1
|
Chen J, Chen G, Guo J, He Y, Liu L, Wang S, Gu C, Han L, Li M, Song W, Wang L, Zhang X, Zhao J. The CsTIE1-CsAGL16 module regulates lateral branch outgrowth and drought tolerance in cucumber. HORTICULTURE RESEARCH 2025; 12:uhae279. [PMID: 39850372 PMCID: PMC11756290 DOI: 10.1093/hr/uhae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/21/2024] [Indexed: 01/25/2025]
Abstract
Drought stress and lateral branches are both important factors affecting crop yield. Cucumber is a widely planted vegetable crop that requires a large amount of water during its production and varieties with few lateral branches are preferred. However, the mechanisms regulating cucumber drought tolerance and lateral branch development remain largely unclear. The MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) was recently found to be a key positive regulator in cucumber shoot branching acting by stimulating abscisic acid (ABA) catabolism. In this study, we demonstrated that cucumber TCP interactor containing EAR motif protein 1 (CsTIE1) directly interacts with CsAGL16 at protein level and promotes lateral branch outgrowth through the CsAGL16-CsCYP707A4 mediated ABA pathway in cucumber. Additionally, mutation of CsAGL16 resulted in decreased drought tolerance, while overexpression of CsAGL16 significantly enhanced drought tolerance in cucumber. Similarly, the drought resistance of Cstie1 mutants was significantly reduced. However, overexpression of CsAGL16 can enhance the drought tolerance of Cstie1 mutants and promote their lateral branch outgrowth. These results indicated that the CsTIE1-CsAGL16 module was crucial for both lateral branch development and drought response, providing a strategy for cultivating drought-tolerant cucumber varieties with appropriate branch outgrowth.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jingyu Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Yuting He
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liming Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Khalid MF, Jawaid MZ, Nawaz M, Shakoor RA, Ahmed T. Employing Titanium Dioxide Nanoparticles as Biostimulant against Salinity: Improving Antioxidative Defense and Reactive Oxygen Species Balancing in Eggplant Seedlings. Antioxidants (Basel) 2024; 13:1209. [PMID: 39456462 PMCID: PMC11505378 DOI: 10.3390/antiox13101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Salinity is a major abiotic stress that affects the agricultural sector and poses a significant threat to sustainable crop production. Nanoparticles (NPs) act as biostimulants and significantly mitigate abiotic stress. In this context, this experiment was designed to assess the effects of foliar application of titanium dioxide (TiO2) nanoparticles at 200 and 400 ppm on the growth of eggplant (Solanum melongena) seedlings under moderate (75 mM) and high (150 mM) salinity stress. The TiO2-NPs employed were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) analysis. The seedlings were assessed physiologically, growth-wise, and biochemically. The seedlings were significantly affected by their physiological attributes (Fv'/Fm', Fv/Fm, NPQ), growth (root length, shoot length, number of leaves, fresh biomass, dry biomass, leaf greenness), antioxidative enzymes (SOD, POD, CAT, APx, GR), stress indicators (H2O2, MDA), and toxic ion (Na+) concentrations. The maximum decrease in physiological and growth attributes in eggplant seedling leaves was observed with no TiO2-NP application at 150 mM NaCl. Applying TiO2-NPs at 200 ppm showed significantly less decrease in Fv'/Fm', root length, shoot length, number of leaves, fresh biomass, dry biomass, and leaf greenness. In contrast, there were larger increases in SOD, POD, CAT, APx, GR, and TSP. This led to less accumulation of H2O2, MDA, and Na+. No significant difference was observed in higher concentrations of TiO2-NPs compared to the control. Therefore, TiO2-NPs at 200 ppm might be used to grow eggplant seedlings at moderate and high salinity.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Environmental Science Center, Qatar University, Doha 2713, Qatar; (M.F.K.); (M.Z.J.)
| | - Muhammad Zaid Jawaid
- Environmental Science Center, Qatar University, Doha 2713, Qatar; (M.F.K.); (M.Z.J.)
| | - Muddasir Nawaz
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar; (M.N.); (R.A.S.)
| | - Rana Abdul Shakoor
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar; (M.N.); (R.A.S.)
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Talaat Ahmed
- Environmental Science Center, Qatar University, Doha 2713, Qatar; (M.F.K.); (M.Z.J.)
| |
Collapse
|
3
|
Silva IP, Costa MGC, Costa-Pinto MFF, Silva MAA, Coelho Filho MA, Fancelli M. Volatile compounds in citrus in adaptation to water deficit and to herbivory by Diaphorina citri: How the secondary metabolism of the plant is modulated under concurrent stresses. A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112157. [PMID: 38871029 DOI: 10.1016/j.plantsci.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.
Collapse
Affiliation(s)
- Indiara Pereira Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Monique Ayala Araújo Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | |
Collapse
|
4
|
Gong S, Pan P, Meng X, Zhang Y, Xu H, Hu H, Cheng X, Yan Q. Integrated Physiologic and Proteomic Analyses Reveal the Molecular Mechanism of Navicula sp. in Response to Ultraviolet Irradiation Stress. Int J Mol Sci 2024; 25:2747. [PMID: 38473996 DOI: 10.3390/ijms25052747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
With the continuous development of space station construction, space ecosystem research has attracted increasing attention. However, the complicated responses of different candidate plants and algae to radiation stress remain unclear. The present study, using integrated physiologic and proteomic analyses, was carried out to reveal the molecular mechanism of Navicula sp. in response to ultraviolet (UV) irradiation stress. Under 12~24 h of high-dose UV irradiation conditions, the contents of chlorophyll and soluble proteins in Navicula sp. cells were significantly higher than those in the control and 4~8 h of low-dose UV irradiation groups. The activity of catalase (CAT) increased with the extension of irradiation time, and the activity of superoxide dismutase (SOD) decreased first and then increased. Furthermore, differential volcano plot analysis of the proteomic data of Navicula sp. samples found only one protein with a significant difference. Differential protein GO analysis unveiled that UV irradiation can activate the antioxidant system of Navicula sp. and further impact photosynthesis by affecting the photoreaction and chlorophyll synthesis of Navicula sp. The most significant differences in KEGG pathway analysis were also associated with photosynthesis. The above results indicate that Navicula sp. has good UV radiation resistance ability by regulating its photosynthetic pigment content, photosynthetic activity, and antioxidant system, making it a potential candidate for the future development of space ecosystems.
Collapse
Affiliation(s)
- Siyu Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Pan Pan
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xiangying Meng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
| | - Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Honggang Hu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Qiong Yan
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
5
|
Fonollá A, Hormaza JI, Losada JM. Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3738. [PMID: 37960094 PMCID: PMC10650725 DOI: 10.3390/plants12213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
The cultivation of mango in Mediterranean-type climates is challenged by the depletion of freshwater. Polyploids are alternative genotypes with potential greater water use efficiency, but field evaluations of the anatomy and physiology of conspecific adult polyploid trees under water stress remain poorly explored. We combined field anatomical evaluations with measurements of leaf water potential (Ψl) and stomatal conductance (Gs) comparing one diploid and one autotetraploid tree per treatment with and without irrigation during dry summers (when fruits develop). Autotetraploid leaves displayed lower Ψl and Gs in both treatments, but the lack of irrigation only affected Gs. Foliar cells of the adaxial epidermis and the spongy mesophyll contained linear pectin epitopes, whereas branched pectins were localized in the abaxial epidermis, the chloroplast membrane, and the sieve tube elements of the phloem. Cell and fruit organ size was larger in autotetraploid than in diploid mango trees, but the sugar content in the fruits was similar between both cytotypes. Specific cell wall hygroscopic pectins correlate with more stable Ψl of autotetraploid leaves under soil water shortage, keeping lower Gs compared with diploids. These preliminary results point to diploids as more susceptible to water deficits than tetraploids.
Collapse
Affiliation(s)
| | | | - Juan M. Losada
- Institute for Mediterranean and Subtropical Horticulture ‘La Mayora’ (IHSM La Mayora—CSIC—UMA), Avda. Dr. Wienberg s/n, 29750 Malaga, Spain; (A.F.); (J.I.H.)
| |
Collapse
|
6
|
Abbas K, Li J, Gong B, Lu Y, Wu X, Lü G, Gao H. Drought Stress Tolerance in Vegetables: The Functional Role of Structural Features, Key Gene Pathways, and Exogenous Hormones. Int J Mol Sci 2023; 24:13876. [PMID: 37762179 PMCID: PMC10530793 DOI: 10.3390/ijms241813876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R. Nanoparticles: The Plant Saviour under Abiotic Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213915. [PMID: 36364690 PMCID: PMC9658632 DOI: 10.3390/nano12213915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 05/15/2023]
Abstract
Climate change significantly affects plant growth and productivity by causing different biotic and abiotic stresses to plants. Among the different abiotic stresses, at the top of the list are salinity, drought, temperature extremes, heavy metals and nutrient imbalances, which contribute to large yield losses of crops in various parts of the world, thereby leading to food insecurity issues. In the quest to improve plants' abiotic stress tolerance, many promising techniques are being investigated. These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions. Nanoparticles can be used to deliver nutrients to plants, overcome plant diseases and pathogens, and sense and monitor trace elements that are present in soil by absorbing their signals. A better understanding of the mechanisms of nanoparticles that assist plants to cope with abiotic stresses will help towards the development of more long-term strategies against these stresses. However, the intensity of the challenge also warrants more immediate approaches to mitigate these stresses and enhance crop production in the short term. Therefore, this review provides an update of the responses (physiological, biochemical and molecular) of plants affected by nanoparticles under abiotic stress, and potentially effective strategies to enhance production. Taking into consideration all aspects, this review is intended to help researchers from different fields, such as plant science and nanoscience, to better understand possible innovative approaches to deal with abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL 34142, USA
| | - Rashid Iqbal Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | | | - Waqar Shafqat
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MI 39759, USA
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| |
Collapse
|
8
|
Asaeda T, Rahman M, Liping X, Schoelynck J. Hydrogen Peroxide Variation Patterns as Abiotic Stress Responses of Egeria densa. FRONTIERS IN PLANT SCIENCE 2022; 13:855477. [PMID: 35651776 PMCID: PMC9149424 DOI: 10.3389/fpls.2022.855477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
In vegetation management, understanding the condition of submerged plants is usually based on long-term growth monitoring. Reactive oxygen species (ROS) accumulate in organelles under environmental stress and are highly likely to be indicators of a plant's condition. However, this depends on the period of exposure to environmental stress, as environmental conditions are always changing in nature. Hydrogen peroxide (H2O2) is the most common ROS in organelles. The responses of submerged macrophytes, Egeria densa, to high light and iron (Fe) stressors were investigated by both laboratory experiments and natural river observation. Plants were incubated with combinations of 30-200 μmol m-2 s-1 of photosynthetically active radiation (PAR) intensity and 0-10 mg L-1 Fe concentration in the media. We have measured H2O2, photosynthetic pigment concentrations, chlorophyll a (Chl-a), chlorophyll b (Chl-b), carotenoid (CAR), Indole-3-acetic acid (IAA) concentrations of leaf tissues, the antioxidant activity of catalase (CAT), ascorbic peroxidase (APX), peroxidase (POD), the maximal quantum yield of PSII (Fv Fm -1), and the shoot growth rate (SGR). The H2O2 concentration gradually increased with Fe concentration in the media, except at very low concentrations and at an increased PAR intensity. However, with extremely high PAR or Fe concentrations, first the chlorophyll contents and then the H2O2 concentration prominently declined, followed by SGR, the maximal quantum yield of PSII (Fv Fm -1), and antioxidant activities. With an increasing Fe concentration in the substrate, the CAT and APX antioxidant levels decreased, which led to an increase in H2O2 accumulation in the plant tissues. Moreover, increased POD activity was proportionate to H2O2 accumulation, suggesting the low-Fe independent nature of POD. Diurnally, H2O2 concentration varies following the PAR variation. However, the CAT and APX antioxidant activities were delayed, which increased the H2O2 concentration level in the afternoon compared with the level in morning for the same PAR intensities. Similar trends were also obtained for the natural river samples where relatively low light intensity was preferable for growth. Together with our previous findings on macrophyte stress responses, these results indicate that H2O2 concentration is a good indicator of environmental stressors and could be used instead of long-term growth monitoring in macrophyte management.
Collapse
Affiliation(s)
- Takashi Asaeda
- Hydro Technology Institute Co, Ltd., Tokyo, Japan
- Research and Development Center, Ibaraki, Japan
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Mizanur Rahman
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Xia Liping
- Department of Environmental Science, Saitama University, Saitama, Japan
| | | |
Collapse
|
9
|
Lourkisti R, Froelicher Y, Morillon R, Berti L, Santini J. Enhanced Photosynthetic Capacity, Osmotic Adjustment and Antioxidant Defenses Contribute to Improve Tolerance to Moderate Water Deficit and Recovery of Triploid Citrus Genotypes. Antioxidants (Basel) 2022; 11:antiox11030562. [PMID: 35326213 PMCID: PMC8944853 DOI: 10.3390/antiox11030562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Currently, drought stress is a major issue for crop productivity, and future climate models predict a rise in frequency and severity of drought episodes. Polyploidy has been related to improved tolerance of plants to environmental stresses. In Citrus breeding programs, the use of triploidy is an effective way to produce seedless fruits, one of the greatest consumer expectations. The current study used physiological and biochemical parameters to assess the differential responses to moderate water deficit of 3x genotypes compared to 2x genotypes belonging to the same hybridization. Both parents, the mandarin Fortune and Ellendale tangor, were also included in the experimental design, while the 2x common clementine tree was used as reference. Water deficit affects leaf water status, as well as physiological and detoxification processes. Triploid genotypes showed a better ability to maintain water status through increased proline content and photosynthetic capacity. Moreover, less oxidative damage was associated with stronger antioxidant defenses in triploid genotypes. We also found that triploidy improved the recovery capacity after a water deficit episode.
Collapse
Affiliation(s)
- Radia Lourkisti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
- Correspondence: ; Tel.: +33-420-202-268
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP, 20230 San Giuliano, France
| | - Raphaël Morillon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France
| | - Liliane Berti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| | - Jérémie Santini
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| |
Collapse
|
10
|
Keeley M, Rowland D, Vincent C. Citrus photosynthesis and morphology acclimate to phloem-affecting huanglongbing disease at the leaf and shoot levels. PHYSIOLOGIA PLANTARUM 2022; 174:e13662. [PMID: 35253914 DOI: 10.1111/ppl.13662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Huanglongbing (HLB) is a phloem-affecting disease in citrus that reduces growth and impacts global citrus production. HLB is caused by a phloem-limited bacterium (Candidatus Liberibacter asiaticus). By inhibiting phloem function, HLB stunts sink growth, including the production of new shoots and leaves, and induces hyperaccumulation of foliar starch. HLB induces feedback inhibition of photosynthesis by reducing foliar carbohydrate export. Here, we assessed the relationship of bacterial distribution within the foliage, foliar starch accumulation, and net CO2 assimilation (Anet ). Because HLB impacts canopy morphology, we developed a chamber to measure whole-shoot Anet to test the effects of HLB at both the leaf and shoot level. Whole-shoot level Anet saturated at high irradiance, and green stems had high photosynthetic rates compared to leaves. Starch accumulation was correlated with bacterial population, and starch was negatively correlated with Anet at the leaf but not at the shoot level. Starch increased initially after infection, then decreased progressively with increasing length of infection. HLB infection reduced Anet at the leaf level but increased it at the whole-shoot level, in association with reduced leaf size and greater relative contribution of stems to the photosynthetic surface area. Although HLB-increased photosynthetic efficiency, total carbon fixed per shoot decreased because photosynthetic surface area was reduced. We conclude that the localized effects of infection on photosynthesis are mitigated by whole-shoot morphological acclimation over time. Stems contribute important proportions of whole-shoot Anet , and these contributions are likely increased by the morphological acclimation induced by HLB.
Collapse
Affiliation(s)
- Mark Keeley
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Diane Rowland
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Christopher Vincent
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
11
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|