1
|
Zhang YB, Huang XY, Corrêa Scalon M, Ke Y, Liu JX, Wang Q, Li WH, Yang D, Ellsworth DS, Zhang YJ, Zhang JL. Mistletoes have higher hydraulic safety but lower efficiency in xylem traits than their hosts. THE NEW PHYTOLOGIST 2025; 245:607-624. [PMID: 39538365 DOI: 10.1111/nph.20257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both mistletoes and their hosts are challenged by increasing drought, highlighting the necessity of understanding their comparative hydraulic properties. The high transpiration of mistletoes requires efficient water transport, while high xylem tensions demand strong embolism resistance, representing a hydraulic paradox. This study, conducted across four environments with different aridity indices in Yunnan, China, examined the xylem traits of 119 mistletoe-host species pairs. Mistletoes showed lower water use efficiency, indicating a more aggressive water use. They also showed lower hydraulic efficiency (lower vessel diameter and theoretical hydraulic conductivity) but higher safety (lower vulnerability index and higher conduit wall reinforcement, vessel grouping index, and wood density) compared with their hosts, supporting the trade-off between efficiency and safety. Environmental variation across sites significantly affected xylem trait comparisons between mistletoes and hosts. Additionally, the xylem traits of mistletoes were strongly influenced by host water supply efficiency. The overall xylem trait relationships in mistletoes and hosts were different. These findings stress the impact of host and site on the hydraulic traits of mistletoes, and suggest that mistletoes may achieve high transpiration by maintaining high stomatal conductance under low water potentials. This study illuminates the distinctive adaptation strategies of mistletoes due to their parasitic lifestyle.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xian-Yan Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Marina Corrêa Scalon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hua Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| |
Collapse
|
2
|
Piwowarczyk R, Kolanowska M. Effect of global warming on the potential distribution of a holoparasitic plant (Phelypaea tournefortii): both climate and host distribution matter. Sci Rep 2023; 13:10741. [PMID: 37400559 PMCID: PMC10318063 DOI: 10.1038/s41598-023-37897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
Phelypaea tournefortii (Orobanchaceae) primarily occurs in the Caucasus (Armenia, Azerbaijan, Georgia, and N Iran) and Turkey. This perennial, holoparasitic herb is achlorophyllous and possesses one of the most intense red flowers among all plants worldwide. It occurs as a parasite on the roots of several Tanacetum (Asteraceae) species and prefers steppe and semi-arid habitats. Climate change may affect holoparasites both directly through effects on their physiology and indirectly as a consequence of its effects on their host plants and habitats. In this study, we used the ecological niche modeling approach to estimate the possible effects of climate change on P. tournefortii and to evaluate the effect of its parasitic relationships with two preferred host species on the chances of survival of this species under global warming. We used four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) and three different simulations (CNRM, GISS-E2, INM). We modeled the species' current and future distribution using the maximum entropy method implemented in MaxEnt using seven bioclimatic variables and species occurrence records (Phelypaea tournefortii - 63 records, Tanacetum argyrophyllum - 40, Tanacetum chiliophyllum - 21). According to our analyses, P. tournefortii will likely contract its geographical range remarkably. In response to global warming, the coverage of the species' suitable niches will decrease by at least 34%, especially in central and southern Armenia, Nakhchivan in Azerbaijan, northern Iran, and NE Turkey. In the worst-case scenario, the species will go completely extinct. Additionally, the studied plant's hosts will lose at least 36% of currently suitable niches boosting the range contraction of P. tournefortii. The GISS-E2 scenario will be least damaging, while the CNRM will be most damaging to climate change for studied species. Our study shows the importance of including ecological data in niche models to obtain more reliable predictions of the future distribution of parasitic plants.
Collapse
Affiliation(s)
- Renata Piwowarczyk
- Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Street, 25-406, Kielce, Poland
| | - Marta Kolanowska
- Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
3
|
Wang A, Bose AK, Lehmann MM, Rigling A, Gessler A, Yu L, Li M. Water status and macronutrient concentrations, but not carbon status, of Viscum album ssp. album are determined by its hosts: a study across nine mistletoe-host pairs in central Switzerland. FRONTIERS IN PLANT SCIENCE 2023; 14:1142760. [PMID: 37223783 PMCID: PMC10200922 DOI: 10.3389/fpls.2023.1142760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
Introduction European mistletoe, Viscum album L., is a hemiparasite that can infect various tree species, yet our understanding of its physiological interactions with host species is limited. Methods Nine mistletoe-host pairs (i.e. V. album ssp. album growing on nine different broadleaf tree species) under different growth conditions in central Switzerland were selected to examine the carbon, water and nutrient relationships between mistletoe and its hosts. We measured leaf morphological traits, isotopic compositions (δ13C and δ15N), concentrations of non-structural carbohydrates (NSC) and specific compounds (i.e. mobile sugars and starch), and macronutrients (i.e. N, P, K, Ca, Mg, S) in leaf and xylem tissues of both mistletoe and its hosts. Results and Discussion There were only non-significant relationships between NSC concentrations in mistletoe and in its host species across the nine mistletoe-host pairs, suggesting the carbon condition of V. album ssp. album is determined by both the heterotrophic carbon transfer and self-photosynthetic capacity among different mistletoe-host pairs. However, mistletoe leaf morphological traits (single leaf area and mass, and leaf mass per unit leaf area) did not change across the nine mistletoe-host pairs, and mistletoe leaf δ13C, water content and macronutrient concentrations were linearly correlated with those in the host leaves. Macronutrients showed accumulations in mistletoe across the nine pairs. Further, tissue N concentrations were significantly higher in mistletoe grown on N-fixing hosts than on non-N-fixing hosts. Finally, leaf N:P in mistletoe was significantly correlated with the ratio in the host across the nine mistletoe-host pairs. Overall, our results indicate strong relationships between mistletoe and its hosts for water- and nutrient-related traits, but not for carbon-related traits, which demonstrates that V. album ssp. album can adjust its physiology to survive on different deciduous tree species hosts and under different site conditions.
Collapse
Affiliation(s)
- Ao Wang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems ITES, Swiss Federal Istitute of Technology, ETH Zürich, Universitätstrasse 16 Zurich, Switzerland
| | - Arun K. Bose
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse Birmensdorf, Switzerland
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Marco M. Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse Birmensdorf, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems ITES, Swiss Federal Istitute of Technology, ETH Zürich, Universitätstrasse 16 Zurich, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems ITES, Swiss Federal Istitute of Technology, ETH Zürich, Universitätstrasse 16 Zurich, Switzerland
| | - Longfei Yu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- College of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
4
|
Mudgal G, Kaur J, Chand K, Parashar M, Dhar SK, Singh GB, Gururani MA. Mitigating the Mistletoe Menace: Biotechnological and Smart Management Approaches. BIOLOGY 2022; 11:1645. [PMID: 36358346 PMCID: PMC9687506 DOI: 10.3390/biology11111645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023]
Abstract
Mistletoes have been considered a keystone resource for biodiversity, as well as a remarkable source of medicinal attributes that attract pharmacologists. Due to their hemiparasitic nature, mistletoes leach water and nutrients, including primary and secondary metabolites, through the vascular systems of their plant hosts, primarily trees. As a result of intense mistletoe infection, the hosts suffer various growth and physiological detriments, which often lead to tree mortality. Because of their easy dispersal and widespread tropism, mistletoes have become serious pests for commercial fruit and timber plantations. A variety of physical and chemical treatment methods, along with silvicultural practices, have shaped conventional mistletoe management. Others, however, have either failed to circumvent the growing range and tropism of these parasitic plants or present significant environmental and public health risks. A biocontrol approach that could sidestep these issues has never achieved full proof of concept in real-field applications. Our review discusses the downsides of conventional mistletoe control techniques and explores the possibilities of biotechnological approaches using biocontrol agents and transgenic technologies. It is possible that smart management options will pave the way for technologically advanced solutions to mitigate mistletoes that are yet to be exploited.
Collapse
Affiliation(s)
- Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Kartar Chand
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manisha Parashar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Sanjoy K. Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Gajendra B. Singh
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Mayank A. Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
5
|
Crates R, Watson DM, Albery GF, Bonnet T, Murphy L, Rayner L, Stojanovic D, Timewell C, Meney B, Roderick M, Ingwersen D, Heinsohn R. Mistletoes could moderate drought impacts on birds, but are themselves susceptible to drought-induced dieback. Proc Biol Sci 2022; 289:20220358. [PMID: 35858071 PMCID: PMC9277258 DOI: 10.1098/rspb.2022.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mistletoes are hemiparasitic plants and keystone species in many ecosystems globally. Given predicted increases in drought frequency and intensity, mistletoes may be crucial for moderating drought impacts on community structure. Dependent on host vascular flows, mistletoes can succumb to stress when water availability falls, making them susceptible to mortality during drought. We counted mistletoe across greater than 350 000 km2 of southeastern Australia and conducted standardized bird surveys between 2016 and 2021, spanning a major drought event in 2018-2019. We aimed to identify predictors of mistletoe abundance and mortality and determine whether mistletoes might moderate drought impacts on woodland birds. Live mistletoe abundance varied with tree species composition, land use and presence of mistletoebirds. Mistletoe mortality was widespread, consistent with high 2018/2019 summer temperatures, low 2019/2020 summer rainfall and the interaction between summer temperatures and rainfall in 2019/2020. The positive association between surviving mistletoes and woodland birds was greatest in the peak drought breeding seasons of 2018/2019 and 2019/2020, particularly for small residents and insectivores. Paradoxically, mistletoes could moderate drought impacts on birds, but are themselves vulnerable to drought-induced mortality. An improved understanding of the drivers and dynamics of mistletoe mortality is needed to address potential cascading trophic impacts associated with mistletoe die-off.
Collapse
Affiliation(s)
- Ross Crates
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - David M. Watson
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | | | - Timothée Bonnet
- Research School of Biology, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Liam Murphy
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Laura Rayner
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | | | - Beau Meney
- BirdLife Australia, Carlton, Melbourne, Australia
| | | | | | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| |
Collapse
|