1
|
Mayer AB, Consigny PH, Grobusch MP, Camprubí-Ferrer D, Huits R, Rothe C. Chikungunya in returning travellers from Bali - A GeoSentinel case series. Travel Med Infect Dis 2023; 52:102543. [PMID: 36682574 DOI: 10.1016/j.tmaid.2023.102543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Affiliation(s)
- Anna Britta Mayer
- LMU Hospital Centre, Division of Infectious Diseases and Tropical Medicine, Munich, Germany.
| | - Paul-Henri Consigny
- Institut Pasteur, Centre Médical, Centre d'Infectiologie Necker-Pasteur, Paris, France
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection & Immunity, Amsterdam Public Health, Amsterdam University Medical Centres, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ralph Huits
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Camilla Rothe
- LMU Hospital Centre, Division of Infectious Diseases and Tropical Medicine, Munich, Germany
| |
Collapse
|
2
|
Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes (Basel) 2022; 13:genes13122387. [PMID: 36553654 PMCID: PMC9778061 DOI: 10.3390/genes13122387] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Successful detection of the first SARS-CoV-2 cases using the real-time polymerase chain reaction (real-time PCR) method reflects the power and usefulness of this technique. Real-time PCR is a variation of the PCR assay to allow monitoring of the PCR progress in actual time. PCR itself is a molecular process used to enzymatically synthesize copies in multiple amounts of a selected DNA region for various purposes. Real-time PCR is currently one of the most powerful molecular approaches and is widely used in biological sciences and medicine because it is quantitative, accurate, sensitive, and rapid. Current applications of real-time PCR include gene expression analysis, mutation detection, detection and quantification of pathogens, detection of genetically modified organisms, detection of allergens, monitoring of microbial degradation, species identification, and determination of parasite fitness. The technique has been used as a gold standard for COVID-19 diagnosis. Modifications of the standard real-time PCR methods have also been developed for particular applications. This review aims to provide an overview of the current applications of the real-time PCR technique, including its role in detecting emerging viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
- Correspondence:
| | - Yora Permata Dewi
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| | - Ita Margaretha Nainggolan
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Ungke Antonjaya
- Eijkman Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
3
|
Graham M, Kizu J, Devine G, McCallum F, McPherson B, Auliff A, Kaminiel P, Liu W. Seroprevalence of chikungunya virus among military personnel in Papua New Guinea, 2019. IJID REGIONS 2022; 3:34-36. [PMID: 35755470 PMCID: PMC9216429 DOI: 10.1016/j.ijregi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
The seroprevalence of chikungunya virus was investigated among military personnel in Papua New Guinea. The seroprevalence of anti-chikungunya virus immunoglobulin G antibodies on enzyme-linked immunosorbent assay was 47%. The seroprevalence of anti-chikungunya virus neutralizing antibodies was 35%.
Objectives The first outbreak of chikungunya virus (CHIKV) was reported in West Sepik, Papua New Guinea (PNG) in June 2012, and spread rapidly throughout PNG. CHIKV imported from PNG to Queensland has been reported occasionally, but transmission of CHIKV in PNG remains unclear due to the lack of testing capability. This study investigated the degree of CHIKV exposure among PNG military personnel (PNGMP) in 2019, 7 years after its first emergence. Methods Sera of 204 PNGMP recruited in April 2019 was tested for the presence of anti-CHIKV immunoglobulin G (IgG) antibodies using a commercially available IgG detection kit, and anti-CHIKV neutralizing antibodies against a CHIKV Reunion strain using a neutralizing assay. Results Anti-CHIKV seropositivity of the sera was 47% and 35%, respectively, using the enzyme-linked immunosorbent assay (ELISA) and neutralizing assay. Five percent (n=11) of samples were found to be IgG negative or borderline, but neutralizing antibody positive. Conclusions The prevalence of anti-CHIKV neutralizing antibody of 35% suggests that CHIKV infection has become endemic among PNGMP. Current commercially available CHIKV ELISA detection kits may not be suitable for diagnostic purposes in multiple alphavirus endemic areas such as PNG, due to serological cross-reactivity among alphaviruses. Re-emergence of CHIKV in PNGMP is possible.
Collapse
|
4
|
Harapan H, Michie A, Ernst T, Panta K, Mudatsir M, Yohan B, Haryanto S, McCarthy S, Sasmono RT, Imrie A. Co-Circulation of Chikungunya and Multiple DENV Serotypes and Genotypes, Western Indonesia 2015-2016. Viruses 2022; 14:99. [PMID: 35062303 PMCID: PMC8779054 DOI: 10.3390/v14010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Dengue is a mosquito-borne disease of public health concern affecting tropical and subtropical countries, including Indonesia. Although studies on dengue epidemiology have been undertaken in Indonesia, data are lacking in many areas of the country. The aim of this study was to determine dengue virus (DENV) and chikungunya virus (CHIKV) molecular epidemiology in western regions of the Indonesian archipelago. A one-year prospective study was conducted in Aceh and Jambi in 2015 and 2016, respectively, where patients with dengue-like illness were enrolled. Of 205 patients recruited, 29 and 27 were confirmed with dengue in Aceh and Jambi, respectively, and three from Jambi were confirmed with chikungunya. DENV-1 was the predominant serotype identified in Aceh while DENV-2 was predominant in Jambi. All DENV-1 and DENV-2 from both regions were classified as Genotype I and Cosmopolitan genotype, respectively, and all DENV-3 viruses from Jambi were Genotype I. Some viruses, in particular DENV-1, displayed a distinct lineage distribution, where two DENV-1 lineages from Aceh were more closely related to viruses from China instead of Jambi highlighting the role of travel and flight patterns on DENV transmission in the region. DENV-2 from both Aceh and Jambi and DENV-3 from Jambi were all closely related to Indonesian local strains. All three CHIKV belonged to Asian genotype and clustered closely with Indonesian CHIKV strains including those previously circulating in Jambi in 2015, confirming continuous and sustainable transmission of CHIKV in the region. The study results emphasize the importance of continuous epidemiological surveillance of arboviruses in Indonesia and simultaneous testing for CHIKV among dengue-suspected patients.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Kritu Panta
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia; (B.Y.); (R.T.S.)
| | - Sotianingsih Haryanto
- Faculty of Medicine and Health Science, Universitas Jambi, Jambi 36361, Indonesia;
- Raden Mattaher Hospital, Jambi 36361, Indonesia
| | - Suzi McCarthy
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
- Pathwest Laboratory Medicine, Nedlands, WA 6009, Australia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia; (B.Y.); (R.T.S.)
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
- Pathwest Laboratory Medicine, Nedlands, WA 6009, Australia
| |
Collapse
|
5
|
Ajie M, Pascapurnama DN, Prodjosoewojo S, Kusumawardani S, Djauhari H, Handali S, Alisjahbana B, Chaidir L. Development of Nucleic Acid Lateral Flow Immunoassay for Rapid and Accurate Detection of Chikungunya Virus in Indonesia. J Microbiol Biotechnol 2021; 31:1716-1721. [PMID: 34584033 PMCID: PMC9705883 DOI: 10.4014/jmb.2108.08025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Chikungunya fever is an arboviral disease caused by the Chikungunya virus (CHIKV). The disease has similar clinical manifestations with other acute febrile illnesses which complicates differential diagnosis in low-resource settings. We aimed to develop a rapid test for CHIKV detection based on the nucleic acid lateral flow immunoassay technology. The system consists of a primer set that recognizes the E1 region of the CHIKV genome and test strips in an enclosed cassette which are used to detect amplicons labeled with FITC/biotin. Amplification of the viral genome was done using open-source PCR, a low-cost open-source thermal cycler. Assay performance was evaluated using a panel of RNA isolated from patients' blood with confirmed CHIKV (n = 8) and dengue virus (n = 20) infection. The open-source PCR-NALFIA platform had a limit of detection of 10 RNA copies/ml. The assay had a sensitivity and specificity of 100% (95% CI: 67.56% - 100%) and 100% (95% CI: 83.89% - 100%), respectively, compared to reference standards of any positive virus culture on C6/36 cell lines and/or qRT-PCR. Further evaluation of its performance using a larger sample size may provide important data to extend its usefulness, especially its utilization in the peripheral healthcare facilities with scarce resources and outbreak situations.
Collapse
Affiliation(s)
- Mandala Ajie
- Research Center for Care and Control of Infectious Disease (RC3ID), Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Dyshelly Nurkartika Pascapurnama
- Research Center for Care and Control of Infectious Disease (RC3ID), Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Susantina Prodjosoewojo
- Research Center for Care and Control of Infectious Disease (RC3ID), Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia,Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin Hospital, Bandung 40161, Indonesia
| | - Shinta Kusumawardani
- Research Center for Care and Control of Infectious Disease (RC3ID), Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Hofiya Djauhari
- Research Center for Care and Control of Infectious Disease (RC3ID), Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Sukwan Handali
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia,Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin Hospital, Bandung 40161, Indonesia
| | - Lidya Chaidir
- Research Center for Care and Control of Infectious Disease (RC3ID), Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia,Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia,Corresponding author Phone: +62-22-2044128 E-mail:
| |
Collapse
|
6
|
Kardena IM, Adi AAAM, Astawa NM, O’Dea M, Laurence M, Sahibzada S, Bruce M. Japanese encephalitis in Bali, Indonesia: ecological and socio-cultural perspectives. Int J Vet Sci Med 2021; 9:31-43. [PMID: 34589543 PMCID: PMC8451599 DOI: 10.1080/23144599.2021.1975879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022] Open
Abstract
The increasing number of cases of acute encephalitis syndrome, a key presenting clinical sign of Japanese encephalitis infection in humans, along with increasing laboratory confirmed cases in Bali over recent years have led to the Indonesian government developing a national program of vaccination against Japanese encephalitis virus. In order to inform multidisciplinary management, a review was conducted to assess Japanese encephalitis virus-related cases in humans and animals including their determinants and detection in vectors. Along with published literature, key data from local authorized officers in Bali have been used to convey the recent situation of the disease. Related surveys detected up to 92% of the local children had antibodies against the virus with the annual incidence estimated to be 7.1 per 100,000 children. Additionally, reports on young and adult cases of infection within international travellers infected in Bali were documented with both non-fatal and fatal outcomes. Further seroprevalence surveys detected up to 90% with antibodies to the virus in animal reservoirs. The detection of the virus in certain Culex mosquito species and high levels of seropositivity may be associated with greater risk of the virus transmission to the human population. It was also highlighted that local sociocultural practices for agriculture and livestock were potentially associated with the high density of the vector and the reservoirs, which then may lead to the risk of the disease transmission in the ecology of Bali.
Collapse
Affiliation(s)
- I Made Kardena
- Department of Biopathology, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia
| | - Anak Agung Ayu Mirah Adi
- Department of Biopathology, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia
| | - Nyoman Mantik Astawa
- Department of Biopathology, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia
| | - Mark O’Dea
- Department of Primary Industries and Regional Development, Dpird Diagnostics and Laboratory Services, Sustainability and Biosecurity, South Perth, Western Australia
| | - Michael Laurence
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia
| | - Shafi Sahibzada
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia
| | - Mieghan Bruce
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia
| |
Collapse
|
7
|
[6]-Gingerol Inhibits Chikungunya Virus Infection by Suppressing Viral Replication. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6623400. [PMID: 33855075 PMCID: PMC8019639 DOI: 10.1155/2021/6623400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022]
Abstract
Chikungunya (CHIK) is a reemerging arboviral disease caused by chikungunya virus (CHIKV) infection. The disease is clinically hallmarked by prolonged debilitating joint pain. Currently, there is no specific antiviral medication nor commercial vaccine available for treatment of the disease, which makes the discovery or development of specific anti-CHIKV compounds a priority. Ginger (Zingiber officinale Roscoe) is widely known for its various health benefits. The compound [6]-gingerol is the main active ingredient found in ginger. This study sought to determine the potential of [6]-gingerol antiviral activity against CHIKV infection using in vitro human hepatocyte HepG2 cells. The antiviral activity mechanism was investigated using direct virucidal and four indirect (pre-, post-, full-, and prevention) treatment assays. [6]-Gingerol showed weak virucidal activity but significant indirect antiviral activity against CHIKV through post- and full treatment with IC50 of 0.038 mM and 0.031 mM, respectively, without showing cell cytotoxicity. The results indicated that [6]-gingerol inhibits CHIKV infection through suppression of viral replication. Together, this study confirms the potential use of [6]-gingerol for CHIK antiviral compound.
Collapse
|
8
|
Stubbs SCB, Johar E, Yudhaputri FA, Yohan B, Santoso MS, Hayati RF, Denis D, Blacklaws BA, Powers AM, Sasmono RT, Myint KSA, Frost SDW. An investig-ation into the epidemiology of chikungunya virus across neglected regions of Indonesia. PLoS Negl Trop Dis 2020; 14:e0008934. [PMID: 33347450 PMCID: PMC7785224 DOI: 10.1371/journal.pntd.0008934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/05/2021] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is an important emerging and re-emerging public health problem worldwide. In Indonesia, where the virus is endemic, epidemiological information from outside of the main islands of Java and Bali is limited. Methodology/Principal Findings Four hundred and seventy nine acutely febrile patients presenting between September 2017–2019 were recruited from three city hospitals situated in Ambon, Maluku; Banjarmasin, Kalimantan; and Batam, Batam Island as part of a multi-site observational study. CHIKV RNA was detected in a single serum sample while a separate sample was IgM positive. IgG seroprevalence was also low across all three sites, ranging from 1.4–3.2%. The single RT-PCR positive sample from this study and 24 archived samples collected during other recent outbreaks throughout Indonesia were subjected to complete coding region sequencing to assess the genetic diversity of Indonesian strains. Phylogenetic analysis revealed all to be of a single clade, which was distinct from CHIKV strains recently reported from neighbouring regions including the Philippines and the Pacific Islands. Conclusions/Significance Chikungunya virus strains from recent outbreaks across Indonesia all belong to a single clade. However, low-level seroprevalence and molecular detection of CHIKV across the three study sites appears to contrast with the generally high seroprevalences that have been reported for non-outbreak settings in Java and Bali, and may account for the relative lack of CHIKV epidemiological data from other regions of Indonesia. Outbreaks of chikungunya virus (CHIKV) are a common occurrence in Indonesia. However, limited data is available on CHIKV from regions outside of the main, central islands of Java and Bali. We recruited hospital patients from three cities located in the east (Ambon), west (Batam) and north (Banjarmasin) of the country, and screened their blood for evidence of CHIKV infection. Our results showed that CHIKV infections were relatively uncommon across patients from all three sites, suggesting that CHIKV transmission is currently relatively rare in these regions. Additional analysis of 25 recent Indonesian CHIKV genome sequences revealed that a new lineage of CHIKV has recently emerged in Indonesia. Several reports have highlighted Indonesia as a major source of imported CHIKV cases, suggesting that this new lineage has the potential to be introduced into neighbouring countries in the near future, with unknown consequences. Overall, our results indicate that additional CHIKV surveillance studies in Indonesia and Southeast Asia are needed in order to gain a clearer understanding of transmission routes and hot spots throughout the region.
Collapse
Affiliation(s)
- Samuel C. B. Stubbs
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
- * E-mail: (SCBS); (KSAM)
| | - Edison Johar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | | | | | | | - Barbara A. Blacklaws
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Ann M. Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | | | - Khin Saw Aye Myint
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- * E-mail: (SCBS); (KSAM)
| | - Simon D. W. Frost
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
- Microsoft Research, Redmond, Washington, United States of America
| |
Collapse
|
9
|
Arif M, Tauran P, Kosasih H, Pelupessy NM, Sennang N, Mubin RH, Sudarmono P, Tjitra E, Murniati D, Alam A, Gasem MH, Aman AT, Lokida D, Hadi U, Parwati KTM, Lau CY, Neal A, Karyana M. Chikungunya in Indonesia: Epidemiology and diagnostic challenges. PLoS Negl Trop Dis 2020; 14:e0008355. [PMID: 32479497 PMCID: PMC7289446 DOI: 10.1371/journal.pntd.0008355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/11/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is often overlooked as an etiology of fever in tropical and sub-tropical regions. Lack of diagnostic testing capacity in these areas combined with co-circulation of clinically similar pathogens such as dengue virus (DENV), hinders CHIKV diagnosis. To better address CHIKV in Indonesia, an improved understanding of epidemiology, clinical presentation, and diagnostic approaches is needed. METHODOLOGY/PRINCIPAL FINDINGS Acutely hospitalized febrile patients ≥1-year-old were enrolled in a multi-site observational cohort study conducted in Indonesia from 2013 to 2016. Demographic and clinical data were collected at enrollment; blood specimens were collected at enrollment, once during days 14 to 28, and three months after enrollment. Plasma samples negative for DENV by serology and/or molecular assays were screened for evidence of acute CHIKV infection (ACI) by serology and molecular assays. To address the co-infection of DENV and CHIKV, DENV cases were selected randomly to be screened for evidence of ACI. ACI was confirmed in 40/1,089 (3.7%) screened subjects, all of whom were DENV negative. All 40 cases initially received other diagnoses, most commonly dengue fever, typhoid fever, and leptospirosis. ACI was found at five of the seven study cities, though evidence of prior CHIKV exposure was observed in 25.2% to 45.9% of subjects across sites. All subjects were assessed during hospitalization as mildly or moderately ill, consistent with the Asian genotype of CHIKV. Subjects with ACI had clinical presentations that overlapped with other common syndromes, atypical manifestations of disease, or persistent or false-positive IgM against Salmonella Typhi. Two of the 40 cases were possibly secondary ACI. CONCLUSIONS/SIGNIFICANCE CHIKV remains an underdiagnosed acute febrile illness in Indonesia. Public health measures should support development of CHIKV diagnostic capacity. Improved access to point-of-care diagnostic tests and clinical training on presentations of ACI will facilitate appropriate case management such as avoiding unneccessary treatments or antibiotics, early response to control mosquito population and eventually reducing disease transmission.
Collapse
Affiliation(s)
- Mansyur Arif
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Patricia Tauran
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Herman Kosasih
- *Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Ninny Meutia Pelupessy
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Nurhayana Sennang
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Risna Halim Mubin
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Pratiwi Sudarmono
- Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Emiliana Tjitra
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| | | | - Anggraini Alam
- Hasan Sadikin Hospital–Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | | | - Abu Tholib Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Lokida
- Tangerang District Hospital, Tangerang, Indonesia
| | - Usman Hadi
- Dr. Soetomo Academic General Hospital–Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | | | - Chuen-Yen Lau
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aaron Neal
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Muhammad Karyana
- *Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| |
Collapse
|
10
|
Sitepu FY, Suprayogi A, Pramono D, Harapan H, Mudatsir M. Epidemiological investigation of chikungunya outbreak, West Kalimantan, Indonesia. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Med Infect Dis 2019; 32:101437. [PMID: 31362115 DOI: 10.1016/j.tmaid.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/27/2019] [Accepted: 06/19/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Dengue fever control in the tropical island of Bali in Indonesia carries important significance both nationally and globally, as it is one of the most endemic islands in Indonesia and a worldwide popular travel destination. Despite its importance, the spatial and temporal heterogeneity in dengue risk and factors associated with its variation in risk across the island has not been not well explored. This study was aimed to analyze for the first time the geographical and temporal patterns of the incidence of dengue and to quantify the role of environmental and social factors on the spatial heterogeneity of dengue incidence in Bali. METHODS We analyzed retrospective dengue notification data at the sub-district level (Kecamatan) from January 2012 to December 2017 which obtained from the Indonesian Ministry of Health. Seasonality in notified dengue incidence was assessed by seasonal trend decomposition analysis with Loess (STL) smoothing. Crude standardized morbidity rates (SMRs) of dengue were calculated. Moran's I and local indicators of spatial autocorrelation (LISA) analysis were employed to assess spatial clustering and high-risk areas over the period studied. Bayesian spatial and temporal conditional autoregressive (CAR) modeling was performed to quantify the effects of rainfall, temperature, elevation, and population density on the spatial distribution of risk of dengue in Bali. RESULTS Strong seasonality of dengue incidence was observed with most cases notified during January to May. Dengue incidence was spatially clustered during the period studied with high-risk kecamatans concentrated in the south of the island, but since 2014, the high-risk areas expanded toward the eastern part of the island. The best-fitted CAR model showed increased dengue risk in kecamatans with high total annual rainfall (relative risk (RR): 1.16 for each 1-mm increase in rainfall; 95% Credible interval (CrI): 1.03-1.31) and high population density (RR: 7.90 per 1000 people/sq.km increase; 95% CrI: 3.01-20.40). The RR of dengue was decreased in kecamatans with higher elevation (RR: 0.73 for each 1-m increase in elevation; 95% CrI: 0.55-0.98). No significant association was observed between dengue RR and year except in 2014, where the dengue RR was significantly lower (RR: 0.53; 95% CrI: 0.30-0.92) relative to 2012. CONCLUSIONS Dengue incidence was strongly seasonal and spatially clustered in Bali. High-risk areas were spread from kecamatans in Badung and Denpasar toward Karangasem and Klungkung. The spatial heterogeneity of dengue risk across Bali was influenced by rainfall, elevation, and population density. Surveillance and targeted intervention strategies should be prioritized in the high-risk kecamatans identified in this study to better control dengue transmission in this most touristic island in Indonesia. Local health authorities should recommend travelers to use personal protective measures, especially during the peak epidemic period, before visiting Bali.
Collapse
|
12
|
Harapan H, Michie A, Mudatsir M, Nusa R, Yohan B, Wagner AL, Sasmono RT, Imrie A. Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis. BMC Infect Dis 2019; 19:243. [PMID: 30866835 PMCID: PMC6417237 DOI: 10.1186/s12879-019-3857-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite the high number of chikungunya cases in Indonesia in recent years, comprehensive epidemiological data are lacking. The systematic review was undertaken to provide data on incidence, the seroprevalence of anti-Chikungunya virus (CHIKV) IgM and IgG antibodies, mortality, the genotypes of circulating CHIKV and travel-related cases of chikungunya in the country. In addition, a phylogenetic and evolutionary analysis of Indonesian CHIKV was conducted. Methods A systematic review was conducted to identify eligible studies from EMBASE, MEDLINE, PubMed and Web of Science as of October 16th 2017. Studies describing the incidence, seroprevalence of IgM and IgG, mortality, genotypes and travel-associated chikungunya were systematically reviewed. The maximum likelihood phylogenetic and evolutionary rate was estimated using Randomized Axelerated Maximum Likelihood (RAxML), and the Bayesian Markov chain Monte Carlo (MCMC) method identified the Time to Most Recent Common Ancestors (TMRCA) of Indonesian CHIKV. The systematic review was registered in the PROSPERO database (CRD42017078205). Results Chikungunya incidence ranged between 0.16-36.2 cases per 100,000 person-year. Overall, the median seroprevalence of anti-CHIKV IgM antibodies in both outbreak and non-outbreak scenarios was 13.3% (17.7 and 7.3% for outbreak and non-outbreak events, respectively). The median seroprevalence of IgG antibodies in both outbreak and non-outbreak settings was 18.5% (range 0.0–73.1%). There were 130 Indonesian CHIKV sequences available, of which 120 (92.3%) were of the Asian genotype and 10 (7.7%) belonged to the East/Central/South African (ECSA) genotype. The ECSA genotype was first isolated in Indonesia in 2008 and was continually sampled until 2011. All ECSA viruses sampled in Indonesia appear to be closely related to viruses that caused massive outbreaks in Southeast Asia countries during the same period. Massive nationwide chikungunya outbreaks in Indonesia were reported during 2009–2010 with a total of 137,655 cases. Our spatio-temporal, phylogenetic and evolutionary data suggest that these outbreaks were likely associated with the introduction of the ECSA genotype of CHIKV to Indonesia. Conclusions Although no deaths have been recorded, the seroprevalence of anti-CHIKV IgM and IgG in the Indonesian population have been relatively high in recent years following re-emergence in early 2001. There is sufficient evidence to suggest that the introduction of ECSA into Indonesia was likely associated with massive chikungunya outbreaks during 2009–2010. Electronic supplementary material The online version of this article (10.1186/s12879-019-3857-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Jl. T. Tanoeh Abe, Darussalam, Banda Aceh, 23111, Indonesia.
| | - Roy Nusa
- Vector Borne Disease Control, Research and Development Council, Ministry of Health of the Republic of Indonesia, Jakarta, Indonesia
| | | | | | | | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia. .,Pathwest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia.
| |
Collapse
|
13
|
NAULITA TURNIP OKTAVIANI, FITRI HAYATI RAHMA, ALAWIYAH RIZKA, YOHAN BENEDIKTUS, DENIS DIONISIUS, BOWOLAKSONO ANOM, SOEBANDRIO AMIN, SASMONO RTEDJO. Growth Characteristics of Chikungunya Virus Isolate from Indonesia in Various Human Cell Lines in vitro. MICROBIOLOGY INDONESIA 2019. [DOI: 10.5454/mi.13.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Horwood PF, McBryde ES, Peniyamina D, Ritchie SA. The Indo-Papuan conduit: a biosecurity challenge for Northern Australia. Aust N Z J Public Health 2018; 42:434-436. [PMID: 30088687 DOI: 10.1111/1753-6405.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Paul F Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Queensland
| | - Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Queensland
| | - Dunstan Peniyamina
- Tropical Public Health Services, Cairns and Hinterland Hospital and Health Service, Queensland Health
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Queensland.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland
| |
Collapse
|
15
|
Masyeni S, Yohan B, Somia IKA, Myint KSA, Sasmono RT. Dengue infection in international travellers visiting Bali, Indonesia. J Travel Med 2018; 25:tay061. [PMID: 30113689 PMCID: PMC6118167 DOI: 10.1093/jtm/tay061] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dengue, an acute febrile illness caused by infection with dengue virus (DENV), is endemic in Bali, Indonesia. As one of the world's most popular tourist destinations, Bali is regularly visited by domestic and international travellers, who are prone to infection by endemic pathogens, including DENV. Currently, limited data are available on the characteristics of dengue in travellers visiting Bali. Information on the epidemiology and virological aspects of dengue in these tourists is important to gain a better understanding of the dengue disease in international travellers. METHODS We performed a prospective cross-sectional dengue study involving foreign travellers visiting Bali, Indonesia in the period of 2015-17. Patients presenting at Kasih Ibu Hospital with fever and clinical symptoms of dengue were asked to participate in the study. Clinical and laboratory assessments were performed and sera were collected for molecular analysis, which included DENV serotyping, genome sequencing and phylogenetic analysis. RESULTS Among the 201 patients recruited, dengue was confirmed in 133 (66.2%) of them, based on detection of NS1 antigen and/or viral RNA. Of these, 115 (86.5%) manifested dengue fever (DF) and 18 (13.5%) dengue haemorrhagic fever (DHF). The temporal predominance of infecting DENV serotype was DENV-2 (48.7%), followed by DENV-3 (36.1%), DENV-1 (9.2%) and DENV-4 (3.4%). Phylogenetic analysis of DENV based on envelope gene sequences revealed that the source of DENVs was local endemic viruses. CONCLUSION Our study confirms that dengue is one of the causes of fever in travellers visiting Bali. Although it is a cause of significant morbidity, the majority of patients only experienced mild DF, with only a small proportion developing DHF. We revealed that DENVs isolated were autochthonous. Accurate diagnosis, preventive measures and continuous disease surveillance will be useful for better management of dengue infection in travellers.
Collapse
Affiliation(s)
- Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | | | - I Ketut Agus Somia
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Udayana University, Denpasar, Bali, Indonesia
| | - Khin S A Myint
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | |
Collapse
|