosystems.
Collapse
Affiliation(s)
- Jessica E Brandt
- Department of Natural Resources and the Environment & Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Under Contract to the U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - James J Roberts
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, Michigan 48105, United States
| | - Craig A Stricker
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado 80526, United States
| | - Holly A Rogers
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado 80526, United States
| | - Patricia Nease
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado 80526, United States
| | - Travis S Schmidt
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, Montana 59601, United States
| |
Collapse
|
12
|
Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP. Effects of chronic exposure to selenomethionine on social learning outcomes in zebrafish (Danio rerio): serotonergic dysregulation and oxidative stress in the brain. CHEMOSPHERE 2020; 247:125898. [PMID: 31972490 DOI: 10.1016/j.chemosphere.2020.125898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
For many species, social learning is crucial for fitness-related activities, but human-induced environmental changes can impair such learning processes. For instance, mining can release the element, selenium (Se), that is vital for physiological functions but also has toxicological properties at elevated concentrations. In this study, we investigated the effects of chronic exposure to Se on social learning outcomes and potential underlying molecular mechanisms in adult zebrafish. After exposure to different levels of dietary selenomethionine (control, 3.6, 12.8, 34.1 μg Se/g dry weight) for 90 days, we examined the ability of observer fish to follow demonstrators (experienced individuals) in escaping an oncoming trawl. Social learning outcomes were then assessed in the absence of demonstrators. Our results indicated that fish in the highest exposure group (34.1 μg/g) displayed significantly slower escape responses compared to fish in the control and lower exposure groups (3.6 and 12.8 μg Se/g). This impaired behavior was associated with higher oxidative stress and dysregulation in genes that are key in the serotonergic pathway, indicating that oxidative stress and alteration in the serotonergic system lead to impairment of social learning.
Collapse
Affiliation(s)
- Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Adam L Crane
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| |
Collapse
|
13
|
Lane T, Green D, Bluhm K, Raes K, Janz DM, Liber K, Hecker M. In ovo exposure of fathead minnow (Pimephales promelas) to selenomethionine via maternal transfer and embryo microinjection: A comparative study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105299. [PMID: 31593906 DOI: 10.1016/j.aquatox.2019.105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential trace element of concern that is known to contaminate aquatic ecosystems as a consequence of releases from anthropogenic activities. Selenium is of particular toxicological concern for egg-laying vertebrates as they bioaccumulate Se through the diet and deposit excess Se to embryo-offspring via maternal transfer, a process which has been shown to result in significant teratogenic effects. The purpose of the present study was to determine and compare the in ovo effects of Se exposure on early development of a laboratory model fish species native to North American freshwater systems, the fathead minnow (Pimephales promelas), through two different exposure routes, maternal transfer and microinjection. For maternal transfer studies, fathead minnow breeding groups (3 females: 2 males) were exposed to diets containing Se-background levels (1.21 μg Se/g food, dry mass [dm]) or environmentally relevant concentrations of selenomethionine (SeMet; 3.88, 8.75 and 26.5 μg Se/g food dm) and bred for 28 days. Embryos were collected at different time points throughout the study to measure Se concentrations and to assess teratogenicity in embryos. While exposure to dietary Se did not negatively affect fecundity among treatment groups, the lowest treatment group (3.88 μg Se/g food dm) produced on average the most embryos per day, per female. The maternal transfer of excess Se occurred rapidly upon onset of exposure, reaching steady-state after approximately 14 days, and embryo Se concentrations increased in a dose-dependent manner. The greatest concentrations of maternally transferred Se significantly increased the total proportion of deformed embryo-larval fathead minnows but did not impact hatchability or survival. In a second study, fathead minnow embryos were injected with SeMet at concentrations of 0.00 (vehicle control), 9.73, 13.5 and 18.9 μg Se/g embryo dm. Microinjection of SeMet did not affect hatchability but significantly increased the proportion of deformed embryo-larval fish in a dose-dependent manner. There was a greater proportion of deformed fathead minnows at embryo Se concentrations of 18.9 μg Se/g embryo dm when exposed via microinjection versus maternal transfer at concentrations of 28.4 μg Se/g embryo dm. However, the findings suggest that both exposure routes induced analogous developmental toxicities in early life stage fish at Se concentrations between 9.73 and 13.5 μg Se/g embryo dm. Overall, this study demonstrated that microinjection has utility for studying the effects of Se in embryo-larval fish and is a promising method for the study of early life stage Se exposure in egg-laying vertebrates.
Collapse
Affiliation(s)
- Taylor Lane
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada.
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada.
| | - Kerstin Bluhm
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C8, Canada.
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada.
| | - David M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C8, Canada.
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C8, Canada.
| |
Collapse
|
14
|
Attaran A, Salahinejad A, Crane AL, Niyogi S, Chivers DP. Chronic exposure to dietary selenomethionine dysregulates the genes involved in serotonergic neurotransmission and alters social and antipredator behaviours in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:837-844. [PMID: 30623840 DOI: 10.1016/j.envpol.2018.12.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is a metalloid of potential interest from both a toxicological and nutritional perspective, having a range of safe intake. The adverse neuro-behavioural effects of Se have been investigated in both humans and fishes, but little is known about its effects on social behaviours or the serotonergic signaling pathway in the brain. In the present study, we investigated the effects of chorionic dietary exposure to Se (as selenomethionine) at different concentrations (control, 2.1, 11.6 or 31.5 μg/g dry wt.) on antipredator avoidance, shoaling behaviour, and social group preferences in adult zebrafish (Danio rerio). In addition, we also measured the expression of important genes in the serotonergic pathway that influence social behaviours. After 60 days of exposure, the highest dose (31.5 μg/g dry wt.) caused the highest level of baseline fear behaviour, with fish swimming lower in the water column and in tighter shoals compared to fish in the other treatments. With high levels of baseline fear, these fish did not significantly intensify fear behaviours in response to predation risk in the form of exposure to chemical alarm cues. When individual fish were given an opportunity to shoal with groups of differing sizes (3 vs. 4 individuals), fish exposed to the high dose spent less time with groups in general, and only control fish showed a significant preference for the larger group. In the zebrafish brain, we found significant upregulation in the mRNA expression of serotonin receptors (htr1aa and htr1b), a transporter (slc6a4a), and tryptophan hydroxylase-2 (tph2), whereas there was a downregulation of the monoamine oxidase (mao) gene. The results of this study suggest that disruption of serotonergic neurotransmission might have been responsible for Se-induced impairment of antipredator and social behaviour in zebrafish.
Collapse
Affiliation(s)
- Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Adam L Crane
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| |
Collapse
|
15
|
Pettem CM, Briens JM, Janz DM, Weber LP. Cardiometabolic response of juvenile rainbow trout exposed to dietary selenomethionine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:175-189. [PMID: 29550715 DOI: 10.1016/j.aquatox.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) is considered an essential trace element, involved in important physiological and metabolic functions for all vertebrate species. Fish require dietary concentrations of 0.1-0.5 μg Se/g dry mass (d.m.) to maintain normal physiological and selenoprotein function, however concentrations exceeding 3 μg/g d.m. have been shown to cause toxicity. As Se is reported to have a narrow margin between essentiality and toxicity, there is growing concern surrounding the adverse effects of elevated Se exposure caused by anthropogenic activities. Previous studies have reported that elevated dietary exposure of fish to selenomethionine (Se-Met) can cause significant cardiotoxicity and alter aerobic metabolic capacity, energy homeostasis and swimming performance. The goal of this study aims to further investigate mechanisms of sublethal Se-Met toxicity, particularly potential underlying cardiovascular and metabolic implications of chronic exposure to environmentally relevant concentrations of dietary Se-Met in juvenile rainbow trout (Oncorhynchus mykiss). Juvenile rainbow trout were fed either control food (1.3 μg Se/g d.m.) or Se-Met spiked food (6.4, 15.8 or 47.8 μg Se/g d.m.) for 60 d at 3% body weight per day. Following exposure, ultrahigh resolution B-mode and Doppler ultrasound was used to characterize cardiac function in vivo. Chronic dietary exposure to Se-Met significantly increased stroke volume, cardiac output, and ejection fraction. Fish fed with Se-Met spiked food had elevated liver glycogen and triglyceride stores, suggesting impaired energy homeostasis. Exposure to Se-Met significantly decreased mRNA abundance of citrate synthase (CS) in liver and serpin peptidase inhibitor, clad H1 (SERPINH) in heart, and increased mRNA abundance of sarcoplasmic reticulum calcium ATPase (SERCA) and key cardiac remodelling enzyme matrix metalloproteinase 9 (MMP9) in heart. Taken together, these responses are consistent with a compensatory cardiac response to increased susceptibility to oxidative stress, namely a decrease in ventricular stiffness and improved cardiac function. These cardiac alterations in trout hearts were linked to metabolic disruption in other major metabolic tissues (liver and skeletal muscle), impaired glucose tolerance with increased levels of the toxic glucose metabolite, methylglyoxal, increased lipid peroxidation in skeletal muscle, development of cataracts and prolonged feeding behaviour, indicative of visual impairment. Therefore, although juvenile rainbow trout hearts were apparently able to functionally compensate for adverse metabolic and anti-oxidant changes after chronic dietary exposure Se-Met, complications associated with hyperglycemia in mammalian species were evident and would threaten survival of juvenile and adult fish.
Collapse
Affiliation(s)
- Connor M Pettem
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Jennifer M Briens
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada.
| |
Collapse
|
16
|
Diet composition and serum levels of selenium species: A cross-sectional study. Food Chem Toxicol 2018; 115:482-490. [PMID: 29621579 DOI: 10.1016/j.fct.2018.03.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022]
Abstract
Selenium is a trace element of both nutritional and toxicological interest, depending on its dose and chemical form. Diet is the primary source of exposure for most individuals. We sought to investigate the influence of food intake on serum levels of selenium species. Among fifty subjects randomly selected from a Northern Italian population, we assessed dietary habits using a validated semi-quantitative food frequency questionnaire. We also measured circulating levels of selenium species in serum using high pressure liquid chromatography associated with inductively-coupled plasma dynamic reaction cell mass spectrometer. Circulating levels of inorganic selenium, the most toxic selenium species, were positively associated with intake of fish, legumes and dry fruits, and inversely associated with intake of dairy products and mushrooms. Concerning the organic selenium species, selenoproteinP-bound selenium was inversely associated with intake of fish, fresh fruits, vegetables, and legumes, while selenocysteine-bound selenium positively associated with intake of fresh fruit, potato, legume and mushroom. In the present study, intakes of different foods were correlated with different types of selenium species. These results have important public health implications when assessing the nutritional and toxicological potential of diet composition with reference to selenium exposure.
Collapse
|
17
|
Glover CN. Defence mechanisms: the role of physiology in current and future environmental protection paradigms. CONSERVATION PHYSIOLOGY 2018; 6:coy012. [PMID: 29564135 PMCID: PMC5848810 DOI: 10.1093/conphys/coy012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 05/13/2023]
Abstract
Ecological risk assessments principally rely on simplified metrics of organismal sensitivity that do not consider mechanism or biological traits. As such, they are unable to adequately extrapolate from standard laboratory tests to real-world settings, and largely fail to account for the diversity of organisms and environmental variables that occur in natural environments. However, an understanding of how stressors influence organism health can compensate for these limitations. Mechanistic knowledge can be used to account for species differences in basal biological function and variability in environmental factors, including spatial and temporal changes in the chemical, physical and biological milieu. Consequently, physiological understanding of biological function, and how this is altered by stressor exposure, can facilitate proactive, predictive risk assessment. In this perspective article, existing frameworks that utilize physiological knowledge (e.g. biotic ligand models, adverse outcomes pathways and mechanistic effect models), are outlined, and specific examples of how mechanistic understanding has been used to predict risk are highlighted. Future research approaches and data needs for extending the incorporation of physiological information into ecological risk assessments are discussed. Although the review focuses on chemical toxicants in aquatic systems, physical and biological stressors and terrestrial environments are also briefly considered.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Canada
- Department of Biological Sciences, CW 405, Biological Sciences Bldg. University of Alberta Edmonton, Alberta, Canada T6G 2E9
- Corresponding author: 1 University Drive, Athabasca, Alberta, Canada T9S 3A3. Tel: +(587) 985 8007.
| |
Collapse
|
18
|
Vinceti M, Chiari A, Eichmüller M, Rothman KJ, Filippini T, Malagoli C, Weuve J, Tondelli M, Zamboni G, Nichelli PF, Michalke B. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer's dementia in persons with mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2017; 9:100. [PMID: 29258624 PMCID: PMC5735937 DOI: 10.1186/s13195-017-0323-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
Background Little is known about factors influencing progression from mild cognitive impairment to Alzheimer’s dementia. A potential role of environmental chemicals and specifically of selenium, a trace element of nutritional and toxicological relevance, has been suggested. Epidemiologic studies of selenium are lacking, however, with the exception of a recent randomized trial based on an organic selenium form. Methods We determined concentrations of selenium species in cerebrospinal fluid sampled at diagnosis in 56 participants with mild cognitive impairment of nonvascular origin. We then investigated the relation of these concentrations to subsequent conversion from mild cognitive impairment to Alzheimer’s dementia. Results Twenty-one out of the 56 subjects developed Alzheimer’s dementia during a median follow-up of 42 months; four subjects developed frontotemporal dementia and two patients Lewy body dementia. In a Cox proportional hazards model adjusting for age, sex, duration of sample storage, and education, an inorganic selenium form, selenate, showed a strong association with Alzheimer’s dementia risk, with an adjusted hazard ratio of 3.1 (95% confidence interval 1.0–9.5) in subjects having a cerebrospinal fluid content above the median level, compared with those with lower concentration. The hazard ratio of Alzheimer’s dementia showed little departure from unity for all other inorganic and organic selenium species. These associations were similar in analyses that measured exposure on a continuous scale, and also after excluding individuals who converted to Alzheimer’s dementia at the beginning of the follow-up. Conclusions These results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer’s dementia. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0323-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy. .,Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy. .,Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA.
| | - Annalisa Chiari
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Marcel Eichmüller
- Helmholtz Zentrum München GmbH-German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg, 85764, Germany
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA.,Research Triangle Institute, Research Triangle Park, 3040 E Cornwallis Road, Durham, NC, 27709, USA
| | - Tommaso Filippini
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Carlotta Malagoli
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Paolo F Nichelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Bernhard Michalke
- Helmholtz Zentrum München GmbH-German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg, 85764, Germany
| |
Collapse
|