1
|
Bell DM, Pabst RJ, Shaw DC. Tree growth declines and mortality were associated with a parasitic plant during warm and dry climatic conditions in a temperate coniferous forest ecosystem. GLOBAL CHANGE BIOLOGY 2020; 26:1714-1724. [PMID: 31507026 DOI: 10.1111/gcb.14834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
Insects and pathogens are widely recognized as contributing to increased tree vulnerability to the projected future increasing frequency of hot and dry conditions, but the role of parasitic plants is poorly understood even though they are common throughout temperate coniferous forests in the western United States. We investigated the influence of western hemlock dwarf mistletoe (Arceuthobium tsugense) on large (≥45.7 cm diameter) western hemlock (Tsuga heterophylla) growth and mortality in a 500 year old coniferous forest at the Wind River Experimental Forest, Washington State, United States. We used five repeated measurements from a long-term tree record for 1,395 T. heterophylla individuals. Data were collected across a time gradient (1991-2014) capturing temperature increases and precipitation decreases. The dwarf mistletoe rating (DMR), a measure of infection intensity, varied among individuals. Our results indicated that warmer and drier conditions amplified dwarf mistletoe effects on T. heterophylla tree growth and mortality. We found that heavy infection (i.e., high DMR) resulted in reduced growth during all four measurement intervals, but during warm and dry intervals (a) growth declined across the entire population regardless of DMR level, and (b) both moderate and heavy infections resulted in greater growth declines compared to light infection levels. Mortality rates increased from cooler-wetter to warmer-drier measurement intervals, in part reflecting increasing mortality with decreasing tree growth. Mortality rates were positively related to DMR, but only during the warm and dry measurement intervals. These results imply that parasitic plants like dwarf mistletoe can amplify the impact of climatic stressors of trees, contributing to the vulnerability of forest landscapes to climate-induced productivity losses and mortality events.
Collapse
Affiliation(s)
- David M Bell
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, USA
| | - Robert J Pabst
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - David C Shaw
- Department of Forest Engineering, Resources & Management, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Ulrich DEM, Still C, Brooks JR, Kim Y, Meinzer FC. Investigating old-growth ponderosa pine physiology using tree-rings, δ 13 C, δ 18 O, and a process-based model. Ecology 2019; 100:e02656. [PMID: 30756385 PMCID: PMC6645703 DOI: 10.1002/ecy.2656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 11/07/2022]
Abstract
In dealing with predicted changes in environmental conditions outside those experienced today, forest managers and researchers rely on process-based models to inform physiological processes and predict future forest growth responses. The carbon and oxygen isotope ratios of tree-ring cellulose (δ13 Ccell , δ18 Ocell ) reveal long-term, integrated physiological responses to environmental conditions. We incorporated a submodel of δ18 Ocell into the widely used Physiological Principles in Predicting Growth (3-PG) model for the first time, to complement a recently added δ13 Ccell submodel. We parameterized the model using previously reported stand characteristics and long-term trajectories of tree-ring growth, δ13 Ccell , and δ18 Ocell collected from the Metolius AmeriFlux site in central Oregon (upland trees). We then applied the parameterized model to a nearby set of riparian trees to investigate the physiological drivers of differences in observed basal area increment (BAI) and δ13 Ccell trajectories between upland and riparian trees. The model showed that greater available soil water and maximum canopy conductance likely explain the greater observed BAI and lower δ13 Ccell of riparian trees. Unexpectedly, both observed and simulated δ18 Ocell trajectories did not differ between the upland and riparian trees, likely due to similar δ18 O of source water isotope composition. The δ18 Ocell submodel with a Peclet effect improved model estimates of δ18 Ocell because its calculation utilizes 3-PG growth and allocation processes. Because simulated stand-level transpiration (E) is used in the δ18 O submodel, aspects of leaf-level anatomy such as the effective path length for transport of water from the xylem to the sites of evaporation could be estimated.
Collapse
Affiliation(s)
- Danielle E. M. Ulrich
- Bioscience DivisionLos Alamos National LaboratoryP.O. Box 1663 MS M888Los AlamosNew Mexico87545USA
| | - Christopher Still
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - J. Renée Brooks
- Western Ecology DivisionUS EPA/NHEERLCorvallisOregon97331USA
| | - Youngil Kim
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | | |
Collapse
|
3
|
Yan CF, Gessler A, Rigling A, Dobbertin M, Han XG, Li MH. Effects of mistletoe removal on growth, N and C reserves, and carbon and oxygen isotope composition in Scots pine hosts. TREE PHYSIOLOGY 2016; 36:562-75. [PMID: 27083524 PMCID: PMC4886294 DOI: 10.1093/treephys/tpw024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/23/2016] [Indexed: 05/23/2023]
Abstract
Most mistletoes are xylem-tapping hemiparasites, which derive their resources from the host's xylem solution. Thus, they affect the host's water relations and resource balance. To understand the physiological mechanisms underlying the mistletoe-host relationship, we experimentally removed Viscum album ssp. austriacum (Wiesb.) Vollmann from adult Pinus sylvestris L. host trees growing in a Swiss dry valley. We analyzed the effects of mistletoe removal over time on host tree growth and on concentrations of nonstructural carbohydrates (NSC) and nitrogen (N) in needles, fine roots and sapwood. In addition, we assessed the δ(13)C and δ(18)O in host tree rings. After mistletoe removal, δ(13)C did not change in newly produced tree rings compared with tree rings in control trees (still infected with mistletoe), but δ(18)O values increased. This pattern might be interpreted as a decrease in assimilation (A) and stomatal conductance (gs), but in our study, it most likely points to an inadequacy of the dual isotope approach. Instead, we interpret the unchanged δ(13)C in tree rings upon mistletoe removal as a balanced increase in A and gs that resulted in a constant intrinsic water use efficiency (defined as A/gs). Needle area-based concentrations of N, soluble sugars and NSC, as well as needle length, single needle area, tree ring width and shoot growth, were significantly higher in trees from which mistletoe was removed than in control trees. This finding suggests that mistletoe removal results in increased N availability and carbon gain, which in turn leads to increased growth rates of the hosts. Hence, in areas where mistletoe is common and the population is large, mistletoe management (e.g., removal) may be needed to improve the host vigor, growth rate and productivity, especially for relatively small trees and crop trees in xeric growth conditions.
Collapse
Affiliation(s)
- Cai-Feng Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland Leibniz Centre for Agricultural Landscape Research ZALF, Eberswalderstr. 84, 15374 Müncheberg, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Matthias Dobbertin
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Xing-Guo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Mai-He Li
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| |
Collapse
|