1
|
Krutz NL, Kimber I, Winget J, Nguyen MN, Limviphuvadh V, Maurer-Stroh S, Mahony C, Gerberick GF. Identification and semi-quantification of protein allergens in complex mixtures using proteomic and AllerCatPro 2.0 bioinformatic analyses: a proof-of-concept investigation. J Immunotoxicol 2024; 21:2305452. [PMID: 38291955 DOI: 10.1080/1547691x.2024.2305452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The demand for botanicals and natural substances in consumer products has increased in recent years. These substances usually contain proteins and these, in turn, can pose a risk for immunoglobulin E (IgE)-mediated sensitization and allergy. However, no method has yet been accepted or validated for assessment of potential allergenic hazards in such materials. In the studies here, a dual proteomic-bioinformatic approach is proposed to evaluate holistically allergenic hazards in complex mixtures of plants, insects, or animal proteins. Twelve commercial preparations of source materials (plant products, dust mite extract, and preparations of animal dander) known to contain allergenic proteins were analyzed by label-free proteomic analyses to identify and semi-quantify proteins. These were then evaluated by bioinformatics using AllerCatPro 2.0 (https://allercatpro.bii.a-star.edu.sg/) to predict no, weak, or strong evidence for allergenicity and similarity to source-specific allergens. In total, 4,586 protein sequences were identified in the 12 source materials combined. Of these, 1,665 sequences were predicted with weak or strong evidence for allergenic potential. This first-tier approach provided top-level information about the occurrence and abundance of proteins and potential allergens. With regards to source-specific allergens, 129 allergens were identified. The sum of the relative abundance of these allergens ranged from 0.8% (lamb's quarters) to 63% (olive pollen). It is proposed here that this dual proteomic-bioinformatic approach has the potential to provide detailed information on the presence and relative abundance of allergens, and can play an important role in identifying potential allergenic hazards in complex protein mixtures for the purposes of safety assessments.
Collapse
Affiliation(s)
- Nora L Krutz
- NV Procter & Gamble Services Company SA, Global Product Stewardship, Strombeek-Bever, Belgium
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Minh N Nguyen
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute, Singapore, Singapore
| | - Vachiranee Limviphuvadh
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine and Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | | | | |
Collapse
|
2
|
Krutz NL, Kimber I, Winget J, Nguyen MN, Limviphuvadh V, Maurer-Stroh S, Mahony C, Gerberick GF. Application of AllerCatPro 2.0 for protein safety assessments of consumer products. FRONTIERS IN ALLERGY 2023; 4:1209495. [PMID: 37497076 PMCID: PMC10367106 DOI: 10.3389/falgy.2023.1209495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Foreign proteins are potentially immunogenic, and a proportion of these are able to induce immune responses that result in allergic sensitization. Subsequent exposure of sensitized subjects to the inducing protein can provoke a variety of allergic reactions that may be severe, or even fatal. It has therefore been recognized for some time that it is important to determine a priori whether a given protein has the potential to induce allergic responses in exposed subjects. For example, the need to assess whether transgene products expressed in genetically engineered crop plants have allergenic properties. This is not necessarily a straightforward exercise (as discussed elsewhere in this edition), but the task becomes even more challenging when there is a need to conduct an overall allergenicity safety assessment of complex mixtures of proteins in botanicals or other natural sources that are to be used in consumer products. This paper describes a new paradigm for the allergenicity safety assessment of proteins that is based on the use of AllerCatPro 2.0, a new version of a previously described web application model developed for the characterization of the allergenic potential of proteins. Operational aspects of AllerCatPro 2.0 are described with emphasis on the application of new features that provide improvements in the predictions of allergenic properties such as the identification of proteins with high allergenic concern. Furthermore, the paper provides a description of strategies of how AllerCatPro 2.0 can best be deployed as a screening tool for identifying suitable proteins as ingredients in consumer products as well as a tool, in conjunction with label-free proteomic analysis, for identifying and semiquantifying protein allergens in complex materials. Lastly, the paper discusses the steps that are recommended for formal allergenicity safety assessment of novel consumer products which contain proteins, including consideration and integration of predicted consumer exposure metrics. The article therefore provides a holistic perspective of the processes through which effective protein safety assessments can be made of potential allergenic hazards and risks associated with exposure to proteins in consumer products, with a particular focus on the use of AllerCatPro 2.0 for this purpose.
Collapse
Affiliation(s)
- Nora L. Krutz
- NV Procter & Gamble Services Company SA, Global Product Stewardship, Strombeek-Bever, Belgium
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jason Winget
- The Procter & Gamble Company, Mason, OH, United States
| | - Minh N. Nguyen
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- YLL School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Catherine Mahony
- Procter & Gamble, Global Product Stewardship, Reading, United Kingdom
| | | |
Collapse
|
3
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
4
|
Pearce FG, Brunke JE. Is now the time for a Rubiscuit or Ruburger? Increased interest in Rubisco as a food protein. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:627-637. [PMID: 36260435 PMCID: PMC9833043 DOI: 10.1093/jxb/erac414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Much of the research on Rubisco aims at increasing crop yields, with the ultimate aim of increasing plant production to feed an increasing global population. However, since the identification of Rubisco as the most abundant protein in leaf material, it has also been touted as a direct source of dietary protein. The nutritional and functional properties of Rubisco are on a par with those of many animal proteins, and are superior to those of many other plant proteins. Purified Rubisco isolates are easily digestible, nutritionally complete, and have excellent foaming, gelling, and emulsifying properties. Despite this potential, challenges in efficiently extracting and separating Rubisco have limited its use as a global foodstuff. Leaves are lower in protein than seeds, requiring large amounts of biomass to be processed. This material normally needs to be processed quickly to avoid degradation of the final product. Extraction of Rubisco from the plant material requires breaking down the cell walls and rupturing the chloroplast. In order to obtain high-quality protein, Rubisco needs to be separated from chlorophyll, and then concentrated for final use. However, with increased consumer demand for plant protein, there is increased interest in the potential of leaf protein, and many commercial plants are now being established aimed at producing Rubisco as a food protein, with over US$60 million of funding invested in the past 5 years. Is now the time for increased use of Rubisco in food production as a nitrogen source, rather than just providing a carbon source?
Collapse
Affiliation(s)
| | - Joel E Brunke
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
5
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
6
|
Nguyen MN, Krutz NL, Limviphuvadh V, Lopata AL, Gerberick GF, Maurer-Stroh S. AllerCatPro 2.0: a web server for predicting protein allergenicity potential. Nucleic Acids Res 2022; 50:W36-W43. [PMID: 35640594 PMCID: PMC9252832 DOI: 10.1093/nar/gkac446] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/03/2023] Open
Abstract
Proteins in food and personal care products can pose a risk for an immediate immunoglobulin E (IgE)-mediated allergic response. Bioinformatic tools can assist to predict and investigate the allergenic potential of proteins. Here we present AllerCatPro 2.0, a web server that can be used to predict protein allergenicity potential with better accuracy than other computational methods and new features that help assessors making informed decisions. AllerCatPro 2.0 predicts the similarity between input proteins using both their amino acid sequences and predicted 3D structures towards the most comprehensive datasets of reliable proteins associated with allergenicity. These datasets currently include 4979 protein allergens, 162 low allergenic proteins, and 165 autoimmune allergens with manual expert curation from the databases of WHO/International Union of Immunological Societies (IUIS), Comprehensive Protein Allergen Resource (COMPARE), Food Allergy Research and Resource Program (FARRP), UniProtKB and Allergome. Various examples of profilins, autoimmune allergens, low allergenic proteins, very large proteins, and nucleotide input sequences showcase the utility of AllerCatPro 2.0 for predicting protein allergenicity potential. The AllerCatPro 2.0 web server is freely accessible at https://allercatpro.bii.a-star.edu.sg.
Collapse
Affiliation(s)
- Minh N Nguyen
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Singapore.,IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research, Singapore
| | - Nora L Krutz
- NV Procter & Gamble Services Company SA, Strombeek-Bever, Belgium
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Singapore.,IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research, Singapore
| | - Andreas L Lopata
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Singapore.,Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Tropical Futures Institute, James Cook University, Singapore
| | | | - Sebastian Maurer-Stroh
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Singapore.,IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| |
Collapse
|
7
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, George Firbank L, Guerche P, Hejatko J, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Fernandez Dumont A, Moreno FJ. Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA J 2022; 20:e07044. [PMID: 35106091 PMCID: PMC8787593 DOI: 10.2903/j.efsa.2022.7044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from 'modern' biotechnology initially published in 2003. The core approach for the safety assessment is based on a 'weight-of-evidence' approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as 'what is the purpose of the allergenicity risk assessment?' or 'what level of confidence is necessary for the predictions?'.
Collapse
|
8
|
Metaproteomics insights into fermented fish and vegetable products and associated microbes. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100045. [PMID: 35415649 PMCID: PMC8991600 DOI: 10.1016/j.fochms.2021.100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
Increasing global population means higher demand for healthy food. Fish and vegetables are healthy foods, but overproduction leads to spoilage. Fermentation of fish/vegetables elongate their shelf lives, improved flavour and functions. Microbes associated with Fish/vegetable fermentation produce health conferring peptides. There is little review on peptides elicited during fish/vegetable fermentations.
The interest in proteomic studies of fermented food is increasing; the role of proteins derived from fermentation extends beyond preservation, they also improve the organoleptic, anti-pathogenic, anti-cancer, anti-obesogenic properties, and other health conferring properties of fermented food. Traditional fermentation processes are still in use in certain cultures, but recently, the controlled process is gaining wider acceptance due to consistency and predictability. Scientists use modern biotechnological approaches to evaluate reactions and component yields from fermentation processes. Pieces of literature on fermented fish and vegetable end-products are scanty (compared to milk and meat), even though fish and vegetables are considered health conferring diets with high nutritional contents. Evaluations of peptides from fermented fish and vegetables show they have anti-obesity, anti-oxidative, anti-inflammatory, anti-pathogenic, anti-anti-nutrient, improves digestibility, taste, nutrient content, texture, aroma properties, etc. Despite challenges impeding the wider applications of the metaproteomic analysis of fermented fish and vegetables, their potential benefits cannot be underestimated.
Collapse
|
9
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
10
|
Pan L, Xing J, Zhang H, Luo X, Chen Z. Electron beam irradiation as a tool for rice grain storage and its effects on the physicochemical properties of rice starch. Int J Biol Macromol 2020; 164:2915-2921. [PMID: 32755712 DOI: 10.1016/j.ijbiomac.2020.07.211] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 11/19/2022]
Abstract
In this study, rice grains were treated with electron beam irradiation (EBI). The storage properties of the irradiated rice, as well as the physicochemical properties of isolated starches, were studied. As irradiation dose was increased from 0 kGy to 10 kGy, the lipase activity of irradiated rice decreased from 7.82 mg KOH/100 g to 5.15 mg KOH/100 g. EBI treatment did not significantly (p < 0.05) change fatty acid values. The granular structure of the isolated starches was partially destroyed after severe irradiation, and EBI treatment also caused the degradation of the molecular structures of amylopectin and amylose. All of the starches with or without EBI treatment displayed A-type crystalline structures, and 10 kGy of irradiation disrupted double-helical structures and subsequently decreased relative crystallinity. The formation of carboxyl groups reduced the digestibility of the starches, whereas the disruption of crystallites allowed digestive enzymes to access degraded starch chains easily. Overall, results demonstrated that a low dose of irradiation had insignificant effects on the quality of rice grains and corresponding starches. Thus, EBI could be a green and safe strategy for rice storage.
Collapse
Affiliation(s)
- Lihong Pan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control in Jiangsu Province, Wuxi 214122, China
| | - Jiali Xing
- Ningbo Institute for food control, Ningbo 315048, China
| | - Hao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control in Jiangsu Province, Wuxi 214122, China
| | - Xiaohu Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control in Jiangsu Province, Wuxi 214122, China.
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control in Jiangsu Province, Wuxi 214122, China
| |
Collapse
|
11
|
Yokozeki K, Yuki T, Ogasawara A, Katagiri A, Takahashi Y, Basketter D, Sakaguchi H. Total dose defines the incidence of percutaneous IgE/IgG1 mediated immediate-type hypersensitivity caused by papain. J Appl Toxicol 2020; 41:898-906. [PMID: 33090523 DOI: 10.1002/jat.4073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 12/30/2022]
Abstract
Assessment of human health risk requires an understanding of antigen dose metrics associated with toxicity. Whereas assessment of the human health risk for delayed-type hypersensitivity is understood, the metrics remain unclear for percutaneous immediate-type hypersensitivity (ITH) mediated by IgE/IgG1. In this work, we aimed to investigate the dose metric for percutaneous ITH mediated by IgE/IgG1 responses. Papain, which causes ITH via percutaneous sensitization in humans, was used to sensitize guinea pigs and mice. The total dose per animal or dose per unit area was adjusted to understand the drivers of sensitization. Passive cutaneous anaphylaxis (PCA) and enzyme-linked immunosorbent assay (ELISA) for papain-specific IgG1 enabled quantification of the response in guinea pigs. In mice, the number of antigen-bearing B cells in the draining lymph nodes (DLN) was calculated using flow cytometry papain-specific IgG1 and IgE levels were quantified by ELISA. PCA positive test rates and the amounts of antigen-specific antibody corresponded with total dose per animal, not dose per unit area. Furthermore, the number of B cells taking up antigen within DLN also correlated with total dose. These findings indicate that the total antigen dose is the important metric for percutaneous IgE/IgG1-mediated ITH.
Collapse
Affiliation(s)
- Kyosuke Yokozeki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Akira Ogasawara
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Asuka Katagiri
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
12
|
Krutz NL, Kimber I, Maurer-Stroh S, Gerberick GF. Determination of the relative allergenic potency of proteins: hurdles and opportunities. Crit Rev Toxicol 2020; 50:521-530. [DOI: 10.1080/10408444.2020.1793895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nora L. Krutz
- Procter & Gamble Services Company SA, Strombeek-Bever, Belgium
| | - Ian Kimber
- University of Manchester, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
13
|
Song P, Hou Z, Sukumar S, Herman RA. Template-based peptide modeling for celiac risk assessment of newly expressed proteins in GM crops. Regul Toxicol Pharmacol 2020; 116:104715. [PMID: 32619636 DOI: 10.1016/j.yrtph.2020.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 11/19/2022]
Abstract
Newly expressed proteins in genetically modified (GM) crops are subject to celiac disease risk assessment according to EFSA guidelines. Amino acid identity matches between short peptides (9aa) and known celiac restricted epitopes are required to be further evaluated through peptide modeling; however, validated methods and criteria are not yet available. In this investigation, several structures of HLA-DQ2.5/peptide/TCR (T-cell receptor) complexes were analyzed and two template-based peptide molding software packages were evaluated using various peptides including ones not associated with celiac disease. Structural characterization indicates that residues at P(position)1, P2, P5, P8, and P9 in the 9aa restricted epitopes also contribute to the binding of celiac peptides to the HLA-DQ2.5 antigen in addition to the presence of the motif Q/EX1PX2 starting at P4 or P6. The recognition of the HLA-DQ2.5/peptide complex by TCR is through specific interactions between the residues in the restricted epitopes and some loop structures in the TCR. The template-based software package GalaxyPepDock seems to be suitable for the application of peptide modeling when an estimated accuracy value of >0.95 combined with >160 interaction similarity score are used as a threshold for biologically meaningful in silico binding. Nevertheless, caution should be exercised when applying peptide modeling to celiac disease risk assessment until methods are rigorously validated and further evaluated to demonstrate its value in the risk assessment of newly expressed proteins in GM crops.
Collapse
Affiliation(s)
- Ping Song
- Corteva Agriscience™, 9330 Zionsville Rd., Indianapolis, IN 46268, United States.
| | - Zhenglin Hou
- Corteva Agriscience™, 8325 NW 62nd Avenue, Johnston, IA 50131, United States
| | - Shravan Sukumar
- Corteva Agriscience™, 9330 Zionsville Rd., Indianapolis, IN 46268, United States
| | - Rod A Herman
- Corteva Agriscience™, 9330 Zionsville Rd., Indianapolis, IN 46268, United States
| |
Collapse
|
14
|
Rost J, Muralidharan S, Lee NA. A label-free shotgun proteomics analysis of macadamia nut. Food Res Int 2020; 129:108838. [DOI: 10.1016/j.foodres.2019.108838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
|
15
|
Abstract
Bioinformatic amino acid sequence searches are used, in part, to assess the potential allergenic risk of newly expressed proteins in genetically engineered crops. Previous work has demonstrated that the searches required by government regulatory agencies falsely implicate many proteins from rarely allergenic crops as an allergenic risk. However, many proteins are found in crops at concentrations that may be insufficient to cause allergy. Here we used a recently developed set of high-abundance non-allergenic proteins to determine the false-positive rates for several algorithms required by regulatory bodies, and also for an alternative 1:1 FASTA approach previously found to be equally sensitive to the official sliding-window method, but far more selective. The current investigation confirms these earlier findings while addressing dietary exposure.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, IN, USA
| | - Ping Song
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, IN, USA
| |
Collapse
|