1
|
Huo J, Li C, Zhao Y, Han G, Li X, Zhang Z. Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats. PLANT PHYSIOLOGY 2024; 196:2450-2462. [PMID: 39268873 DOI: 10.1093/plphys/kiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/15/2024]
Abstract
The growth and survival of woody plant species is mainly driven by evolutionary and environmental factors. However, little is known about the hydraulic mechanisms that respond to growth limitation and enable desert shrub survival in arid habitats. To shed light on these hydraulic mechanisms, 9-, 31-, and 56-yr-old Caragana korshinskii plants that had been grown under different soil water conditions at the southeast edge of the Tengger Desert, Ningxia, China, were used in this study. The growth of C. korshinskii was mainly limited by soil water rather than shrub age in nonwatered habitats, which indicated the importance of maintaining shrub survival prior to growth under drought. Meanwhile, higher vessel density, narrower vessels, and lower xylem hydraulic conductivity indicated that shrubs enhanced hydraulic safety and reduced their hydraulic efficiency in arid conditions. Importantly, xylem hydraulic conductivity is mediated by variation in xylem hydraulic architecture-regulated photosynthetic carbon assimilation and growth of C. korshinskii. Our study highlights that the synergistic variation in xylem hydraulic safety and hydraulic efficiency is the hydraulic mechanism of limiting growth and maintaining survival in C. korshinskii under drought, providing insights into the strategies for growth and survival of desert shrubs in arid habitats.
Collapse
Affiliation(s)
- Jianqiang Huo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengyi Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environmental of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoling Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhishan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhu B, Guo P, Wu S, Yang Q, He F, Gao X, Zhang Y, Xiao J. A Better Fruit Quality of Grafted Blueberry Than Own-Rooted Blueberry Is Linked to Its Anatomy. PLANTS (BASEL, SWITZERLAND) 2024; 13:625. [PMID: 38475469 DOI: 10.3390/plants13050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
To further clarify the impact of different rootstocks in grafted blueberry, fruit quality, mineral contents, and leaf gas exchange were investigated in 'O'Neal' blueberry (Vaccinium corymbosum) grafted onto 'Anna' (V. corymbosum) (AO), 'Sharpblue' (V. corymbosum) (SO), 'Baldwin' (V. virgatum) (BO), 'Plolific' (V. virgatum) (PO), and 'Tifblue' (V. virgatum) (TO) rootstocks and own-rooted 'O'Neal' (NO), and differences in anatomic structures and drought resistance were determined in AO, TO, and NO. The findings revealed that fruit quality in TO and PO was excellent, that of BO and SO was good, and that of AO and NO was medium. 'Tifblue' and 'Plolific' rootstocks significantly increased the levels of leaf phosphorus and net photosynthetic rate of 'O'Neal', accompanied by a synchronous increase in their transpiration rates, stomatal conductance, and intercellular CO2. Additionally, the comprehensive evaluation scores from a principal component analysis based on anatomic structure traits from high to low were in the order TO > AO > NO. The P50 (xylem water potential at 50% loss of hydraulic conductivity) values of these grafted plants descended in the order NO > AO > TO, and the branch hydraulic conductivity of TO and sapwood hydraulic conductivity of TO and AO were significantly lower than those of NO. Thus, TO plants exhibited the strongest drought resistance, followed by AO, and NO, and this trait was related to the effects of different rootstocks on the fruit quality of 'O'Neal' blueberry. These results provided a basis for a deeper understanding of the interaction between rootstocks and scions, as well mechanisms to improve blueberry fruit quality.
Collapse
Affiliation(s)
- Bo Zhu
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Peipei Guo
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuangshuang Wu
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qingjing Yang
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Feng He
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xuan Gao
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ya Zhang
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Zhang XM, Xia Y, Li JT, Shi XQ, Liu LX, Tang M, Tang J, Sun W, Wen ZR, Yi Y. Assessing inter-intraspecific variability of leaf vulnerability to embolism for 10 alpine Rhododendron species growing in Southwestern China. PHYSIOLOGIA PLANTARUM 2024; 176:e14211. [PMID: 38351399 DOI: 10.1111/ppl.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Alpine Rhododendron species are prominent constituents and renowned ornamental plants in alpine ecosystems. Consequently, evaluating the genetic variation in embolism resistance within the genus Rhododendron and predicting their adaptability to future climate change is important. Nevertheless, the assessment of embolism resistance in Rhododendron species remains limited. This investigation aimed to examine leaf vulnerability to embolism across ten alpine Rhododendron species, which are frequently employed as ornamental species in Rhododendron forests in Southwest China. The study analyzed the correlation between embolism resistance and various morphological traits, while also conducting water control experiments to evaluate the relationship between embolism resistance and drought resistance. The outcomes indicated pronounced variations in leaf vulnerability to embolism among species, as reflected by the water potential at 50% of embolized pixels (P50 ). Furthermore, the leaf P50 exhibited a significant positive correlation with vessel diameter (D) (R2 = 0.44, P = 0.03) and vessel wall span (b) (R2 = 0.64, P = 0.005), while displaying a significant negative correlation with vessel reinforcement ((t/b)2 ) (R2 = 0.67, P = 0.004). These findings underscore the reliability of selecting species based on embolism vulnerability to preserve the diversity of alpine ecosystems and foster resilience to climate change.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Ying Xia
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jie-Ting Li
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xiao-Qian Shi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lun-Xian Liu
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhi-Rui Wen
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
| |
Collapse
|
4
|
Zhang C, Huang N, Zhang F, Wu T, He X, Wang J, Li Y. Intraspecific variations of leaf hydraulic, economic, and anatomical traits in Cinnamomum camphora along an urban-rural gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166741. [PMID: 37659523 DOI: 10.1016/j.scitotenv.2023.166741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Urbanization brings numerous benefits to residents, but it also introduces complex, variable, and heterogeneous habitat conditions to urban plants, resulting in an arid and hot urban environment that decreases tree growth and the ecological service capacity of trees. In this study, we evaluated leaf hydraulic, economic, and anatomical traits and their covariations of Cinnamomum camphora along an urban-rural gradient in Hefei, Eastern China. We found that Cinnamomum camphora in urban adopted a conservative hydraulic strategy with low leaf turgor loss point (Tlp), leaf hydraulic conductance (Kleaf), and leaf water potential resulting in 50 % loss of hydraulic conductance (P50), as well as a quick investment-return economic strategy with low unit leaf dry matter content (LMA) and high leaf nitrogen content (Leaf N). P50, Kleaf and LMA were significantly positively correlated with the urban-rural gradient (PC1urban-rural gradient), while Leaf N exhibited a negative correlation with it. The results showed a trade-off between intraspecific safety and efficiency in leaf hydraulic traits along the urban-rural gradient and an intraspecific coordinated variation in leaf hydraulic and economic traits. In addition, based on the analysis of a trait coordination network, it was revealed that leaf mesophyll and stomata were key structures for trait adjustment and coordination. Furthermore, our findings offer a significant theoretical underpinning for the effective management of landscape trees and the strategic planning of urban tree species.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Nuo Huang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Fengyu Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Ting Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia; Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Xianjin He
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette 91191, France
| | - Jianan Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China; Anhui Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Yiyong Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China; Anhui Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Changjiang West Road 130, Shushan District, Hefei 230036, China.
| |
Collapse
|
5
|
Xu GQ, Chen TQ, Liu SS, Ma J, Li Y. Within-crown plasticity of hydraulic properties influence branch dieback patterns of two woody plants under experimental drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158802. [PMID: 36115397 DOI: 10.1016/j.scitotenv.2022.158802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that: (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.
Collapse
Affiliation(s)
- Gui-Qing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tu-Qiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen-Si Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Yan Li
- State Key Lab of Subtropical Siviculture, Zhejiang A&F University, 666Wusu Street, Lin-An, Hangzhou 311300, China
| |
Collapse
|