1
|
Ohno M, Tani H, Tohyama S. Development and application of 3D cardiac tissues derived from human pluripotent stem cells. Drug Metab Pharmacokinet 2025; 60:101049. [PMID: 39847979 DOI: 10.1016/j.dmpk.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
Recently human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate drug responses for cardiotoxicity testing and disease modeling. Moreover, three-dimensional (3D) cardiac models, such as engineered heart tissues (EHTs) developed by bioengineering approaches, and cardiac spheroids (CSs) formed by spherical aggregation of hPSC-CMs, have been established as useful tools for drug discovery and transplantation. These 3D models overcome many of the shortcomings of conventional 2D hPSC-CMs, such as immaturity of the cells. Cardiac organoids (COs), like other organs, have also been studied to reproduce structures that resemble a heart in vivo more closely and optimize various culture conditions. Heart-on-a-chip (HoC) developed by a microfluidic chip-based technology that enables real-time monitoring of contraction and electrical activity, provides multifaceted information that is essential for capturing natural tissue development in vivo. Recently, 3D experimental systems have been developed to study organ interactions in vitro. This review aims to discuss the developments and advancements of hPSC-CMs and 3D cardiac tissues.
Collapse
Affiliation(s)
- Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Prevention Center, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Wang J, Zeng H, Dong G, Waddell S, McCauley J, Lagrutta A. Structure-Activity Relationship and Voltage Dependence for the Drug-Drug Interaction between Amiodarone Analogs and MNI-1 at the L-type Cav Channel. J Pharmacol Exp Ther 2024; 389:229-242. [PMID: 38453526 DOI: 10.1124/jpet.123.001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
The drug-drug interaction (DDI) between amiodarone (AMIO) and sofosbuvir (SOF), a direct-acting hepatitis-C NS5B nucleotide polymerase inhibitor, has been associated with severe bradyarrhythmia in patients. Recent cryo-EM data has revealed that this DDI occurs at the α-subunit of L-type Cav channels, with AMIO binding at the fenestration site and SOF [or MSD nucleotide inhibitor #1 (MNI-1): analog of SOF] binding at the central cavity of the conductance pathway. In this study, we investigated the DDI between 21 AMIO analogs, including dronedarone (DRON) and MNI-1 (or SOF) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hCav1.2 models. Our findings indicate that among the tested AMIO analogs in hiPSC-CMs at clinically relevant concentrations, only three analogs (AA-9, AA-10, and AA-17) were able to effectively substitute for AMIO in this DDI with 1 µM MNI-1. This highlights the importance of the diethyl amino group of AMIO for interacting with MNI-1. In the hCav1.2 model, desethylamiodarone (AA-12) demonstrated synergy with 90 µM MNI-1, while three other analogs with modifications to the position of the diethyl amino group or removal of iodo groups showed weaker synergy with 90 µM MNI-1. Interestingly, DRON did not exhibit any interaction with 270 µM SOF or 90 µM MNI-1, suggesting that it could safely replace AMIO in patients requiring SOF treatment, other clinically relevant differences considered. Overall, our functional data align with the cryo-EM data, highlighting that this DDI is dependent on the structure of AMIO and cardiomyocyte resting membrane potential. SIGNIFICANCE STATEMENT: Our findings point to specific residues in the AMIO molecule playing a critical role in the DDI between AMIO and MNI-1 (SOF analog), confirming cryo-EM results. Applied at clinically relevant AMIO's concentrations or projected MNI-1's concentrations at the resting potentials mimicking the sinoatrial node, this DDI significantly slowed down or completely inhibited the beating of hiPSC-CMs. Finally, these in vitro results support the safe replacement of AMIO (Cordarone) with DRON (Multaq) for patients requiring SOF treatment, other clinical caveats considered.
Collapse
Affiliation(s)
- Jixin Wang
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Haoyu Zeng
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Grace Dong
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Sherman Waddell
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - John McCauley
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| | - Armando Lagrutta
- Safety and Exploratory Pharmacology (J.W., H.Z., A.L.) and Discovery Chemistry (G.D., S.W., J.M.), Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania
| |
Collapse
|
3
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Satsuka A, Hayashi S, Yanagida S, Ono A, Kanda Y. Contractility assessment of human iPSC-derived cardiomyocytes by using a motion vector system and measuring cell impedance. J Pharmacol Toxicol Methods 2022; 118:107227. [PMID: 36243255 DOI: 10.1016/j.vascn.2022.107227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Predicting drug-induced cardiotoxicity during the non-clinical stage is important to avoid severe consequences in the clinical trials of new drugs. Human iPSC-derived cardiomyocytes (hiPSC-CMs) hold great promise for cardiac safety assessments in drug development. To date, multi-electrode array system (MEA) has been a widely used as a tool for the assessment of proarrhythmic risk with hiPSC-CMs. Recently, new methodologies have been proposed to assess in vitro contractility, such as the force and velocity of cell contraction, using hiPSC-CMs. Herein, we focused on an imaging-based motion vector system (MV) and an electric cell-substrate impedance sensing system (IMP). We compared the output signals of hiPSC-CMs from MV and IMP in detail and observed a clear correlation between the parameters. In addition, we assessed the effects of isoproterenol and verapamil on hiPSC-CM contraction and identified a correlation in the contractile change of parameters obtained with MV and IMP. These results suggest that both assay systems could be used to monitor hiPSC-CM contraction dynamics.
Collapse
Affiliation(s)
- Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Sayo Hayashi
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan; Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, kita-ku, Okayama, Okayama 700-8530, Japan
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, kita-ku, Okayama, Okayama 700-8530, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan; Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, kita-ku, Okayama, Okayama 700-8530, Japan.
| |
Collapse
|
5
|
Ronaldson-Bouchard K, Teles D, Yeager K, Tavakol DN, Zhao Y, Chramiec A, Tagore S, Summers M, Stylianos S, Tamargo M, Lee BM, Halligan SP, Abaci EH, Guo Z, Jacków J, Pappalardo A, Shih J, Soni RK, Sonar S, German C, Christiano AM, Califano A, Hirschi KK, Chen CS, Przekwas A, Vunjak-Novakovic G. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng 2022; 6:351-371. [PMID: 35478225 PMCID: PMC9250010 DOI: 10.1038/s41551-022-00882-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Engineered tissues can be used to model human pathophysiology and test the efficacy and safety of drugs. Yet, to model whole-body physiology and systemic diseases, engineered tissues with preserved phenotypes need to physiologically communicate. Here we report the development and applicability of a tissue-chip system in which matured human heart, liver, bone and skin tissue niches are linked by recirculating vascular flow to allow for the recapitulation of interdependent organ functions. Each tissue is cultured in its own optimized environment and is separated from the common vascular flow by a selectively permeable endothelial barrier. The interlinked tissues maintained their molecular, structural and functional phenotypes over 4 weeks of culture, recapitulated the pharmacokinetic and pharmacodynamic profiles of doxorubicin in humans, allowed for the identification of early miRNA biomarkers of cardiotoxicity, and increased the predictive values of clinically observed miRNA responses relative to tissues cultured in isolation and to fluidically interlinked tissues in the absence of endothelial barriers. Vascularly linked and phenotypically stable matured human tissues may facilitate the clinical applicability of tissue chips.
Collapse
Affiliation(s)
| | - Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarāes, Braga, Portugal
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | | | - Yimu Zhao
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Alan Chramiec
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Somnath Tagore
- Department of Systems Biology, Columbia University, New York City, NY, USA
| | - Max Summers
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Sophia Stylianos
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Busub Marcus Lee
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Susan P Halligan
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Erbil Hasan Abaci
- Department of Dermatology, Columbia University, New York City, NY, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York City, NY, USA
| | - Joanna Jacków
- Department of Dermatology, Columbia University, New York City, NY, USA
| | | | - Jerry Shih
- Department of Biomedical Engineering, Boston University, The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Rajesh K Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
| | | | | | - Angela M Christiano
- Department of Dermatology, Columbia University, New York City, NY, USA
- Department of Genetics and Development, Columbia University, New York City, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
- Department of Biomedical Informatics, Columbia University, New York City, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- J.P. Sulzberger Columbia Genome Center, New York, NY, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
- College of Dental Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Tani H, Tohyama S. Human Engineered Heart Tissue Models for Disease Modeling and Drug Discovery. Front Cell Dev Biol 2022; 10:855763. [PMID: 35433691 PMCID: PMC9008275 DOI: 10.3389/fcell.2022.855763] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) and efficient differentiation of hiPSC-derived cardiomyocytes (hiPSC-CMs) induced from diseased donors have the potential to recapitulate the molecular and functional features of the human heart. Although the immaturity of hiPSC-CMs, including the structure, gene expression, conduct, ion channel density, and Ca2+ kinetics, is a major challenge, various attempts to promote maturation have been effective. Three-dimensional cardiac models using hiPSC-CMs have achieved these functional and morphological maturations, and disease models using patient-specific hiPSC-CMs have furthered our understanding of the underlying mechanisms and effective therapies for diseases. Aside from the mechanisms of diseases and drug responses, hiPSC-CMs also have the potential to evaluate the safety and efficacy of drugs in a human context before a candidate drug enters the market and many phases of clinical trials. In fact, novel drug testing paradigms have suggested that these cells can be used to better predict the proarrhythmic risk of candidate drugs. In this review, we overview the current strategies of human engineered heart tissue models with a focus on major cardiac diseases and discuss perspectives and future directions for the real application of hiPSC-CMs and human engineered heart tissue for disease modeling, drug development, clinical trials, and cardiotoxicity tests.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama,
| |
Collapse
|
7
|
Kilfoil P, Feng SL, Bassyouni A, Lee T, Leishman D, Li D, MacEwan DJ, Sharma P, Watt ED, Jenkinson S. Characterization of a high throughput human stem cell cardiomyocyte assay to predict drug-induced changes in clinical electrocardiogram parameters. Eur J Pharmacol 2021; 912:174584. [PMID: 34678241 DOI: 10.1016/j.ejphar.2021.174584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023]
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hIPSC-CM's) play an increasingly important role in the safety profiling of candidate drugs. For such models to have utility a clear understanding of clinical translation is required. In the present study we examined the ability of our hIPSC-CM model to predict the clinically observed effects of a diverse set of compounds on several electrocardiogram endpoints, including changes in QT and QRS intervals. To achieve this, compounds were profiled in a novel high throughput voltage-sensitive dye platform. Measurements were taken acutely (30 min) and chronically (24 h) to ensure that responses from compounds with slow onset kinetics or that affected surface ion channel expression would be captured. In addition, to avoid issues associated with changes in free drug levels due to protein binding, assays were run in serum free conditions. Changes in hIPSC-CM threshold APD90 values correlated with compound plasma exposures that produced a +10 ms change in clinical QTc (Pearson r2 = 0.80). In addition, randomForest modeling showed high predictivity in defining TdP risk (AUROC value = 0.938). Risk associated with QRS prolongation correlated with an increase in action potential rise-time (AUROC value = 0.982). The in-depth understanding of the clinical translatability of our hIPSC-CM model positions this assay to play a key role in defining cardiac risk early in drug development. Moreover, the ability to perform longer term studies enables the detection of compounds that may not be highlighted by more acute assay formats, such as inhibitors of hERG trafficking.
Collapse
Affiliation(s)
- Peter Kilfoil
- Worldwide Research and Development, Pfizer Inc., La Jolla, CA, 92121, USA
| | - Shuyun Lily Feng
- Worldwide Research and Development, Pfizer Inc., La Jolla, CA, 92121, USA
| | - Asser Bassyouni
- Worldwide Research and Development, Pfizer Inc., La Jolla, CA, 92121, USA
| | - Tiffany Lee
- Worldwide Research and Development, Pfizer Inc., La Jolla, CA, 92121, USA
| | - Derek Leishman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | | | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 3GE, UK
| | - Parveen Sharma
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, UK
| | | | - Stephen Jenkinson
- Worldwide Research and Development, Pfizer Inc., La Jolla, CA, 92121, USA.
| |
Collapse
|
8
|
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021; 11:10228. [PMID: 33986332 PMCID: PMC8119415 DOI: 10.1038/s41598-021-89478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
Collapse
|
9
|
Kumar N, Sridharan D, Palaniappan A, Dougherty JA, Czirok A, Isai DG, Mergaye M, Angelos MG, Powell HM, Khan M. Scalable Biomimetic Coaxial Aligned Nanofiber Cardiac Patch: A Potential Model for "Clinical Trials in a Dish". Front Bioeng Biotechnol 2020; 8:567842. [PMID: 33042968 PMCID: PMC7525187 DOI: 10.3389/fbioe.2020.567842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in cardiac tissue engineering have shown that human induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in a three-dimensional (3D) micro-environment exhibit superior physiological characteristics compared with their two-dimensional (2D) counterparts. These 3D cultured hiPSC-CMs have been used for drug testing as well as cardiac repair applications. However, the fabrication of a cardiac scaffold with optimal biomechanical properties and high biocompatibility remains a challenge. In our study, we fabricated an aligned polycaprolactone (PCL)-Gelatin coaxial nanofiber patch using electrospinning. The structural, chemical, and mechanical properties of the patch were assessed by scanning electron microscopy (SEM), immunocytochemistry (ICC), Fourier-transform infrared spectroscopy (FTIR)-spectroscopy, and tensile testing. hiPSC-CMs were cultured on the aligned coaxial patch for 2 weeks and their viability [lactate dehydrogenase (LDH assay)], morphology (SEM, ICC), and functionality [calcium cycling, multielectrode array (MEA)] were assessed. Furthermore, particle image velocimetry (PIV) and MEA were used to evaluate the cardiotoxicity and physiological functionality of the cells in response to cardiac drugs. Nanofibers patches were comprised of highly aligned core-shell fibers with an average diameter of 578 ± 184 nm. Acellular coaxial patches were significantly stiffer than gelatin alone with an ultimate tensile strength of 0.780 ± 0.098 MPa, but exhibited gelatin-like biocompatibility. Furthermore, hiPSC-CMs cultured on the surface of these aligned coaxial patches (3D cultures) were elongated and rod-shaped with well-organized sarcomeres, as observed by the expression of cardiac troponin-T and α-sarcomeric actinin. Additionally, hiPSC-CMs cultured on these coaxial patches formed a functional syncytium evidenced by the expression of connexin-43 (Cx-43) and synchronous calcium transients. Moreover, MEA analysis showed that the hiPSC-CMs cultured on aligned patches showed an improved response to cardiac drugs like Isoproterenol (ISO), Verapamil (VER), and E4031, compared to the corresponding 2D cultures. Overall, our results demonstrated that an aligned, coaxial 3D cardiac patch can be used for culturing of hiPSC-CMs. These biomimetic cardiac patches could further be used as a potential 3D in vitro model for "clinical trials in a dish" and for in vivo cardiac repair applications for treating myocardial infarction.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Divya Sridharan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Arunkumar Palaniappan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| | - Julie A. Dougherty
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Dona Greta Isai
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Muhamad Mergaye
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mark G. Angelos
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Heather M. Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States
- Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
10
|
Paci M, Passini E, Klimas A, Severi S, Hyttinen J, Rodriguez B, Entcheva E. All-Optical Electrophysiology Refines Populations of In Silico Human iPSC-CMs for Drug Evaluation. Biophys J 2020; 118:2596-2611. [PMID: 32298635 PMCID: PMC7231889 DOI: 10.1016/j.bpj.2020.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action potentials (APs) and Ca2+ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Optically obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug conditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously recorded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug effects and occurrence of adverse episodes, even though the population was optimized only based on control data and in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic insights; e.g., through simulations, bepridil's more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electrophysiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-throughput in vitro and population in silico approaches.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, D.C
| |
Collapse
|
11
|
Gintant G, Traebert M. The roles of human induced pluripotent stem cell-derived cardiomyocytes in drug discovery: managing in vitro safety study expectations. Expert Opin Drug Discov 2020; 15:719-729. [PMID: 32129680 DOI: 10.1080/17460441.2020.1736549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) preparations are increasingly employed in in vitro cardiac safety studies to support candidate drug selection and regulatory submissions. The value of hiPSC-CM-based approaches depends on their ability to recapitulate the cellular mechanisms responsible for cardiotoxicity as well as overall assay characteristics (thus defining model performance). Different expectations at different drug development stages define the utility of these human-derived models. AREAS COVERED Herein, the authors review the importance of understanding the functional characteristics of the evolving spectrum of simpler (2D) and more complex (co-cultures, 3D constructs, and engineered tissues) human-derived cardiac preparations, and how their performance may be evaluated based on analytical sensitivity, variability, and reproducibility in order to correctly match preparations with expectations of different safety assays. The need for consensus clinical examples of electrophysiologic, contractile, and structural cardiotoxicities essential for benchmarking human-derived models is also discussed. EXPERT OPINION It is helpful (but not essential) that hiPSC-CMs preparations fully recapitulate pharmacological responses of native adult human ventricular myocytes when evaluating cardiotoxicity in vitro. Further calibration and model standardization (aligning concordance with clinical findings) are necessary to understand the role of hiPSC-CMs in guiding cardiotoxicity assessments in early drug discovery efforts.
Collapse
Affiliation(s)
- Gary Gintant
- Department of Integrative Pharmacology (ZR13), AP-9A-LL, AbbVie Inc. , North Chicago, IL, USA
| | - Martin Traebert
- Novartis Institutes for Biomedical Research , Safety Pharmacology, Basel, Switzerland
| |
Collapse
|
12
|
HiPSC-CMs from different sex and ethnic origin donors exhibit qualitatively different responses to several classes of pharmacological challenges. J Pharmacol Toxicol Methods 2019; 99:106598. [DOI: 10.1016/j.vascn.2019.106598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022]
|
13
|
Isobe T, Honda M, Komatsu R, Tabo M. Cardiac safety assessment with motion field imaging analysis of human iPS cell-derived cardiomyocytes is improved by an integrated evaluation with cardiac ion channel profiling. J Toxicol Sci 2019; 44:859-870. [DOI: 10.2131/jts.44.859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takehito Isobe
- Research Division, Chugai Pharmaceutical Co., Ltd
- Translational Research Division, Chugai Pharmaceutical Co., Ltd
| | - Masaki Honda
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | | | |
Collapse
|