1
|
Saran C, Brouwer KLR. Hepatic Bile Acid Transporters and Drug-induced Hepatotoxicity. Toxicol Pathol 2023; 51:405-413. [PMID: 37982363 PMCID: PMC11014762 DOI: 10.1177/01926233231212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Drug-induced liver injury (DILI) remains a major concern in drug development from a patient safety perspective because it is the leading cause of acute liver failure. One mechanism of DILI is altered bile acid homeostasis and involves several hepatic bile acid transporters. Functional impairment of some hepatic bile acid transporters by drugs, disease, or genetic mutations may lead to toxic accumulation of bile acids within hepatocytes and increase DILI susceptibility. This review focuses on the role of hepatic bile acid transporters in DILI. Model systems, primarily in vitro and modeling tools, such as DILIsym, used in assessing transporter-mediated DILI are discussed. Due to species differences in bile acid homeostasis and drug-transporter interactions, key aspects and challenges associated with the use of preclinical animal models for DILI assessment are emphasized. Learnings are highlighted from three case studies of hepatotoxic drugs: troglitazone, tolvaptan, and tyrosine kinase inhibitors (dasatinib, pazopanib, and sorafenib). The development of advanced in vitro models and novel biomarkers that can reliably predict DILI is critical and remains an important focus of ongoing investigations to minimize patient risk for liver-related adverse reactions associated with medication use.
Collapse
Affiliation(s)
- Chitra Saran
- Transporter Sciences, Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kim L. R. Brouwer
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Melillo N, Scotcher D, Kenna JG, Green C, Hines CDG, Laitinen I, Hockings PD, Ogungbenro K, Gunwhy ER, Sourbron S, Waterton JC, Schuetz G, Galetin A. Use of In Vivo Imaging and Physiologically-Based Kinetic Modelling to Predict Hepatic Transporter Mediated Drug-Drug Interactions in Rats. Pharmaceutics 2023; 15:896. [PMID: 36986758 PMCID: PMC10057977 DOI: 10.3390/pharmaceutics15030896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Gadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxetate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by physiologically-based pharmacokinetic (PBPK) modelling. A tracer-kinetic model was used to estimate rate constants for hepatic uptake (khe), and biliary excretion (kbh). The observed median fold-decreases in gadoxetate liver AUC were 3.8- and 1.5-fold for ciclosporin and rifampicin, respectively. Ketoconazole unexpectedly decreased systemic and liver gadoxetate AUCs; the remaining drugs investigated (asunaprevir, bosentan, and pioglitazone) caused marginal changes. Ciclosporin decreased gadoxetate khe and kbh by 3.78 and 0.09 mL/min/mL, while decreases for rifampicin were 7.20 and 0.07 mL/min/mL, respectively. The relative decrease in khe (e.g., 96% for ciclosporin) was similar to PBPK-predicted inhibition of uptake (97-98%). PBPK modelling correctly predicted changes in gadoxetate systemic AUCR, whereas underprediction of decreases in liver AUCs was evident. The current study illustrates the modelling framework and integration of liver imaging data, PBPK, and tracer-kinetic models for prospective quantification of hepatic transporter-mediated DDI in humans.
Collapse
Affiliation(s)
- Nicola Melillo
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
- SystemsForecastingUK Ltd., Lancaster LA1 5DD, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | | | - Claudia Green
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | | | - Iina Laitinen
- Sanofi-Aventis Deutschland GmbH, Bioimaging Germany, 65929 Frankfurt am Main, Germany
- Antaros Medical, 431 83 Mölndal, Sweden
| | - Paul D. Hockings
- Antaros Medical, 431 83 Mölndal, Sweden
- MedTech West, Chalmers University of Technology, 413 45 Gothenburg, Sweden
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | - Ebony R. Gunwhy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - John C. Waterton
- Bioxydyn Ltd., Manchester M15 6SZ, UK
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Gunnar Schuetz
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| |
Collapse
|
3
|
Roth RA, Kana O, Filipovic D, Ganey PE. Pharmacokinetic and toxicodynamic concepts in idiosyncratic, drug-induced liver injury. Expert Opin Drug Metab Toxicol 2022; 18:469-481. [PMID: 36003040 PMCID: PMC9484408 DOI: 10.1080/17425255.2022.2113379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (IDILI) causes morbidity and mortality in patients and leads to curtailed use of efficacious pharmaceuticals. Unlike intrinsically toxic reactions, which depend on dose, IDILI occurs in a minority of patients at therapeutic doses. Much remains unknown about causal links among drug exposure, a mode of action, and liver injury. Consequently, numerous hypotheses about IDILI pathogenesis have arisen. AREAS COVERED Pharmacokinetic and toxicodynamic characteristics underlying current hypotheses of IDILI etiology are discussed and illustrated graphically. EXPERT OPINION Hypotheses to explain IDILI etiology all involve alterations in pharmacokinetics, which lead to plasma drug concentrations that rise above a threshold for toxicity, or in toxicodynamics, which result in a lowering of the toxicity threshold. Altered pharmacokinetics arise, for example, from changes in drug metabolism or from transporter polymorphisms. A lowered toxicity threshold can arise from drug-induced mitochondrial injury, accumulation of toxic endogenous factors or harmful immune responses. Newly developed, interactive freeware (DemoTox-PK; https://bit.ly/DemoTox-PK) allows the user to visualize how such alterations might lead to a toxic reaction. The illustrations presented provide a framework for conceptualizing idiosyncratic reactions and could serve as a stimulus for future discussion, education, and research into modes of action of IDILI.
Collapse
Affiliation(s)
- Robert A. Roth
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- ProbiTox LLC, Chapel Hill, NC 27514
| | - Omar Kana
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824
| | - David Filipovic
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Patricia E. Ganey
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- ProbiTox LLC, Chapel Hill, NC 27514
| |
Collapse
|
4
|
Kang W, Podtelezhnikov AA, Tanis KQ, Pacchione S, Su M, Bleicher KB, Wang Z, Laws GM, Griffiths TG, Kuhls MC, Chen Q, Knemeyer I, Marsh DJ, Mitra K, Lebron J, Sistare FD. Development and Application of a Transcriptomic Signature of Bioactivation in an Advanced In Vitro Liver Model to Reduce Drug-induced Liver Injury Risk Early in the Pharmaceutical Pipeline. Toxicol Sci 2021; 177:121-139. [PMID: 32559289 DOI: 10.1093/toxsci/kfaa094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early risk assessment of drug-induced liver injury (DILI) potential for drug candidates remains a major challenge for pharmaceutical development. We have previously developed a set of rat liver transcriptional biomarkers in short-term toxicity studies to inform the potential of drug candidates to generate a high burden of chemically reactive metabolites that presents higher risk for human DILI. Here, we describe translation of those NRF1-/NRF2-mediated liver tissue biomarkers to an in vitro assay using an advanced micropatterned coculture system (HEPATOPAC) with primary hepatocytes from male Wistar Han rats. A 9-day, resource-sparing and higher throughput approach designed to identify new chemical entities with lower reactive metabolite-forming potential was qualified for internal decision making using 93 DILI-positive and -negative drugs. This assay provides 81% sensitivity and 90% specificity in detecting hepatotoxicants when a positive test outcome is defined as the bioactivation signature score of a test drug exceeding the threshold value at an in vitro test concentration that falls within 3-fold of the estimated maximum drug concentration at the human liver inlet following highest recommended clinical dose administrations. Using paired examples of compounds from distinct chemical series and close structural analogs, we demonstrate that this assay can differentiate drugs with lower DILI risk. The utility of this in vitro transcriptomic approach was also examined using human HEPATOPAC from a single donor, yielding 68% sensitivity and 86% specificity when the aforementioned criteria are applied to the same 93-drug test set. Routine use of the rat model has been adopted with deployment of the human model as warranted on a case-by-case basis. This in vitro transcriptomic signature-based strategy can be used early in drug discovery to derisk DILI potential from chemically reactive metabolites by guiding structure-activity relationship hypotheses and candidate selection.
Collapse
Affiliation(s)
- Wen Kang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Ming Su
- Safety Assessment & Laboratory Animal Resources
| | | | - Zhibin Wang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Qing Chen
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Ian Knemeyer
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | | | | | - Jose Lebron
- Safety Assessment & Laboratory Animal Resources
| | | |
Collapse
|
5
|
Smith B, Rowe J, Watkins PB, Ashina M, Woodhead JL, Sistare FD, Goadsby PJ. Mechanistic Investigations Support Liver Safety of Ubrogepant. Toxicol Sci 2020; 177:84-93. [PMID: 32579200 PMCID: PMC8312697 DOI: 10.1093/toxsci/kfaa093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small-molecule calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated therapeutic efficacy for the treatment of migraine. However, previously investigated CGRP receptor antagonists, telcagepant and MK-3207, were discontinued during clinical development because of concerns about drug-induced liver injury. A subsequent effort to identify novel CGRP receptor antagonists less likely to cause hepatotoxicity led to the development of ubrogepant. The selection of ubrogepant, following a series of mechanistic studies conducted with MK-3207 and telcagepant, was focused on key structural modifications suggesting that ubrogepant was less prone to forming reactive metabolites than previous compounds. The potential for each drug to cause liver toxicity was subsequently assessed using a quantitative systems toxicology approach (DILIsym) that incorporates quantitative assessments of mitochondrial dysfunction, disruption of bile acid homeostasis, and oxidative stress, along with estimates of dose-dependent drug exposure to and within liver cells. DILIsym successfully modeled liver toxicity for telcagepant and MK-3207 at the dosing regimens used in clinical trials. In contrast, DILIsym predicted no hepatotoxicity during treatment with ubrogepant, even at daily doses up to 1000 mg (10-fold higher than the approved clinical dose of 100 mg). These predictions are consistent with clinical trial experience showing that ubrogepant has lower potential to cause hepatotoxicity than has been observed with telcagepant and MK-3207.
Collapse
Affiliation(s)
| | | | - Paul B Watkins
- Eshelman School of Pharmacy and Institute for Drug Safety Sciences, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Faculty of Health and Medical
Sciences, University of Copenhagen, København, Denmark
| | | | | | - Peter J Goadsby
- NIHR-Wellcome Trust King’s Clinical Research Facility, SLaM Biomedical Research
Centre, King’s College London, London, UK
| |
Collapse
|
6
|
Monroe JJ, Tanis KQ, Podtelezhnikov AA, Nguyen T, Machotka SV, Lynch D, Evers R, Palamanda J, Miller RR, Pippert T, Cabalu TD, Johnson TE, Aslamkhan AG, Kang W, Tamburino AM, Mitra K, Agrawal NGB, Sistare FD. Application of a Rat Liver Drug Bioactivation Transcriptional Response Assay Early in Drug Development That Informs Chemically Reactive Metabolite Formation and Potential for Drug-induced Liver Injury. Toxicol Sci 2020; 177:281-299. [PMID: 32559301 PMCID: PMC7553701 DOI: 10.1093/toxsci/kfaa088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug-induced liver injury is a major reason for drug candidate attrition from development, denied commercialization, market withdrawal, and restricted prescribing of pharmaceuticals. The metabolic bioactivation of drugs to chemically reactive metabolites (CRMs) contribute to liver-associated adverse drug reactions in humans that often goes undetected in conventional animal toxicology studies. A challenge for pharmaceutical drug discovery has been reliably selecting drug candidates with a low liability of forming CRM and reduced drug-induced liver injury potential, at projected therapeutic doses, without falsely restricting the development of safe drugs. We have developed an in vivo rat liver transcriptional signature biomarker reflecting the cellular response to drug bioactivation. Measurement of transcriptional activation of integrated nuclear factor erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) electrophilic stress, and nuclear factor erythroid 2-related factor 1 (NRF1) proteasomal endoplasmic reticulum (ER) stress responses, is described for discerning estimated clinical doses of drugs with potential for bioactivation-mediated hepatotoxicity. The approach was established using well benchmarked CRM forming test agents from our company. This was subsequently tested using curated lists of commercial drugs and internal compounds, anchored in the clinical experience with human hepatotoxicity, while agnostic to mechanism. Based on results with 116 compounds in short-term rat studies, with consideration of the maximum recommended daily clinical dose, this CRM mechanism-based approach yielded 32% sensitivity and 92% specificity for discriminating safe from hepatotoxic drugs. The approach adds new information for guiding early candidate selection and informs structure activity relationships (SAR) thus enabling lead optimization and mechanistic problem solving. Additional refinement of the model is ongoing. Case examples are provided describing the strengths and limitations of the approach.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna Lynch
- Safety Assessment & Laboratory Animal Resources
| | - Raymond Evers
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | - Jairam Palamanda
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | - Randy R Miller
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | | - Tamara D Cabalu
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | | | | - Wen Kang
- Safety Assessment & Laboratory Animal Resources
| | | | - Kaushik Mitra
- Safety Assessment & Laboratory Animal Resources
- Janssen Research & Development, LLC, Spring House, PA 19486
| | - Nancy G B Agrawal
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | |
Collapse
|