1
|
Adelusi OB, Akakpo JY, Eichenbaum G, Sadaff E, Ramachandran A, Jaeschke H. The thrombopoietin mimetic JNJ-26366821 reduces the late injury and accelerates the onset of liver recovery after acetaminophen-induced liver injury in mice. Arch Toxicol 2024; 98:1843-1858. [PMID: 38551724 PMCID: PMC11210275 DOI: 10.1007/s00204-024-03725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42-48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.
Collapse
Affiliation(s)
- Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Gary Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, Consumer Health, New Brunswick, NJ, 08901, USA
| | - Ejaz Sadaff
- Office of the Chief Medical Officer, Johnson & Johnson, Consumer Health, New Brunswick, NJ, 08901, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Maeda K, Hagimori S, Sugimoto M, Sakai Y, Nishikawa M. Simulation of the crosstalk between glucose and acetaminophen metabolism in a liver zonation model. Front Pharmacol 2022; 13:995597. [PMID: 36210818 PMCID: PMC9537759 DOI: 10.3389/fphar.2022.995597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The liver metabolizes a variety of substances that sometimes interact and regulate each other. The modeling of a single cell or a single metabolic pathway does not represent the complexity of the organ, including metabolic zonation (heterogeneity of functions) along with liver sinusoids. Here, we integrated multiple metabolic pathways into a single numerical liver zonation model, including drug and glucose metabolism. The model simulated the time-course of metabolite concentrations by the combination of dynamic simulation and metabolic flux analysis and successfully reproduced metabolic zonation and localized hepatotoxicity induced by acetaminophen (APAP). Drug metabolism was affected by nutritional status as the glucuronidation reaction rate changed. Moreover, sensitivity analysis suggested that the reported metabolic characteristics of obese adults and healthy infants in glucose metabolism could be associated with the metabolic features of those in drug metabolism. High activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate phosphatase in obese adults led to increased APAP oxidation by cytochrome P450 2E1. In contrast, the high activity of glycogen synthase and low activities of PEPCK and glycogen phosphorylase in healthy infants led to low glucuronidation and high sulfation rates of APAP. In summary, this model showed the effects of glucose metabolism on drug metabolism by integrating multiple pathways into a single liver metabolic zonation model.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Shuta Hagimori
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- *Correspondence: Masahiro Sugimoto,
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Utilizing virtual experiments to increase understanding of discrepancies involving in vitro-to-in vivo predictions of hepatic clearance. PLoS One 2022; 17:e0269775. [PMID: 35867653 PMCID: PMC9307204 DOI: 10.1371/journal.pone.0269775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/29/2022] [Indexed: 11/19/2022] Open
Abstract
Predictions of xenobiotic hepatic clearance in humans using in vitro-to-in vivo extrapolation methods are frequently inaccurate and problematic. Multiple strategies are being pursued to disentangle responsible mechanisms. The objective of this work is to evaluate the feasibility of using insights gained from independent virtual experiments on two model systems to begin unraveling responsible mechanisms. The virtual culture is a software analog of hepatocytes in vitro, and the virtual human maps to hepatocytes within a liver within an idealized model human. Mobile objects (virtual compounds) map to amounts of xenobiotics. Earlier versions of the two systems achieved quantitative validation targets for intrinsic clearance (virtual culture) and hepatic clearance (virtual human). The major difference between the two systems is the spatial organization of the virtual hepatocytes. For each pair of experiments (virtual culture, virtual human), hepatocytes are configured the same. Probabilistic rules govern virtual compound movements and interactions with other objects. We focus on highly permeable virtual compounds and fix their extracellular unbound fraction at one of seven values (0.05–1.0). Hepatocytes contain objects that can bind and remove compounds, analogous to metabolism. We require that, for a subset of compound properties, per-hepatocyte compound exposure and removal rates during culture experiments directly predict corresponding measures made during virtual human experiments. That requirement serves as a cross-system validation target; we identify compound properties that enable achieving it. We then change compound properties, ceteris paribus, and provide model mechanism-based explanations for when and why measures made during culture experiments under- (or over-) predict corresponding measures made during virtual human experiments. The results show that, from the perspective of compound removal, the organization of hepatocytes within virtual livers is more efficient than within cultures, and the greater the efficiency difference, the larger the underprediction. That relationship is noteworthy because most in vitro-to-in vivo extrapolation methods abstract away the structural organization of hepatocytes within a liver. More work is needed on multiple fronts, including the study of an expanded variety of virtual compound properties. Nevertheless, the results support the feasibility of the approach and plan.
Collapse
|
5
|
Goldfarb CN, Karri K, Pyatkov M, Waxman DJ. Interplay Between GH-regulated, Sex-biased Liver Transcriptome and Hepatic Zonation Revealed by Single-Nucleus RNA Sequencing. Endocrinology 2022; 163:6580481. [PMID: 35512247 PMCID: PMC9154260 DOI: 10.1210/endocr/bqac059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
The zonation of liver metabolic processes is well-characterized; however, little is known about the cell type-specificity and zonation of sexually dimorphic gene expression or its growth hormone (GH)-dependent transcriptional regulators. We address these issues using single-nucleus RNA-sequencing of 32 000 nuclei representing 9 major liver cell types. Nuclei were extracted from livers from adult male and female mice; from males infused with GH continuously, mimicking the female plasma GH pattern; and from mice exposed to TCPOBOP, a xenobiotic agonist ligand of the nuclear receptor CAR that perturbs sex-biased gene expression. Analysis of these rich transcriptomic datasets revealed the following: 1) expression of sex-biased genes and their GH-dependent transcriptional regulators is primarily restricted to hepatocytes and is not a feature of liver nonparenchymal cells; 2) many sex-biased transcripts show sex-dependent zonation within the liver lobule; 3) gene expression is substantially feminized both in periportal and pericentral hepatocytes when male mice are infused with GH continuously; 4) sequencing nuclei increases the sensitivity for detecting thousands of nuclear-enriched long-noncoding RNAs (lncRNAs) and enables determination of their liver cell type-specificity, sex-bias and hepatocyte zonation profiles; 5) the periportal to pericentral hepatocyte cell ratio is significantly higher in male than female liver; and 6) TCPOBOP exposure disrupts both sex-specific gene expression and hepatocyte zonation within the liver lobule. These findings highlight the complex interconnections between hepatic sexual dimorphism and zonation at the single-cell level and reveal how endogenous hormones and foreign chemical exposure can alter these interactions across the liver lobule with large effects both on protein-coding genes and lncRNAs.
Collapse
Affiliation(s)
- Christine N Goldfarb
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program Boston University, Boston, Massachusetts 02215, USA
| | - Maxim Pyatkov
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Cunningham RP, Porat-Shliom N. Liver Zonation - Revisiting Old Questions With New Technologies. Front Physiol 2021; 12:732929. [PMID: 34566696 PMCID: PMC8458816 DOI: 10.3389/fphys.2021.732929] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-increasing prevalence of non-alcoholic fatty liver disease (NAFLD), the etiology and pathogenesis remain poorly understood. This is due, in part, to the liver's complex physiology and architecture. The liver maintains glucose and lipid homeostasis by coordinating numerous metabolic processes with great efficiency. This is made possible by the spatial compartmentalization of metabolic pathways a phenomenon known as liver zonation. Despite the importance of zonation to normal liver function, it is unresolved if and how perturbations to liver zonation can drive hepatic pathophysiology and NAFLD development. While hepatocyte heterogeneity has been identified over a century ago, its examination had been severely hindered due to technological limitations. Recent advances in single cell analysis and imaging technologies now permit further characterization of cells across the liver lobule. This review summarizes the advances in examining liver zonation and elucidating its regulatory role in liver physiology and pathology. Understanding the spatial organization of metabolism is vital to further our knowledge of liver disease and to provide targeted therapeutic avenues.
Collapse
Affiliation(s)
- Rory P Cunningham
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
7
|
Adhyapok P, Fu X, Sluka JP, Clendenon SG, Sluka VD, Wang Z, Dunn K, Klaunig JE, Glazier JA. A computational model of liver tissue damage and repair. PLoS One 2020; 15:e0243451. [PMID: 33347443 PMCID: PMC7752149 DOI: 10.1371/journal.pone.0243451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/22/2020] [Indexed: 01/09/2023] Open
Abstract
Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (β) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/β (fast proliferation), combined with a large γ/β (slow death) have the lowest probabilities of tissue survival. At large α/β, tissue fate can be described by a critical γ/β* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation.
Collapse
Affiliation(s)
- Priyom Adhyapok
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Physics, Indiana University, Bloomington, IN, United States of America
- * E-mail:
| | - Xiao Fu
- The Francis Crick Institute, London, United Kingdom
| | - James P. Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States of America
| | - Sherry G. Clendenon
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States of America
| | - Victoria D. Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
| | - Zemin Wang
- School of Public Health, Indiana University, Bloomington, IN, United States of America
| | - Kenneth Dunn
- School of Medicine, Indiana University, Indianapolis, IN, United States of America
| | - James E. Klaunig
- School of Public Health, Indiana University, Bloomington, IN, United States of America
| | - James A. Glazier
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
8
|
Lin MJ, Li S, Yang LJ, Ye DY, Xu LQ, Zhang X, Sun PN, Wei CJ. Plasma membrane vesicles of human umbilical cord mesenchymal stem cells ameliorate acetaminophen-induced damage in HepG2 cells: a novel stem cell therapy. Stem Cell Res Ther 2020; 11:225. [PMID: 32513263 PMCID: PMC7278066 DOI: 10.1186/s13287-020-01738-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) overdose is the common cause of acute liver failure (ALF) due to the oxidative damage of multiple cellular components. This study aimed to investigate whether plasma membrane vesicles (PMVs) from human umbilical cord mesenchymal stem cells (hUCMSCs) could be exploited as a novel stem cell therapy for APAP-induced liver injury. METHODS PMVs from hUCMSCs were prepared with an improved procedure including a chemical enucleation step followed by a mechanical extrusion. PMVs of hUCMSCs were characterized and supplemented to hepatocyte cultures. Rescue of APAP-induced hepatocyte damage was evaluated. RESULTS The hUCMSCs displayed typical fibroblastic morphology and multipotency when cultivated under adipogenic, osteogenic, or chondrogenic conditions. PMVs of hUCMSCs maintained the stem cell phenotype, including the presence of CD13, CD29, CD44, CD73, and HLA-ABC, but the absence of CD45, CD117, CD31, CD34, and HLA-DR on the plasma membrane surface. RT-PCR and transcriptomic analyses showed that PMVs were similar to hUCMSCs in terms of mRNA profile, including the expression of stemness genes GATA4/5/6, Nanog, and Oct1/2/4. GO term analysis showed that the most prominent reduced transcripts in PMVs belong to integral membrane components, extracellular vesicular exosome, and extracellular matrix. Immunofluorescence labeling/staining and confocal microscopy assays showed that PMVs enclosed cellular organelles, including mitochondria, lysosomes, proteasomes, and endoplasmic reticula. Incorporation of the fusogenic VSV-G viral membrane glycoprotein stimulated the endosomal release of PMV contents into the cytoplasm. Further, the addition of PMVs and a mitochondrial-targeted antioxidant Mito-Tempo into cultures of APAP-treated HepG2 cells resulted in reduced cell death, enhanced viability, and increased mitochondrial membrane potential. Lastly, this study demonstrated that the redox state and activities of aminotransferases were restored in APAP-treated HepG2 cells. CONCLUSIONS The results suggest that PMVs from hUCMSCs could be used as a novel stem cell therapy for the treatment of APAP-induced liver injury.
Collapse
Affiliation(s)
- Mei-Jia Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China
| | - Shuang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China
| | - Lu-Jun Yang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Dan-Yan Ye
- Research Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Qun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ping-Nan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Chi-Ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
9
|
Smith AK, Ropella GEP, McGill MR, Krishnan P, Dutta L, Kennedy RC, Jaeschke H, Hunt CA. Contrasting model mechanisms of alanine aminotransferase (ALT) release from damaged and necrotic hepatocytes as an example of general biomarker mechanisms. PLoS Comput Biol 2020; 16:e1007622. [PMID: 32484845 PMCID: PMC7292418 DOI: 10.1371/journal.pcbi.1007622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/12/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
Interpretations of elevated blood levels of alanine aminotransferase (ALT) for drug-induced liver injury often assume that the biomarker is released passively from dying cells. However, the mechanisms driving that release have not been explored experimentally. The usefulness of ALT and related biomarkers will improve by developing mechanism-based explanations of elevated levels that can be expanded and elaborated incrementally. We provide the means to challenge the ability of closely related model mechanisms to generate patterns of simulated hepatic injury and ALT release that scale (or not) to be quantitatively similar to the wet-lab validation targets, which are elevated plasma ALT values following acetaminophen (APAP) exposure in mice. We build on a published model mechanism that helps explain the generation of characteristic spatiotemporal features of APAP hepatotoxicity within hepatic lobules. Discrete event and agent-oriented software methods are most prominent. We instantiate and leverage a small constellation of concrete model mechanisms. Their details during execution help bring into focus ways in which particular sources of uncertainty become entangled with cause-effect details within and across several levels. We scale ALT amounts in virtual mice directly to target plasma ALT values in individual mice. A virtual experiment comprises a set of Monte Carlo simulations. We challenge the sufficiency of four potentially explanatory theories for ALT release. The first of the tested model theories failed to achieve the initial validation target, but each of the three others succeeded. Results for one of the three model mechanisms matched all target ALT values quantitatively. It explains how ALT externalization is the combined consequence of lobular-location-dependent drug-induced cellular damage and hepatocyte death. Falsification of one (or more) of the model mechanisms provides new knowledge and incrementally shrinks the constellation of model mechanisms. The modularity and biomimicry of our explanatory models enable seamless transition from mice to humans.
Collapse
Affiliation(s)
- Andrew K. Smith
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | | | - Mitchell R. McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Preethi Krishnan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Lopamudra Dutta
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Ryan C. Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - C. Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| |
Collapse
|
10
|
Wang H, Burke LJ, Patel J, Tse BWC, Bridle KR, Cogger VC, Li X, Liu X, Yang H, Crawford DHG, Roberts MS, Gao W, Liang X. Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury. Theranostics 2020; 10:6715-6727. [PMID: 32550899 PMCID: PMC7295051 DOI: 10.7150/thno.44900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Acetaminophen (APAP) is the foremost cause of drug-induced liver injury in the Western world. Most studies of APAP hepatotoxicity have focused on the hepatocellular injury, but current hepatocyte-related biomarkers have delayed presentation time and a lack of sensitivity. APAP overdose can induce hepatic microvascular congestion, which importantly precedes the injury of hepatocytes. However, the underlying molecular mechanisms remain unclear. It is imperative to discover and validate sensitive and specific translational biomarkers of APAP-induced liver injury. Methods: In this study, we assessed APAP toxicity in sinusoidal endothelial cells and hepatocytes in mice treated with overdose APAP at different time points. The underlying mechanisms of APAP overdose induced sinusoidal endothelial cell injury were investigated by RT2 Profiler PCR arrays. The impact of APAP overdose on endothelial cell function was assessed by pseudovessel formation of endothelial cells in 2D Matrigel and in vivo hepatic vascular integrity using multiphoton microscopy. Finally, the effects of APAP overdose on oxygen levels in the liver and hepatic microcirculation were evaluated by contrast enhanced ultrasonography. Potential imaging-based vascular-related markers for early detection of APAP induced liver injury were assessed. Results: Our study confirmed that hepatic endothelial cells are an early and direct target for APAP hepatotoxicity. ICAM1-related cellular adhesion pathways played a prominent role in APAP-induced endothelial cell injury, which was further validated in primary human sinusoidal endothelial cells and human livers after APAP overdose. APAP overdose impacted pseudovessel formation of endothelial cells and in vivo hepatic vascular integrity. Use of ultrasound to detect APAP-induced liver injury demonstrated that mean transit time, an imaging-based vascular-related biomarker, was more sensitive and precise for early detection of APAP hepatotoxicity and monitoring the treatment response in comparison with a conventional blood-based biomarker. Conclusion: Imaging-based vascular-related biomarkers can identify early and mild liver injury induced by APAP overdose. With further development, such biomarkers may improve the assessment of liver injury and the efficacy of clinical decision-making, which can be extended to other microvascular dysfunction of deep organs.
Collapse
Affiliation(s)
- Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, 4120, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Biliary-pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Leslie J. Burke
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, 4120, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jatin Patel
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Brian WC. Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Kim R. Bridle
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, 4120, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Victoria C. Cogger
- The University of Sydney, Concord Hospital, Concord, NSW, 2139, Australia
| | - Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China
| | - Xin Liu
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Haotian Yang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Darrell H. G. Crawford
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, 4120, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael S. Roberts
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Wenchao Gao
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, 4120, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|