1
|
Han B, He Y, Zhu M, Zhang M, Lu L, Xu X, He X, Yi H, Tang S. Association of Gene Polymorphisms and Serum Levels of ALAS1 with the Risk of Anti-Tuberculosis Drug-Induced Liver Injury. J Clin Pharmacol 2025; 65:197-205. [PMID: 39297668 DOI: 10.1002/jcph.6137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/08/2024] [Indexed: 01/28/2025]
Abstract
The accumulation of protoporphyrin IX in the liver caused by isoniazid and rifampicin through the disorder of heme biosynthesis was considered an important mechanism of anti-tuberculosis drug-induced liver injury (ATLI). Alanine synthase 1 (ALAS1) is a rate-limiting enzyme in the process of heme synthesis. This study aimed to investigate the association between ALAS1 gene polymorphism, serum ALAS1 level, and the risk of ATLI. This study was a case-control study including 58 ATLI cases and 192 controls. Four single nucleotide polymorphisms (SNPs) of the ALAS1 gene were selected for genotyping and serum ALAS1 concentrations were detected using ELISA kits. There was no significant difference in the genotype distribution of four SNPs between the ATLI cases and the controls under different genetic models. Patients carrying the GG genotype of SNP rs352163 in controls had higher baseline ALAS1 levels than those in ATLI cases (243.6 vs 290.2 ng/L, P = .034), and patients with baseline ALAS1 < 337.85 ng/L had a higher risk of ATLI than those with ALAS1 ≥ 337.85 ng/L (HR = 2.679, 95% CI: 1.360-5.278, P = .004). Our findings indicated that the serum ALAS1 concentrations in the ATLI cases were lower than those in the controls, and the lower baseline ALAS1 levels can be associated with higher ATLI risk.
Collapse
Affiliation(s)
- Bing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yiwen He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Xiaoyan Xu
- Department of Tuberculosis, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Tang Z, Hao L, Sun D, Yang X, Su M, Zhang Y. Preparation of unique corn-stalk-like MnO₂/CoNi nanowires via in situ epitaxial attachment growth for monitoring environmental pollutant hydrazine. Talanta 2025; 282:127036. [PMID: 39406090 DOI: 10.1016/j.talanta.2024.127036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
This paper presents the synthesis of a novel corn-stalk-like MnO₂/CoNi oxide composite using an in situ epitaxial attachment growth strategy, in which CoNi oxide nanosheets are anchored onto MnO₂ nanowires. The one-dimensional MnO₂ nanowires, with their large specific surface area, serve as a support to enhance the electronic conductivity of the CoNi oxides. Hexamethylenetetramine (HMTA) is employed as an alkaline linking agent, playing a key role in shaping the CoNi oxide nanosheets and ensuring their successful growth on the MnO₂ nanowires. The MnO₂/CoNi oxide composite-based electrochemical sensor exhibits excellent synergistic and interfacial effects, promoting electron transfer and charge migration. This composite material shows outstanding electrocatalytic performance for hydrazine detection, with a broad linear range (0.48-6106.58 μM), low detection limit (0.286 μM, S/N = 3), and high sensitivity (0.037 μA μM⁻1). Moreover, when tested for hydrazine detection in water samples, the sensor achieved a recovery rate of 95.7-105 %, highlighting its high sensitivity and rapid response in practical applications.
Collapse
Affiliation(s)
- Zhuoxian Tang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002, Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001, Baoding, PR China
| | - Danhua Sun
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002, Baoding, PR China
| | - Xinjian Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002, Baoding, PR China
| | - Ming Su
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002, Baoding, PR China; College of Life Sciences, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China.
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002, Baoding, PR China; College of Life Sciences, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China.
| |
Collapse
|
3
|
Li QX, Yuan YJ, Cheng RX, Ma Y, Tan R, Wang YW, Peng Y. An AIE-active tetra-aryl imidazole-derived chemodosimeter for turn-on recognition of hydrazine and its bioimaging in living cells. Org Biomol Chem 2024. [PMID: 39011846 DOI: 10.1039/d4ob01009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A new chemodosimeter SWJT-31 with an aggregation-induced emission (AIE) effect was designed and constructed. Upon increasing the water fraction in the solution, it exhibited typical AIE, which showed bright red fluorescence at 610 nm. SWJT-31 could sensitively and specifically recognize hydrazine by the TICT effect with an LOD of 33.8 nM, which was much lower than the standard of the USEPA. A portable test strip prepared using SWJT-31 was also developed for the visual detection of hydrazine. Eventually, it was successfully used for the detection of hydrazine in water samples and HeLa cells.
Collapse
Affiliation(s)
- Qing-Xiu Li
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yan-Ju Yuan
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui-Xing Cheng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Ma
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui Tan
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
4
|
Muzanyi G, Mafigiri DK, Salata R, Joloba M, Mukonzo J, Ntale M, Mubiri P, Bbosa G. Acceptability of hair harvest as a method of tuberculosis therapeutic drug monitoring among adult pulmonary TB patients: a qualitative study. Afr Health Sci 2023; 23:21-27. [PMID: 38974262 PMCID: PMC11225481 DOI: 10.4314/ahs.v23i4.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Background The current six months regimen for drug-susceptible tuberculosis (TB) is long, complex, and requires adherence monitoring. TB hair drug level assay is one innovative approach to monitor TB treatment adherence however, its acceptability in the context of African multi-cultural settings is not known. Objective To determine the acceptability of hair harvest and testing as a TB therapeutic drug monitoring method. Methods The study explored perceptions, and lived experiences among TB patients with regard to using hair harvest and testing as a method of tuberculosis therapeutic drug monitoring in the context of their cultural beliefs, and faith. We used a descriptive phenomenological approach. Results Four main themes emerged namely: participants' perceptions about the cultural meaning of their body parts; perceptions about hair having any medical value or meaning; perceptions about hospitals starting to use hair harvest and testing for routine hospital TB treatment adherence monitoring; and perceived advantages and disadvantages of using hair for treatment adherence monitoring. Overall, we found that using hair to monitor adherence was acceptable to TB patients provided the hair was harvested and tested by a medical worker. Conclusion Hair harvest for medical testing is acceptable to TB patients on the condition that it is conducted by a medical worker.
Collapse
Affiliation(s)
- Grace Muzanyi
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University
- Uganda-Case Western Reserve University Research Collaboration
| | - David K Mafigiri
- Uganda-Case Western Reserve University Research Collaboration
- Makerere University School of Social Sciences
| | - Robert Salata
- Uganda-Case Western Reserve University Research Collaboration
- Case Western Reserve University, Cleveland Ohio
| | - Moses Joloba
- Uganda-Case Western Reserve University Research Collaboration
- Makerere University School of Biomedical Sciences
| | - Jackson Mukonzo
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University
| | - Mohammed Ntale
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University
- College of Natural Sciences, Makerere University
| | | | - Godfrey Bbosa
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University
| |
Collapse
|
5
|
Tolonen H, Ranta S, Hämäläinen E, Kauppinen R, Hukkanen J. Effects of rifampicin on porphyrin metabolism in healthy volunteers. Basic Clin Pharmacol Toxicol 2023; 132:281-291. [PMID: 36535687 DOI: 10.1111/bcpt.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Pregnane X receptor (PXR) is known to stimulate haem synthesis, but detailed knowledge on the effects of PXR activation on porphyrin metabolism in humans is lacking. We utilized a randomized, crossover, open (blinded laboratory) and placebo-controlled trial with 600-mg rifampicin or placebo dosed for a week to investigate the effects of PXR activation on erythrocyte, plasma, faecal and urine porphyrins. Sixteen healthy volunteers participated on the trial, but the number of volunteers for blood and urine porphyrin analyses was 15 while the number of samples for faecal analyses was 14. Rifampicin increased urine pentaporphyrin concentration 3.7-fold (mean 1.80 ± 0.6 vs. 6.73 ± 4.4 nmol/L, p = 0.003) in comparison with placebo. Urine coproporphyrin I increased 23% (p = 0.036). Faecal protoporphyrin IX decreased (mean 31.6 ± 23.5 vs. 19.2 ± 27.8 nmol/g, p = 0.023). The number of blood erythrocytes was slightly elevated, and plasma bilirubin, catabolic metabolite of haem, was decreased. In conclusion, rifampicin dosing elevated the excretion of certain urinary porphyrin metabolites and decreased faecal protoporphyrin IX excretion. As urine pentaporphyrin and coproporphyrin I are not precursors in haem biosynthesis, increased excretion may serve as a hepatoprotective shunt when haem synthesis or porphyrin levels are increased.
Collapse
Affiliation(s)
- Hanna Tolonen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sirpa Ranta
- Clinical Chemistry, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esa Hämäläinen
- School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Raili Kauppinen
- Clinical Chemistry, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne Hukkanen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Gamov G, Kiselev A, Zavalishin M, Yarullin D. Formation and hydrolysis of pyridoxal-5’-phosphate hydrazones and Schiff bases: Prediction of equilibrium and rate constants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Gašo Sokač D, Zandona A, Roca S, Vikić-Topić D, Lihtar G, Maraković N, Bušić V, Kovarik Z, Katalinić M. Potential of Vitamin B6 Dioxime Analogues to Act as Cholinesterase Ligands. Int J Mol Sci 2022; 23:13388. [PMID: 36362178 PMCID: PMC9655973 DOI: 10.3390/ijms232113388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/25/2024] Open
Abstract
Seven pyridoxal dioxime quaternary salts (1-7) were synthesized with the aim of studying their interactions with human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The synthesis was achieved by the quaternization of pyridoxal monooxime with substituted 2-bromoacetophenone oximes (phenacyl bromide oximes). All compounds, prepared in good yields (43-76%) and characterized by 1D and 2D NMR spectroscopy, were evaluated as reversible inhibitors of cholinesterase and/or reactivators of enzymes inhibited by toxic organophosphorus compounds. Their potency was compared with that of their monooxime analogues and medically approved oxime HI-6. The obtained pyridoxal dioximes were relatively weak inhibitors for both enzymes (Ki = 100-400 µM). The second oxime group in the structure did not improve the binding compared to the monooxime analogues. The same was observed for reactivation of VX-, tabun-, and paraoxon-inhibited AChE and BChE, where no significant efficiency burst was noted. In silico analysis and molecular docking studies connected the kinetic data to the structural features of the tested compound, showing that the low binding affinity and reactivation efficacy may be a consequence of a bulk structure hindering important reactive groups. The tested dioximes were non-toxic to human neuroblastoma cells (SH-SY5Y) and human embryonal kidney cells (HEK293).
Collapse
Affiliation(s)
- Dajana Gašo Sokač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001 Zagreb, Croatia
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Dražen Vikić-Topić
- NMR Centre, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
- Department of Natural and Health Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
| | - Gabriela Lihtar
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001 Zagreb, Croatia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001 Zagreb, Croatia
| | - Valentina Bušić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001 Zagreb, Croatia
| |
Collapse
|
8
|
Hou W, Nsengimana B, Yan C, Nashan B, Han S. Involvement of endoplasmic reticulum stress in rifampicin-induced liver injury. Front Pharmacol 2022; 13:1022809. [PMCID: PMC9630567 DOI: 10.3389/fphar.2022.1022809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Rifampicin is a first-line antituberculosis drug. Hepatocyte toxicity caused by rifampicin is a significant clinical problem. However, the specific mechanism by which rifampicin causes liver injury is still poorly understood. Endoplasmic reticulum (ER) stress can have both protective and proapoptotic effects on an organism, depending on the environmental state of the organism. While causing cholestasis and oxidative stress in the liver, rifampicin also activates ER stress in different ways, including bile acid accumulation and cytochrome p450 (CYP) enzyme-induced toxic drug metabolites via pregnane X receptor (PXR). The short-term stress response helps the organism resist toxicity, but when persisting, the response aggravates liver damage. Therefore, ER stress may be closely related to the “adaptive” mechanism and the apoptotic toxicity of rifampicin. This article reviews the functional characteristics of ER stress and its potentially pathogenic role in liver injury caused by rifampicin.
Collapse
Affiliation(s)
- Wanqing Hou
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bjorn Nashan
- Department of Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Shuxin Han,
| |
Collapse
|
9
|
Zhuang X, Li L, Liu T, Zhang R, Yang P, Wang X, Dai L. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review. Front Pharmacol 2022; 13:1037814. [PMID: 36299895 PMCID: PMC9589499 DOI: 10.3389/fphar.2022.1037814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Isoniazid (INH) and rifampicin (RFP) are the first-line medications for tuberculosis treatment, and liver injury is the major adverse effect. Natural medicinal ingredients provide distinct benefits in alleviating patients’ symptoms, lowering the liver injury risk, delaying disease progression, and strengthening the body’s ability to heal. This paper summarises the recent research on the mechanisms of INH and RFP-induced liver injury and the effects of natural medicinal ingredients. It is believed that INH-induced liver injury may be attributed to oxidative stress, mitochondrial dysfunction, drug metabolic enzymes, protoporphyrin IX accumulation, endoplasmic reticulum stress, bile transport imbalance, and immune response. RFP-induced liver injury is mainly related to cholestasis, endoplasmic reticulum stress, and liver lipid accumulation. However, the combined effect of INH and RFP on liver injury risk is still uncertain. RFP can increase INH-induced hepatotoxicity by regulating the expression of drug-metabolizing enzymes and transporters. In contrast, INH can antagonize RFP-induced liver injury by reducing the total bilirubin level in the blood. Sagittaria sagittifolia polysaccharide, quercetin, gallic acid, and other natural medicinal ingredients play protective roles on INH and RFP-induced liver injury by enhancing the body’s antioxidant capacity, regulating metabolism, inhibiting cell apoptosis, and reducing the inflammatory response. There are still many gaps in the literature on INH and RFP-induced liver injury mechanisms and the effects of natural medicinal ingredients. Thus, further research should be carried out from the perspectives of liver injury phenotype, injury markers, in vitro and in vivo liver injury model construction, and liver-gut axis. This paper comprehensively reviewed the literature on mechanisms involved in INH and RFP-induced liver injury and the status of developing new drugs against INH and RFP-induced liver injury. In addition, this review also highlighted the uses and advantages of natural medicinal ingredients in treating drug-induced liver injury.
Collapse
Affiliation(s)
- Xiuping Zhuang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Li
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Liu
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peimin Yang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Wang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xin Wang, ; Long Dai,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Xin Wang, ; Long Dai,
| |
Collapse
|
10
|
Tang C, Tong H, Liu B, Wang X, Jin Y, Tian E, Wang F. Robust ERα-Targeted Near-Infrared Fluorescence Probe for Selective Hydrazine Imaging in Breast Cancer. Anal Chem 2022; 94:14012-14020. [PMID: 36166661 DOI: 10.1021/acs.analchem.2c03395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most common malignancy in women and may become worse when a high concentration of hydrazine is absorbed from the environment or drug metabolite. Therefore, rapid and sensitive detection of hydrazine in vivo is beneficial for people's health. In this work, a novel estrogen receptor α (ERα)-targeted near-infrared fluorescence probe was designed to detect hydrazine levels. The probe showed good ERα affinity and an excellent fluorescence response toward hydrazine. Selectivity experiments demonstrated that the probe had a strong anti-interference ability. Mechanistic studies, including mass spectrometry (MS) and density functional theory (DFT) calculation, indicated that intermolecular charge transfer (ICT) progress was hindered when the probe reacted with hydrazine, resulting in fluorescent quenching. In addition, the probe could selectively bind to MCF-7 breast cancer cells with excellent biocompatibility. The in vivo and ex vivo imaging studies demonstrated that the probe could rapidly visualize hydrazine with high contrast in MCF-7 xenograft tumors. Therefore, this probe can serve as a potential tool to robustly monitor hydrazine levels in vivo.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.,Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Hongjuan Tong
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Bin Liu
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.,Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China.,School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
11
|
Crosby ME, Ciurlionis R, Brayman TG, Kondratiuk A, Nicolette JJ. Exploring the molecular and functional cellular response to hydrazine via transcriptomics and DNA repair mutant cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:336-350. [PMID: 36176055 PMCID: PMC9828720 DOI: 10.1002/em.22508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/23/2022] [Indexed: 05/04/2023]
Abstract
Hydrazine is a rodent carcinogen and is classified as a probable human carcinogen by IARC. Though hydrazine is positive in both in vitro and in vivo DNA strand break (comet) assays, hydrazine was reported to be negative in an in vitro mutation Muta Mouse lung epithelial cell (FE1) test, as well as in a regulatory-compliant, in vivo Big Blue mouse mutation test. In this article, mechanistic studies explored the cellular response to hydrazine. When tested in a regulatory-compliant mouse lymphoma assay, hydrazine yielded unusual, weakly positive results. This prompted an investigation into the transcriptional response to hydrazine in FE1 cells via RNA sequencing. Amongst the changes identified was a dose-dependent increase in G2/M DNA damage checkpoint activation associated genes. Flow cytometric experiments in FE1 cells revealed that hydrazine exposure led to S-phase cell cycle arrest. Clonogenic assays in a variety of cell lines harboring key DNA repair protein deficiencies indicated that hydrazine could sensitize cells lacking homology dependent repair proteins (Brca2 and Fancg). Lastly, hprt assays with hydrazine were conducted to determine whether a lack of DNA repair could lead to mutagenicity. However, no robust, dose-dependent induction of mutations was noted. The transcriptional and cell cycle response to hydrazine, coupled with functional investigations of DNA repair-deficient cell lines support the inconsistencies noted in the genetic toxicology regulatory battery. In summary, while hydrazine may be genotoxic, transcriptional and functional processes involved in cell cycle regulation and DNA repair appear to play a nuanced role in mediating the mutagenic potential.
Collapse
Affiliation(s)
- Meredith E. Crosby
- Pre‐Clinical Safety, AbbVie Inc.North ChicagoIllinoisUnited States
- Drug Safety and PharmacometricsRegeneron Pharmaceuticals Inc.TarrytownNew YorkUnited States
| | - Rita Ciurlionis
- Pre‐Clinical Safety, AbbVie Inc.North ChicagoIllinoisUnited States
| | | | | | - John J. Nicolette
- Pre‐Clinical Safety, AbbVie Inc.North ChicagoIllinoisUnited States
- Preclinical Sciences and Translational SafetyJanssen Research and DevelopmentRaritanNew JerseyUnited States
| |
Collapse
|
12
|
Zhang M, Zhu J, Wang N, Liu W, Lu L, Pan H, He X, Yi H, Tang S. The role of the genetic variant FECH rs11660001 in the occurrence of anti-tuberculosis drug-induced liver injury. J Clin Pharm Ther 2022; 47:1276-1283. [PMID: 35470464 DOI: 10.1111/jcpt.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The pathogenic mechanism of anti-tuberculosis drug-induced liver injury (AT-DILI) is still largely unknown. Recent studies have indicated that rifampicin and isoniazid cotreatment causes the accumulation of endogenous protoporphyrin IX in the liver through the haem biosynthesis pathway. Alanine synthase 1 (ALAS1) and ferrochelatase (FECH) are the rate-limiting enzymes in the production of haem. The present study aimed to investigate the genetic contribution of the ALAS1 and FECH genes to the risk of AT-DILI in an Eastern Chinese Han population. METHODS A 1:4 matched case-control study was conducted, and eight SNPs in the ALAS1 and FECH genes were detected and assessed. A multivariate conditional logistic regression model was used to estimate the association between genotypes and the risk of AT-DILI by the odds ratios (ORs) with 95% confidence intervals (CIs), with liver disease history, hepatoprotectant use, smoking and drinking history as covariates. RESULTS AND DISCUSSION Overall, 202 AT-DILI cases and 808 controls were included in this study. The female patients carrying polymorphisms of rs11660001 in FECH had an increased risk of AT-DILI under the dominant and additive models (OR = 1.831, 95% CI: 1.014-3.307, p = 0.045; OR = 1.673, 95% CI: 1.015-2.760, p = 0.044, respectively). The peak aspartate transaminase level was significantly higher in female patients carrying the GA+AA genotype of rs11660001 than in those with the GG genotype during anti-TB treatment (p = 0.032). WHAT IS NEW AND CONCLUSION Based on this 1:4 individual matched case-control study, SNP rs11660001 in the FECH gene may be associated with susceptibility to AT-DILI in Chinese female anti-TB treatment patients. Further studies in larger varied populations are needed to validate our findings.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Jia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nannan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenpei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Yan LJ, Jiang C, Ye AY, He Q, Yao C. A novel colorimetric and ratiometric fluorescence probe based on 'C-CN' for detection of hydrazine and its imaging in living cells and mouse. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120639. [PMID: 34824007 DOI: 10.1016/j.saa.2021.120639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Hydrazine plays an important role in chemistry, pharmaceuticals, agriculture and aerospace. However, it is not to be underestimated and has been identified as harmful to the human body. Therefore, it is significant and urgent to develop the detection of hydrazine in vivo and in vitro. Here, the probe TAN was synthesized by using benzothiazole derivatives as the fluorophore and 2,3-diaminomaleonitrile as the identified group to detect hydrazine. The presence of hydrazine resulted in a colorimetric and ratiometric fluorescence response of the probe based on the formation of hydrazone. The detection limit of TAN was 0.31 µM for hydrazine. In addition, the probe TAN was successfully used to visualize hydrazine in living HepG-2 cells and mouse with low cytotoxicity and excellent biocompatibility.
Collapse
Affiliation(s)
- Ling-Juan Yan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chen Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ai-Ying Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; Changzhou Vocational Institute of Engineering, Changzhou 213100, China
| | - Qiong He
- Changzhou Vocational Institute of Engineering, Changzhou 213100, China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
14
|
Gamov G, Murekhina A, Aleksandriiskii V. Dephosphorylation of pyridoxal 5′‐phosphate‐derived Schiff bases in the presence of bovine alkaline phosphatase. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- George Gamov
- Research Institute of Thermodynamics and Kinetics of Chemical Processes Ivanovo State University of Chemistry and Technology Ivanovo Russia
| | - Anastasia Murekhina
- Research Institute of Thermodynamics and Kinetics of Chemical Processes Ivanovo State University of Chemistry and Technology Ivanovo Russia
| | - Viktor Aleksandriiskii
- Research Institute of Thermodynamics and Kinetics of Chemical Processes Ivanovo State University of Chemistry and Technology Ivanovo Russia
| |
Collapse
|
15
|
Lei S, Gu R, Ma X. Clinical perspectives of isoniazid-induced liver injury. LIVER RESEARCH 2021; 5:45-52. [PMID: 39959342 PMCID: PMC11791842 DOI: 10.1016/j.livres.2021.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Isoniazid (INH) is a synthetic anti-mycobacterial agent used to treat active or latent tuberculosis (TB). INH has been in clinical use for nearly 70 years and remains broadly utilized at the front line of anti-TB treatment. However, the potential for liver damage and even fulminant liver failure during INH-based TB treatment presents a major challenge for TB control programs worldwide. In this review, we discuss the hepatotoxic effects of INH and provide an overview of the mechanisms and their applications in prediction and prevention of INH hepatotoxicity in clinical practice.
Collapse
Affiliation(s)
- Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Fukunaga K, Kato K, Okusaka T, Saito T, Ikeda M, Yoshida T, Zembutsu H, Iwata N, Mushiroda T. Functional Characterization of the Effects of N-acetyltransferase 2 Alleles on N-acetylation of Eight Drugs and Worldwide Distribution of Substrate-Specific Diversity. Front Genet 2021; 12:652704. [PMID: 33815485 PMCID: PMC8012690 DOI: 10.3389/fgene.2021.652704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Variability in the enzymatic activity of N-acetyltransferase 2 (NAT2) is an important contributor to interindividual differences in drug responses. However, there is little information on functional differences in N-acetylation activities according to NAT2 phenotypes, i.e., rapid, intermediate, slow, and ultra-slow acetylators, between different substrate drugs. Here, we estimated NAT2 genotypes in 990 Japanese individuals and compared the frequencies of different genotypes with those of different populations. We then calculated in vitro kinetic parameters of four NAT2 alleles (NAT2∗4, ∗5, ∗6, and ∗7) for N-acetylation of aminoglutethimide, diaminodiphenyl sulfone, hydralazine, isoniazid, phenelzine, procaineamide, sulfamethazine (SMZ), and sulfapyrizine. NAT2∗5, ∗6, and ∗7 exhibited significantly reduced N-acetylation activities with lower Vmax and CLint values of all drugs when compared with NAT2∗4. Hierarchical clustering analysis revealed that 10 NAT2 genotypes were categorized into three or four clusters. According to the results of in vitro metabolic experiments using SMZ as a substrate, the frequencies of ultra-slow acetylators were calculated to be 29.05–54.27% in Europeans, Africans, and South East Asians, whereas Japanese and East Asian populations showed lower frequencies (4.75 and 11.11%, respectively). Our findings will be helpful for prediction of responses to drugs primarily metabolized by NAT2.
Collapse
Affiliation(s)
- Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Kato
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Zembutsu
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
17
|
Zhang G, Chen L, Wen Y, Rao Z, Wei Y, Wu X. Pyridoxal isonicotinoyl hydrazone inhibition of FXR is involved in the pathogenesis of isoniazid-induced liver injury. Toxicol Appl Pharmacol 2020; 402:115134. [PMID: 32673658 DOI: 10.1016/j.taap.2020.115134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Isoniazid (INH)-induced liver injury may be associated with inhibition of the liver farnesoid X receptor (FXR). However, the relationship between FXR and INH-induced liver injury remained unclear. The present study was performed to clarify the role of inhibition of FXR in the pathogenesis of INH-induced liver injury and to further identify potential inhibitors of FXR from INH and its metabolites. HepaRG cells were treated with INH (10 mM) plus mixed bile acids (BA) and rats were treated with INH (60-600 mg/kg p.o.) or INH plus obeticholic acid (OCA, 10 mg/kg), a potent FXR agonist, for seven days. INH can cause BA-dependent toxicity and apoptosis with elevated intracellular bile acids in vitro; indeed, in these studies, liver bile acids and mRNA levels for Cyp7a1, an FXR target gene were increased, while mRNA levels for FXR and Shp were significantly decreased, and these changes could be prevented by co-treatment with the FXR agonist OCA. In silico molecular docking studies showed that INH, acetyl isoniazid, isonicotinic acid and PIH may be potential FXR inhibitors, and a TR-FRET FXR-coactivator assay confirmed that PIH is a strong antagonist of FXR (IC50 = 52 nM). To further determine if PIH also inhibits FXR activity in vivo, rats were treated with PIH directly (5 mg/kg). Liver total bile acids were significantly increased while FXR expression was not changed, but Shp mRNA levels were significantly decreased and Cyp7a1 mRNA was significantly increased, consistent with PIH acting as an FXR antagonist. In summary, PIH inhibition of liver FXR function leading to bile acid accumulation in hepatocytes may be an early pathogenesis event in INH-induced liver injury.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lin Chen
- Department of Infectious Disease, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuanjie Wen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China,; College of Pharmaceutical Science, Lanzhou University, Lanzhou 730000, China
| | - Zhi Rao
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xin'an Wu
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China,.
| |
Collapse
|
18
|
Zhang XY, Yang YS, Wang W, Jiao QC, Zhu HL. Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213367] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Shetty T, Corson TW. Mitochondrial Heme Synthesis Enzymes as Therapeutic Targets in Vascular Diseases. Front Pharmacol 2020; 11:1015. [PMID: 32760270 PMCID: PMC7373750 DOI: 10.3389/fphar.2020.01015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/23/2020] [Indexed: 01/16/2023] Open
Affiliation(s)
- Trupti Shetty
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
20
|
Brewer CT, Kodali K, Wu J, Shaw TI, Peng J, Chen T. Toxicoproteomic Profiling of hPXR Transgenic Mice Treated with Rifampicin and Isoniazid. Cells 2020; 9:cells9071654. [PMID: 32660103 PMCID: PMC7407182 DOI: 10.3390/cells9071654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis is a global health threat that affects millions of people every year, and treatment-limiting toxicity remains a considerable source of treatment failure. Recent reports have characterized the nature of hPXR-mediated hepatotoxicity and the systemic toxicity of antitubercular drugs. The antitubercular drug isoniazid plays a role in such pathologic states as acute intermittent porphyria, anemia, hepatotoxicity, hypercoagulable states (deep vein thrombosis, pulmonary embolism, or ischemic stroke), pellagra (vitamin B3 deficiency), peripheral neuropathy, and vitamin B6 deficiency. However, the mechanisms by which isoniazid administration leads to these states are unclear. To elucidate the mechanism of rifampicin- and isoniazid-induced liver and systemic injury, we performed tandem mass tag mass spectrometry-based proteomic screening of mPxr-/- and hPXR mice treated with combinations of rifampicin and isoniazid. Proteomic profiling analysis suggested that the hPXR liver proteome is affected by antitubercular therapy to disrupt [Fe-S] cluster assembly machinery, [2Fe-2S] cluster-containing proteins, cytochrome P450 enzymes, heme biosynthesis, homocysteine catabolism, oxidative stress responses, vitamin B3 metabolism, and vitamin B6 metabolism. These novel findings provide insight into the etiology of some of these processes and potential targets for subsequent investigations. Data are available via ProteomeXchange with identifier PXD019505.
Collapse
Affiliation(s)
- Christopher Trent Brewer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.T.B.); (J.W.)
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (K.K.); (T.I.S.)
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.T.B.); (J.W.)
| | - Timothy I. Shaw
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (K.K.); (T.I.S.)
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (K.K.); (T.I.S.)
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence: (J.P.); (T.C.); Tel.:+901-595-7499 (J.P.); +901-595-5937 (T.C.)
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.T.B.); (J.W.)
- Correspondence: (J.P.); (T.C.); Tel.:+901-595-7499 (J.P.); +901-595-5937 (T.C.)
| |
Collapse
|
21
|
Gamov GA, Meshkov AN, Zavalishin MN, Petrova MV, Khokhlova AY, Gashnikova AV, Sharnin VA. Binding of pyridoxal, pyridoxal 5'-phosphate and derived hydrazones to bovine serum albumin in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118165. [PMID: 32120288 DOI: 10.1016/j.saa.2020.118165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
In the present paper, the kinetics of a reaction between bovine serum albumin (BSA) and pyridoxal, pyridoxal 5'-phosphate was studied, apparent rate constant of product formation and dissociation as well as binding constants were determined. Pyridoxal 5'-phosphate hydrazones of isonicotinic, picolinic, 2-furoic, thiophene-2-carboxylic, pyrazinoic acids binding to BSA was studied by spectrofluorimetry, stability constants of the associates were calculated from experimental data using maximal likelihood approach. The changes in the secondary structure of BSA induced by hydrazones addition were studied by IR spectroscopy. New freely available software for curve fitting was developed as a part of the software kit designed for the solution chemistry and used for a specific problem of this study, IR spectra processing.
Collapse
Affiliation(s)
- G A Gamov
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia.
| | | | - M N Zavalishin
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia
| | - M V Petrova
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia
| | - A Yu Khokhlova
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia
| | - A V Gashnikova
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia
| | - V A Sharnin
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia
| |
Collapse
|