1
|
Yue C, Wang H, Meinzer FC, Dai X, Meng S, Shao H, Kou L, Gao D, Chen F, Fu X. Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance. PLANT, CELL & ENVIRONMENT 2025; 48:3875-3889. [PMID: 39831751 DOI: 10.1111/pce.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood. We measured resource pools (relative water content [RWC] soluble sugar [SS] and starch [S]) and anatomical features of leaves and supporting twigs for 36 trees in a subtropical population during the dry season when the Budyko's aridity index was 0.362. For each tree, we rank-transformed the RWC (RWCrank), SS (SSrank), and S (Srank) and characterised the resource segmentation within organs using Ln(RWCrank/SSrank) and Ln(RWCrank/Srank). We also assessed the resource segmentation between organs using the difference in resource pools between leaves and twigs (RWCleaf-twig, SSleaf-twig, and Sleaf-twig). Resource segmentation was much more effective than the organ-level resource pool alone in predicting intraspecific variation of tree growth rates. Fast-growing individuals were mainly characterised by lower leaf Ln(RWCrank/SSrank), higher twig Ln(RWCrank/SSrank), and lower SSleaf-twig. The resource segmentation strategy of fast-growing individuals was associated with anatomical attributes that facilitate phloem SS loading and unloading and thus water supply upstream. Our results highlight that resource segmentation is an important dimension of plant drought adaptive strategies and enables better prediction of tree growth vigour than resource pool attributes individually.
Collapse
Affiliation(s)
- Chen Yue
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Decai Gao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fusheng Chen
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
2
|
Zhou X, Ouyang S, Saurer M, Feng M, Bose AK, Duan H, Tie L, Shen W, Gessler A. Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172164. [PMID: 38580112 DOI: 10.1016/j.scitotenv.2024.172164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland.
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland
| | - Mei Feng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|