1
|
Huang Z, Zhai J, Li Z, Yu L. Populus euphratica has stronger regrowth ability than Populus pruinosa under salinity stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14297. [PMID: 38634382 DOI: 10.1111/ppl.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Pest infestation and soil salinization levels are increasing due to climate change. Comprehending plant regrowth after insect damage and salinity stress is crucial to understanding climate change's multifactorial impacts on forest ecosystems. This study examined Populus euphratica and P. pruinosa regrowth after different defoliation levels combined with salinity stress. Specifically, the biomass and regrowth ability, non-structural carbohydrate (NSC) and nitrogen (N) pools in different organs and the whole plant, and the leaf Cl- concentration of both poplars were analyzed. Our results showed that after 50% defoliation and no salt addition, the regrowth of both species recovered similarly to the control level, while their regrowth was about 70% after 90% defoliation. However, under salinity stress, the regrowth (% leaf biomass) of P. euphratica was significantly higher than P. pruinose at either the 50% or 90% defoliation levels. Additionally, P. euphratica had more soluble sugar, starch, NSC and N pools in leaf, stem, root and whole plant than P. pruinose under salinity stress. The regrowth based on leaf biomass increased linearly with soluble sugar, starch, NSC and N pools, and decreased linearly with leaf Cl- concentration across different salinity and defoliation levels. These results indicated that defoliation significantly decreased NSC and N pools, limiting the growth of both poplars, and salinity stress exacerbated the negative effect. Furthermore, when suffering from salinity stress, P. euphratica with higher NSC and N pools exhibited stronger regrowth ability than P. pruinose.
Collapse
Affiliation(s)
- Zongdi Huang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Juntuan Zhai
- College of Life Science and Technology, Tarim University, China
| | - Zhijun Li
- College of Life Science and Technology, Tarim University, China
| | - Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Wang N, Song M, Zhang Y, Liu X, Wu P, Qi L, Song H, Du N, Wang H, Zheng P, Wang R. Physiological responses of Quercus acutissima and Quercus rubra seedlings to drought and defoliation treatments. TREE PHYSIOLOGY 2023; 43:737-750. [PMID: 36708029 DOI: 10.1093/treephys/tpad005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
Ongoing global climate change is increasing the risk of drought stress in some areas, which may compromise forest health. Such drought events also increase outbreaks of insect herbivores, resulting in plant defoliation. Interactions between drought and defoliation are poorly understood. In a greenhouse experiment, we selected a native species, Quercus acutissima Carr. and an alien species, Quercus rubra L. to explore their physiological responses to drought and defoliation treatments. After the treatments, we determined the seedlings' physiological responses on Days 10 and 60. Our results showed that the defoliation treatment accelerated the carbon reserve consumption of plants under drought stress and inhibited the growth of both seedling types. Under the drought condition, Q. rubra maintained normal stem-specific hydraulic conductivity and normal growth parameters during the early stage of stress, whereas Q. acutissima used less water and grew more slowly during the experiment. Sixty days after defoliation treatment, the stem starch concentration of Q. acutissima was higher than that of the control group, but the stem biomass was lower. This indicates that Q. acutissima adopted a 'slow strategy' after stress, and more resources were used for storage rather than growth, which was conducive to the ability of these seedlings to resist recurrent biotic attack. Thus, Q. acutissima may be more tolerant to drought and defoliation than Q. rubra. The resource acquisition strategies of Quercus in this study suggest that the native Quercus species may be more successful at a long-term resource-poor site than the alien Quercus species.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Meixia Song
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yang Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Pan Wu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Luyu Qi
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Huijia Song
- Beijing Museum of Natural History, 126 Tianqiao South Street, Beijing 100050, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
3
|
Koptur S, Primoli AS, Pimienta MC. Defoliation in Perennial Plants: Predictable and Surprising Results in Senna spp. PLANTS (BASEL, SWITZERLAND) 2023; 12:587. [PMID: 36771669 PMCID: PMC9919507 DOI: 10.3390/plants12030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
When some plants are defoliated, they may suffer by reaching a smaller final size than if they had not been damaged. Other plants may compensate for damage, ending up the same size as if they had not been damaged. Still, others may overcompensate, ending up larger after defoliation than if they had been spared from damage. We investigated the response of Senna species (Fabaceae) to defoliation, comparing two native and several ornamental congeners, all of which grow locally in southern Florida. Many Senna spp. bear foliar nectaries as nutritional resources for beneficial insects that may, in exchange, protect them from herbivores. We grew five species from seed and subjected them to three levels of defoliation for a period of several months to measure effects of leaf area removal on plant height, number of leaves, and number of extrafloral nectaries. Only three of five species displayed shorter plant heights with greater levels of damage. Two species produced fewer new leaves with moderate to severe defoliation. In only one species, the number of extrafloral nectaries decreased with defoliation, suggesting that while extrafloral nectar production may be an inducible defense in some species, producing more nectaries in response to damage does not occur in these Senna species.
Collapse
|
4
|
Wang N, Ji T, Liu X, Li Q, Sairebieli K, Wu P, Song H, Wang H, Du N, Zheng P, Wang R. Defoliation Significantly Suppressed Plant Growth Under Low Light Conditions in Two Leguminosae Species. FRONTIERS IN PLANT SCIENCE 2022; 12:777328. [PMID: 35069632 PMCID: PMC8776832 DOI: 10.3389/fpls.2021.777328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Seedlings in regenerating layer are frequently attacked by herbivorous insects, while the combined effects of defoliation and shading are not fully understood. In the present study, two Leguminosae species (Robinia pseudoacacia and Amorpha fruticosa) were selected to study their responses to combined light and defoliation treatments. In a greenhouse experiment, light treatments (L+, 88% vs L-, 8% full sunlight) and defoliation treatments (CK, without defoliation vs DE, defoliation 50% of the upper crown) were applied at the same time. The seedlings' physiological and growth traits were determined at 1, 10, 30, and 70 days after the combined treatment. Our results showed that the effects of defoliation on growth and carbon allocation under high light treatments in both species were mainly concentrated in the early stage (days 1-10). R. pseudoacacia can achieve growth recovery within 10 days after defoliation, while A. fruticosa needs 30 days. Seedlings increased SLA and total chlorophyll concentration to improve light capture efficiency under low light treatments in both species, at the expense of reduced leaf thickness and leaf lignin concentration. The negative effects of defoliation treatment on plant growth and non-structural carbohydrates (NSCs) concentration in low light treatment were significantly higher than that in high light treatment after recovery for 70 days in R. pseudoacacia, suggesting sufficient production of carbohydrate would be crucial for seedling growth after defoliation. Plant growth was more sensitive to defoliation and low light stress than photosynthesis, resulting in NSCs accumulating during the early period of treatment. These results illustrated that although seedlings could adjust their resource allocation strategy and carbon dynamics in response to combined defoliation and light treatments, individuals grown in low light conditions will be more suppressed by defoliation. Our results indicate that we should pay more attention to understory seedlings' regeneration under the pressure of herbivorous insects.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Tianyu Ji
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Kulihong Sairebieli
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Pan Wu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Huijia Song
- Beijing Museum of Natural History, Beijing, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|