1
|
Li Y, Bowling AJ, Lehman A, Johnson K, Pence HE, Breitweiser LA, Sherer E, LaRocca J, Chen W. High-Throughput Image-Based Assay for Identifying In Vitro Hepatocyte Microtubule Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21804-21819. [PMID: 39312225 DOI: 10.1021/acs.jafc.4c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Disruption of microtubule stability in mammalian cells may lead to genotoxicity and carcinogenesis. The ability to screen for microtubule destabilization or stabilization is therefore a useful and efficient approach to aid in the design of molecules that are safe for human health. In this study, we developed a high-throughput 384-well assay combining immunocytochemistry with high-content imaging to assess microtubule disruption in the metabolically competent human liver cell line: HepaRG. To enhance analysis throughput, we implemented a supervised machine learning approach using a curated training library of 180 compounds. A majority voting ensemble of eight machine learning classifiers was employed for predicting microtubule disruptions. Our prediction model achieved over 99.0% accuracy and a 98.4% F1 score, which reflects the balance between precision and recall for in-sample validation and 93.5% accuracy and a 94.3% F1 score for out-of-sample validation. This automated image-based testing can provide a simple, high-throughput screening method for early stage discovery compounds to reduce the potential risk of genotoxicity for crop protection product development.
Collapse
Affiliation(s)
- Yang Li
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Audrey Lehman
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Heather E Pence
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Eric Sherer
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Wei Chen
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| |
Collapse
|
2
|
Dertinger SD, Briggs E, Hussien Y, Bryce SM, Avlasevich SL, Conrad A, Johnson GE, Williams A, Bemis JC. Visualization strategies to aid interpretation of high-dimensional genotoxicity data. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:156-178. [PMID: 38757760 PMCID: PMC11178453 DOI: 10.1002/em.22604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
This article describes a range of high-dimensional data visualization strategies that we have explored for their ability to complement machine learning algorithm predictions derived from MultiFlow® assay results. For this exercise, we focused on seven biomarker responses resulting from the exposure of TK6 cells to each of 126 diverse chemicals over a range of concentrations. Obviously, challenges associated with visualizing seven biomarker responses were further complicated whenever there was a desire to represent the entire 126 chemical data set as opposed to results from a single chemical. Scatter plots, spider plots, parallel coordinate plots, hierarchical clustering, principal component analysis, toxicological prioritization index, multidimensional scaling, t-distributed stochastic neighbor embedding, and uniform manifold approximation and projection are each considered in turn. Our report provides a comparative analysis of these techniques. In an era where multiplexed assays and machine learning algorithms are becoming the norm, stakeholders should find some of these visualization strategies useful for efficiently and effectively interpreting their high-dimensional data.
Collapse
Affiliation(s)
| | | | - Yusuf Hussien
- Institute of Life Sciences, Swansea University, Swansea, UK
| | | | | | - Adam Conrad
- Litron Laboratories, Rochester, New York, USA
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | |
Collapse
|
3
|
Recoules C, Mirey G, Audebert M. Effect of cell treatment procedures on in vitro genotoxicity assessment. Arch Toxicol 2024; 98:1225-1236. [PMID: 38427119 DOI: 10.1007/s00204-024-03690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 biomarkers, in the human liver-derived HepaRP cell line. We used different treatment durations, with or without a three-day recovery stage (release period), before genotoxicity measurement. Data were analysed with the Benchmark Dose approach. We observed that the detection of clastogenic compounds (notably for DNA damaging agents) was more sensitive after three days of repeated treatment compared to one or three treatments over 24 h. In contrast, aneugenic chemicals were detected as genotoxic in a similar manner whether after a 24 h exposure or a three-day repeated treatment. Globally, the release period decreases the genotoxicity measurement substantially. For DNA damaging agents, after high concentration treatments, γH2AX induction was always observed after a three-day release period. In contrast, for DNA topoisomerase inhibitors, no effect could be observed after the release period. In conclusion, in the HepaRP cell line, there are some important differences between a one-day acute and a three-day repeated treatment protocol, indicating that different cell treatment procedures may differentiate chemical genotoxic mechanisms of action more efficiently.
Collapse
Affiliation(s)
- Cynthia Recoules
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France
| | - Gladys Mirey
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France
| | - Marc Audebert
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
4
|
Thienpont A, Cho E, Williams A, Meier MJ, Yauk CL, Rogiers V, Vanhaecke T, Mertens B. Unlocking the Power of Transcriptomic Biomarkers in Qualitative and Quantitative Genotoxicity Assessment of Chemicals. Chem Res Toxicol 2024; 37:465-475. [PMID: 38408751 PMCID: PMC10952014 DOI: 10.1021/acs.chemrestox.3c00318] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
To modernize genotoxicity assessment and reduce reliance on experimental animals, new approach methodologies (NAMs) that provide human-relevant dose-response data are needed. Two transcriptomic biomarkers, GENOMARK and TGx-DDI, have shown a high classification accuracy for genotoxicity. As these biomarkers were extracted from different training sets, we investigated whether combining the two biomarkers in a human-derived metabolically competent cell line (i.e., HepaRG) provides complementary information for the classification of genotoxic hazard identification and potency ranking. First, the applicability of GENOMARK to TempO-Seq, a high-throughput transcriptomic technology, was evaluated. HepaRG cells were exposed for 72 h to increasing concentrations of 10 chemicals (i.e., eight known in vivo genotoxicants and two in vivo nongenotoxicants). Gene expression data were generated using the TempO-Seq technology. We found a prediction performance of 100%, confirming the applicability of GENOMARK to TempO-Seq. Classification using TGx-DDI was then compared to GENOMARK. For the chemicals identified as genotoxic, benchmark concentration modeling was conducted to perform potency ranking. The high concordance observed for both hazard classification and potency ranking by GENOMARK and TGx-DDI highlights the value of integrating these NAMs in a weight of evidence evaluation of genotoxicity.
Collapse
Affiliation(s)
- Anouck Thienpont
- Department
of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Department
of Chemical and Physical Health Risks, Sciensano, 1050 Brussels, Belgium
| | - Eunnara Cho
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa, ON K1A 0K9, Canada
| | - Andrew Williams
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa, ON K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa, ON K1A 0K9, Canada
| | - Carole L. Yauk
- Department
of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Vera Rogiers
- Department
of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Tamara Vanhaecke
- Department
of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Birgit Mertens
- Department
of Chemical and Physical Health Risks, Sciensano, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Michiba A, Gi M, Yokohira M, Sakurai E, Teramoto A, Kiriyama Y, Yamada S, Wanibuchi H, Tsukamoto T. Early detection of genotoxic hepatocarcinogens in rats using γH2AX and Ki-67: prediction by machine learning. Toxicol Sci 2023; 195:202-212. [PMID: 37527026 DOI: 10.1093/toxsci/kfad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Direct DNA double-strand breaks result in phosphorylation of H2AX, a variant of the histone H2 protein. Phosphorylated H2AX (γH2AX) may be a potential indicator in the evaluation of genotoxicity and hepatocarcinogenicity. In this study, γH2AX and Ki-67 were detected in the short-term responses (24 h after chemical administration) to classify genotoxic hepatocarcinogens (GHs) from non-GH chemicals. One hundred and thirty-five 6-week-old Crl: CD(SD) (SPF) male rats were treated with 22 chemicals including 11 GH and 11 non-GH, sacrificed 24 h later, and immunostained with γH2AX and Ki-67. Positivity rates of these markers were measured in the 3 liver ZONEs 1-3; portal, lobular, and central venous regions. These values were input into 3 machine learning models-Naïve Bayes, Random Forest, and k-Nearest Neighbor to classify GH and non-GH using a 10-fold cross-validation method. All 11 and 10 out of 11 GH caused significant increase in γH2AX and Ki-67 levels, respectively (P < .05). Of the 3 machine learning models, Random Forest performed the best. GH were identified with 95.0% sensitivity (76/80 GH-treated rats), 90.9% specificity (50/55 non-GH-treated rats), and 90.0% overall correct response rate using γH2AX staining, and 96.2% sensitivity (77/80), 81.8% specificity (45/55), and 90.4% overall correct response rate using Ki-67 labeling. Random Forest model using γH2AX and Ki-67 could independently predict GH in the early stage with high accuracy.
Collapse
Affiliation(s)
- Ayano Michiba
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka 545-8585, Japan
| | - Masanao Yokohira
- Departments of Medical Education and Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Eiko Sakurai
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teramoto
- Faculty of Information Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Yuka Kiriyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Department of Pathology, Narita Memorial Hospital, Toyohashi, Aichi 441-8029, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka 545-8585, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
6
|
A somatic mutation-derived LncRNA signatures of genomic instability predicts the prognosis and tumor microenvironment immune characters in hepatocellular carcinoma. Hepatol Int 2022; 16:1220-1233. [PMID: 35947245 DOI: 10.1007/s12072-022-10375-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive carcinoma with genome instability. Long non-coding RNAs (LncRNAs) have been functionally associated with genomic instability in cancers. However, the identification and prognostic value of lncRNAs related to genome instability have not been explored in hepatocellular carcinoma. In this study, we aim to identify a genomic instability-related lncRNA signature for predicting prognosis and the efficacy of immunotherapy in HCC patients. METHODS According to the somatic mutation and transcript data of 364 patients with HCC, we determined differentially expressed genome instability-related lncRNAs (GInLncRNAs). Gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of genes and genomes enrichment analyses revealed the potential functions of genes co-expressed with those lncRNAs involved in cancer development and immune function. We further determined a genome instability-related lncRNA signature (GInLncSig) through Cox regression analysis and LASSO regression analysis. Thereafter, we performed correlation analyses with mutations, clinical stratification analyses, and survival analyses to evaluate GInLncSig predictive function. Subsequently, we construct a nomogram model for prognostic assessments of patients with HCC. Finally, we performed Immunocytes infiltration analysis, gene set enrichment analysis (ssGSEA) of immunity circle-associated pathways, and T cell-inflamed score to explore GInLncSig's potential value in guiding immunotherapy. RESULTS We identified 11 independent prognosis-associated GInLncRNAs (AC002511.2, LINC00501, LINC02055, LINC02714, LINC01508, LOC105371967, RP11_96A15.1, RP11_305F18.1, RP11_342M1.3, RP11_432J24.3, U95743.1) to construct a GInLncSig. According to the risk score calculated by GInLncSig, the high-risk group was characterized by a higher somatic mutation count, significantly poorer clinical prognosis, higher T cell-inflamed score, and specific tumor immune infiltration status compared to the low-risk group. Furthermore, we constructed a nomogram model to improve the reliability and clinical utility of predicting the prognosis of patients with HCC. CONCLUSION Our study established a reliable prognostic prediction signature that could be a tool for prognosis prediction and a promising predictive biomarker of immunotherapy in hepatocellular carcinoma.
Collapse
|
7
|
Hall NE, Tichenor K, Bryce SM, Bemis JC, Dertinger SD. In vitro human cell-based aneugen molecular mechanism assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:151-161. [PMID: 35426156 PMCID: PMC9106857 DOI: 10.1002/em.22480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 05/25/2023]
Abstract
This laboratory previously described an in vitro human cell-based assay and data analysis scheme that discriminates common molecular targets responsible for chemical-induced in vitro aneugenicity: tubulin destabilization, tubulin stabilization, and inhibition of Aurora kinases (Bernacki et al., Toxicol. Sci. 170 [2019] 382-393). The current report describes updated procedures that simplify benchtop processing and data analysis methods. For these experiments, human lymphoblastoid TK6 cells were exposed to each of 25 aneugens over a range of concentrations in the presence of fluorescent paclitaxel (488 Taxol). After a 4 h treatment period, cells were lysed and nuclei were stained with a nucleic acid dye and labeled with fluorescent antibodies against phospho-histone H3 (p-H3). Flow cytometric analyses revealed several unique signatures: tubulin stabilizers caused increased frequencies of p-H3-positive events with concentration-dependent increases in 488 Taxol-associated fluorescence; tubulin destabilizers caused increased frequencies of p-H3-positive events with concomitant decreases in 488 Taxol-associated fluorescence; and Aurora kinase B inhibitors caused reduced frequencies of p-H3-positive events and lower median fluorescent intensities of p-H3-positive events. These results demonstrate a simple rubric based on 488 Taxol- and p-H3-associated metrics can reliably discriminate between several commonly encountered aneugenic molecular mechanisms.
Collapse
|
8
|
|
9
|
Bryce SM, Dertinger SD, Bemis JC. Kinetics of γH2AX and phospho-histone H3 following pulse treatment of TK6 cells provides insights into clastogenic activity. Mutagenesis 2021; 36:255-264. [PMID: 33964157 DOI: 10.1093/mutage/geab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
The desire for in vitro genotoxicity assays to provide higher information content, especially regarding chemicals' predominant genotoxic mode of action, has led to the development of a novel multiplexed assay available under the trade name MultiFlow®. We report here on an experimental design variation that provides further insight into clastogens' genotoxic activity. First, the standard MultiFlow DNA Damage Assay-p53, γ H2AX, phospho-histone H3 was used with human TK6 lymphoblastoid cells that were exposed for 24 continuous hours to each of 50 reference clastogens. This initial analysis correctly identified 48/50 compounds as clastogenic. These 48 compounds were then evaluated using a short-term, 'pulse' treatment protocol whereby cells were exposed to test chemical for 4 h, a centrifugation/washout step was performed, and cells were allowed to recover for 20 h. MultiFlow analyses were accomplished at 4 and 24 h. The γ H2AX and phospho-histone H3 biomarkers were found to exhibit distinct differences in terms of their persistence across chemical classes. Unsupervised hierarchical clustering analysis identified three groups. Examination of the compounds within these groups showed one cluster primarily consisting of alkylators that directly target DNA. The other two groups were dominated by non-DNA alkylators and included anti-metabolites, oxidative stress inducers and chemicals that inhibit DNA-processing enzymes. These results are encouraging, as they suggest that a simple follow-up test for in vitro clastogens provides mechanistic insights into their genotoxic activity. This type of information will contribute to improve decision-making and help guide further testing.
Collapse
Affiliation(s)
- Steven M Bryce
- Litron Laboratories, 3500 Winton Place, Suite 1B, Rochester, NY 14623, USA
| | | | - Jeffrey C Bemis
- Litron Laboratories, 3500 Winton Place, Suite 1B, Rochester, NY 14623, USA
| |
Collapse
|
10
|
Schuler M, Tomlinson L, Homiski M, Cheung J, Zhan Y, Coffing S, Engel M, Rubitski E, Seitis G, Hales K, Robertson A, Vispute S, Cook J, Radi Z, Hollingshead B. Experiments in the EpiDerm 3D Skin In Vitro Model and Minipigs In Vivo Indicate Comparatively Lower In Vivo Skin Sensitivity of Topically Applied Aneugenic Compounds. Toxicol Sci 2021; 180:103-121. [PMID: 33481035 DOI: 10.1093/toxsci/kfaa189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Risk management of in vitro aneugens for topically applied compounds is not clearly defined because there is no validated methodology to accurately measure compound concentration in proliferating stratum basale keratinocytes of the skin. Here, we experimentally tested several known aneugens in the EpiDerm reconstructed human skin in vitro micronucleus assay and compared the results to flow cytometric mechanistic biomarkers (phospho-H3; MPM2, DNA content). We then evaluated similar biomarkers (Ki-67, nuclear area) using immunohistochemistry in skin sections of minipigs following topical exposure the potent aneugens, colchicine, and hesperadin. Data from the EpiDerm model showed positive micronucleus responses for all aneugens tested following topical or direct media dosing with similar sensitivity when adjusted for applied dose. Quantitative benchmark dose-response analysis exhibited increases in the mitotic index biomarkers phospho-H3 and MPM2 for tubulin binders and polyploidy for aurora kinase inhibitors are at least as sensitive as the micronucleus endpoint. By comparison, the aneugens tested did not induce histopathological changes, increases in Ki-67 immunolabeling or nuclear area in skin sections from the in vivo minipig study at doses in significant excess of those eliciting a response in vitro. Results indicate the EpiDerm in vitro micronucleus assay is suitable for the hazard identification of aneugens. The lack of response in the minipig studies indicates that the barrier function of the minipig skin, which is comparable to human skin, protects from the effects of aneugens in vivo. These results provide a basis for conducting additional studies in the future to further refine this understanding.
Collapse
Affiliation(s)
- Maik Schuler
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Lindsay Tomlinson
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Michael Homiski
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Jennifer Cheung
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Yutian Zhan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Stephanie Coffing
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Maria Engel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Elizabeth Rubitski
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Gary Seitis
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Katherine Hales
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Andrew Robertson
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Saurabh Vispute
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Jon Cook
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Zaher Radi
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Brett Hollingshead
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Brandsma I, Moelijker N, Derr R, Hendriks G. Aneugen Versus Clastogen Evaluation and Oxidative Stress-Related Mode-of-Action Assessment of Genotoxic Compounds Using the ToxTracker Reporter Assay. Toxicol Sci 2020; 177:202-213. [DOI: 10.1093/toxsci/kfaa103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Understanding the mode-of-action (MOA) of genotoxic compounds and differentiating between direct DNA interaction and indirect genotoxicity is crucial for their reliable safety assessment. ToxTracker is a stem cell-based reporter assay that detects activation of various cellular responses that are associated with genotoxicity and cancer. ToxTracker consists of 6 different GFP reporter cell lines that can detect the induction of DNA damage, oxidative stress, and protein damage in a single test. The assay can thereby provide insight into the MOA of compounds. Genotoxicity is detected in ToxTracker by activation of 2 independent GFP reporters. Activation of the Bscl2-GFP reporter is associated with induction of DNA adducts and subsequent inhibition of DNA replication and the Rtkn-GFP reporter is activated following the formation of DNA double-strand breaks. Here, we show that the differential activation of these 2 genotoxicity reporters could be used to further differentiate between a DNA reactive and clastogenic or a non-DNA-reactive aneugenic MOA of genotoxic compounds. For further classification of aneugenic and clastogenic compounds, the ToxTracker assay was extended with cell cycle analysis and aneuploidy assessment. The extension was validated using a selection of 16 (genotoxic) compounds with a well-established MOA. Furthermore, indirect genotoxicity related to the production of reactive oxygen species was investigated using the DNA damage and oxidative stress ToxTracker reporters in combination with different reactive oxygen species scavengers. With these new extensions, ToxTracker was able to accurately classify compounds as genotoxic or nongenotoxic and could discriminate between DNA-reactive compounds, aneugens, and indirect genotoxicity caused by oxidative stress.
Collapse
Affiliation(s)
| | | | - Remco Derr
- Toxys B.V., 2333 CG Leiden, The Netherlands
| | | |
Collapse
|
12
|
Benchmark dose analyses of γH2AX and pH3 endpoints for quantitative comparison of in vitro genotoxicity potential of lipophilic phycotoxins. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 852:503169. [PMID: 32265043 DOI: 10.1016/j.mrgentox.2020.503169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
The phycotoxins, okadaic acid (OA) and dinophysistoxins 1 and 2 (DTX-1 and -2), are protein phosphatase PP2A and PP1 inhibitors involved in diarrhetic shellfish poisoning (DSP) in humans. Data on the in vivo acute toxicity of the OA-group toxins show some differences and the European Food Safety Authority (EFSA) has determined toxicity equivalent factors (TEFs) of one for the reference toxin, OA, as well as for DTX-1 and 0.6 for DTX-2. However, recent in vitro studies indicated that DTX-1 seems to be more toxic than OA. As OA was described as apoptotic and aneugenic compound, we analyzed the DNA damage responses induced by the 3 toxins through γH2AX and pH3 biomarkers on proliferative HepaRG cells using High Content Analysis. We quantitatively examined the responses for γH2AX and pH3 by benchmark dose analyzing (BMD) using PROAST software. We found that the three toxins increased both γH2AX- and pH3-positive cells populations in a concentration-dependent manner. The 3 toxins induced mitotic arrest, characteristic of aneugenic compounds, as well as DNA strand-breaks concomitantly to cytotoxicity. BMD analysis showed that DTX-1 is the most potent inducer of DNA damage, followed by OA and DTX-2. The quantitative genotoxic data provided in this study are additional findings for reconsidering the estimated TEFs of this group of phycotoxins.
Collapse
|
13
|
Bernacki DT, Bryce SM, Bemis JC, Dertinger SD, Witt KL, Smith‐Roe SL. Evidence for an Aneugenic Mechanism of Action for Micronucleus Induction by Black Cohosh Extract. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:845-856. [PMID: 31569270 PMCID: PMC6900087 DOI: 10.1002/em.22334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Black cohosh extract (BCE) is a popular botanical dietary supplement marketed to relieve symptoms of various gynecological ailments. Studies conducted by the National Toxicology Program (NTP) showed that BCE induces micronucleated erythrocytes in female rats and mice. Subsequently, the NTP showed that a variety of BCEs, including the sample that induced micronuclei (MN) in vivo ("NTP BCE") had a similar effect in human TK6 cells. Further testing with the MultiFlow® DNA Damage Assay revealed that TK6 cells exposed to NTP BCE, as well as a BCE reference material (BC XRM), exhibited a signature consistent with aneugenic activity in TK6 cells. Results from experiments reported herein confirmed these in vitro observations with NTP BCE and BC XRM. We extended these studies to include a novel test system, the MultiFlow Aneugen Molecular Mechanism Assay. For these experiments, TK6 cells were exposed to NTP BCE and BC XRM over a range of concentrations in the presence of fluorescent Taxol (488 Taxol). After 4 h, nuclei from lysed cells were stained with a nucleic acid dye and labeled with fluorescent antibodies against phospho-histone H3 (p-H3) and Ki-67. Whereas BCEs did not affect p-H3:Ki-67 ratios (a signature of aneugenic mitotic kinase inhibitors), 488 Taxol-associated fluorescence (a tubulin binder-sensitive endpoint) was affected. More specifically, 488 Taxol-associated fluorescence was reduced over the same concentration range that was previously observed to induce MN. These results provide direct evidence that BCEs destabilize microtubules in vitro, and this is the molecular mechanism responsible for the aneugenicity findings. Environ. Mol. Mutagen. 2019. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
| | | | | | | | - Kristine L. Witt
- Division of the National Toxicology ProgramNIEHSResearch Triangle ParkNorth Carolina
| | | |
Collapse
|