1
|
Zhou X, Ouyang S, Saurer M, Feng M, Bose AK, Duan H, Tie L, Shen W, Gessler A. Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172164. [PMID: 38580112 DOI: 10.1016/j.scitotenv.2024.172164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland.
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland
| | - Mei Feng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|
2
|
Bödeker K, Jordan-Fragstein C, Vor T, Ammer C, Knoke T. Abrupt height growth setbacks show overbrowsing of tree saplings, which can be reduced by raising deer harvest. Sci Rep 2023; 13:12021. [PMID: 37491457 PMCID: PMC10368749 DOI: 10.1038/s41598-023-38951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Intensive ungulate browsing significantly impacts forests worldwide. However, it is usually not single browsing events that lead to sapling mortality, but the little-researched interactions of browsed saplings with their biotic and abiotic environment. (I) Our objective was to assess the impact of ungulate browsing on the growth of young saplings relative to other environmental factors by utilizing their height increment as a sensitive measure of vitality to indicate their status. (II) Furthermore, we aimed to identify factors affecting ungulate browsing at our study sites, assessed as browsing probabilities, and identify effective mitigation measures for browsing impact. We analyzed an extensive sapling dataset of 248 wildlife exclosures, which were erected in 2016 in beech dominated forests across Germany and assessed annually until 2020. (I) Browsing probability and light availability were the most influential parameters for selectively browsed, admixed tree species (e.g., sycamore maple). Height increment showed abrupt setbacks, which caused a permanent collapse of growth when browsing exceeded a certain level. However, light availability enhanced height increment. (II) An increase in deer harvest reduced the browsing probability of selectively browsed species considerably. We conclude that the growth-inhibiting effect of ungulate browsing is a multifactorial phenomenon, which can be mitigated by silvicultural management and efficient hunting strategies.
Collapse
Affiliation(s)
- Kai Bödeker
- Institute of Forest Management, Department of Life Science Systems, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
| | - Claudia Jordan-Fragstein
- Chair of Forest Protection, Institute of Silviculture and Forest Protection, Tecnical Universeity of Dresden, Pienner Straße 8, 01737, Tharandt, Germany
| | - Torsten Vor
- Faculty of Resource Management, University of Applied Sciences and Arts, Büsgenweg 1a, 37077, Göttingen, Germany
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones and Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Thomas Knoke
- Institute of Forest Management, Department of Life Science Systems, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| |
Collapse
|