1
|
Mwema T, Lukubwe O, Joseph R, Maliti D, Iitula I, Katokele S, Uusiku P, Walusimbi D, Ogoma SB, Tambo M, Gueye CS, Williams YA, Vajda E, Tatarsky A, Eiseb SJ, Mumbengegwi DR, Lobo NF. Human and vector behaviors determine exposure to Anopheles in Namibia. Parasit Vectors 2022; 15:436. [PMID: 36397152 PMCID: PMC9673320 DOI: 10.1186/s13071-022-05563-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Background Although the Republic of Namibia has significantly reduced malaria transmission, regular outbreaks and persistent transmission impede progress towards elimination. Towards an understanding of the protective efficacy, as well as gaps in protection, associated with long-lasting insecticidal nets (LLINs), human and Anopheles behaviors were evaluated in parallel in three malaria endemic regions, Kavango East, Ohangwena and Zambezi, using the Entomological Surveillance Planning Tool to answer the question: where and when are humans being exposed to bites of Anopheles mosquitoes? Methods Surveillance activities were conducted during the malaria transmission season in March 2018 for eight consecutive nights. Four sentinel structures per site were selected, and human landing catches and human behavior observations were consented to for a total of 32 collection nights per site. The selected structures were representative of local constructions (with respect to building materials and size) and were at least 100 m from each other. For each house where human landing catches were undertaken, a two-person team collected mosquitoes from 1800 to 0600 hours. Results Surveillance revealed the presence of the primary vectors Anopheles arabiensis, Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus s.s., along with secondary vectors (Anopheles coustani sensu lato and Anopheles squamosus), with both indoor and outdoor biting behaviors based on the site. Site-specific human behaviors considerably increased human exposure to vector biting. The interaction between local human behaviors (spatial and temporal presence alongside LLIN use) and vector behaviors (spatial and temporal host seeking), and also species composition, dictated where and when exposure to infectious bites occurred, and showed that exposure was primarily indoors in Kavango East (78.6%) and outdoors in Ohangwena (66.7%) and Zambezi (81.4%). Human behavior-adjusted exposure was significantly different from raw vector biting rate. Conclusions Increased LLIN use may significantly increase protection and reduce exposure to malaria, but may not be enough to eliminate the disease, as gaps in protection will remain both indoors (when people are awake and not using LLINs) and outdoors. Alternative interventions are required to address these exposure gaps. Focused and question-based operational entomological surveillance together with human behavioral observations may considerably improve our understanding of transmission dynamics as well as intervention efficacy and gaps in protection. Graphical Abstract ![]()
Collapse
|
2
|
Nkya TE, Fillinger U, Sangoro OP, Marubu R, Chanda E, Mutero CM. Six decades of malaria vector control in southern Africa: a review of the entomological evidence-base. Malar J 2022; 21:279. [PMID: 36184603 PMCID: PMC9526912 DOI: 10.1186/s12936-022-04292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination. METHODS Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded. RESULTS The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance. CONCLUSIONS The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emmanuel Chanda
- World Health Organization-Regional Office for Africa, Brazzaville, Republic of Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Smith JL, Mumbengegwi D, Haindongo E, Cueto C, Roberts KW, Gosling R, Uusiku P, Kleinschmidt I, Bennett A, Sturrock HJ. Malaria risk factors in northern Namibia: The importance of occupation, age and mobility in characterizing high-risk populations. PLoS One 2021; 16:e0252690. [PMID: 34170917 PMCID: PMC8232432 DOI: 10.1371/journal.pone.0252690] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
In areas of low and unstable transmission, malaria cases occur in populations with lower access to malaria services and interventions, and in groups with specific malaria risk exposures often away from the household. In support of the Namibian National Vector Borne Disease Program's drive to better target interventions based upon risk, we implemented a health facility-based case control study aimed to identify risk factors for symptomatic malaria in Zambezi Region, northern Namibia. A total of 770 febrile individuals reporting to 6 health facilities and testing positive by rapid diagnostic test (RDT) between February 2015 and April 2016 were recruited as cases; 641 febrile individuals testing negative by RDT at the same health facilities through June 2016 were recruited as controls. Data on socio-demographics, housing construction, overnight travel, use of malaria prevention and outdoor behaviors at night were collected through interview and recorded on a tablet-based questionnaire. Remotely-sensed environmental data were extracted for geo-located village residence locations. Multivariable logistic regression was conducted to identify risk factors and latent class analyses (LCA) used to identify and characterize high-risk subgroups. The majority of participants (87% of cases and 69% of controls) were recruited during the 2016 transmission season, an outbreak year in Southern Africa. After adjustment, cases were more likely to be cattle herders (Adjusted Odds Ratio (aOR): 4.46 95%CI 1.05-18.96), members of the police or other security personnel (aOR: 4.60 95%CI: 1.16-18.16), and pensioners/unemployed persons (aOR: 2.25 95%CI 1.24-4.08), compared to agricultural workers (most common category). Children (aOR 2.28 95%CI 1.13-4.59) and self-identified students were at higher risk of malaria (aOR: 4.32 95%CI 2.31-8.10). Other actionable risk factors for malaria included housing and behavioral characteristics, including traditional home construction and sleeping in an open structure (versus modern structure: aOR: 2.01 95%CI 1.45-2.79 and aOR: 4.76 95%CI: 2.14-10.57); cross border travel in the prior 30 days (aOR: 10.55 95%CI 2.94-37.84); and outdoor agricultural work at night (aOR: 2.09 95%CI 1.12-3.87). Malaria preventive activities were all protective and included personal use of an insecticide treated net (ITN) (aOR: 0.61 95%CI 0.42-0.87), adequate household ITN coverage (aOR: 0.63 95%CI 0.42-0.94), and household indoor residual spraying (IRS) in the past year (versus never sprayed: (aOR: 0.63 95%CI 0.44-0.90). A number of environmental factors were associated with increased risk of malaria, including lower temperatures, higher rainfall and increased vegetation for the 30 days prior to diagnosis and residing more than 5 minutes from a health facility. LCA identified six classes of cases, with class membership strongly correlated with occupation, age and select behavioral risk factors. Use of ITNs and IRS coverage was similarly low across classes. For malaria elimination these high-risk groups will need targeted and tailored intervention strategies, for example, by implementing alternative delivery methods of interventions through schools and worksites, as well as the use of specific interventions that address outdoor transmission.
Collapse
Affiliation(s)
- Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Erastus Haindongo
- School of Medicine, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Carmen Cueto
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Kathryn W. Roberts
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Petrina Uusiku
- National Ministry of Health and Social Services, Windhoek, Namibia
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Hugh J. Sturrock
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| |
Collapse
|
4
|
Roberts KW, Smith Gueye C, Baltzell K, Ntuku H, McCreesh P, Maglior A, Whittemore B, Uusiku P, Mumbengegwi D, Kleinschmidt I, Gosling R, Hsiang MS. Community acceptance of reactive focal mass drug administration and reactive focal vector control using indoor residual spraying, a mixed-methods study in Zambezi region, Namibia. Malar J 2021; 20:162. [PMID: 33752673 PMCID: PMC7986500 DOI: 10.1186/s12936-021-03679-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Namibia, as in many malaria elimination settings, reactive case detection (RACD), or malaria testing and treatment around index cases, is a standard intervention. Reactive focal mass drug administration (rfMDA), or treatment without testing, and reactive focal vector control (RAVC) in the form of indoor residual spraying, are alternative or adjunctive interventions, but there are limited data regarding their community acceptability. METHODS A parent trial aimed to compare the effectiveness of rfMDA versus RACD, RAVC versus no RAVC, and rfMDA + RAVC versus RACD only. To assess acceptability of these interventions, a mixed-methods study was conducted using key informant interviews (KIIs) and focus group discussions (FGDs) in three rounds (pre-trial and in years 1 and 2 of the trial), and an endline survey. RESULTS In total, 17 KIIs, 49 FGDs were conducted with 449 people over three annual rounds of qualitative data collection. Pre-trial, community members more accurately predicted the level of community acceptability than key stakeholders. Throughout the trial, key participant motivators included: malaria risk perception, access to free community-based healthcare and IRS, and community education by respectful study teams. RACD or rfMDA were offered to 1372 and 8948 individuals in years 1 and 2, respectively, and refusal rates were low (< 2%). RAVC was offered to few households (n = 72) in year 1. In year 2, RAVC was offered to more households (n = 944) and refusals were < 1%. In the endline survey, 94.3% of 2147 respondents said they would participate in the same intervention again. CONCLUSIONS Communities found both reactive focal interventions and their combination highly acceptable. Engaging communities and centering and incorporating their perspectives and experiences during design, implementation, and evaluation of this community-based intervention was critical for optimizing study engagement.
Collapse
Affiliation(s)
- Kathryn W Roberts
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA.
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia.
| | - Cara Smith Gueye
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia
| | - Kimberly Baltzell
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Department of Family Health Care Nursing, School of Nursing, UCSF, San Francisco, USA
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia
| | - Patrick McCreesh
- Department of Pediatrics, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, TX, Dallas, USA
| | - Alysse Maglior
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
| | - Brooke Whittemore
- Department of Pediatrics, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, TX, Dallas, USA
| | - Petrina Uusiku
- National Vectorborne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Immo Kleinschmidt
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Southern Africa Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA
- Global Programs for Research and Training, Malaria Elimination Initiative Namibia, Windhoek, Namibia
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Michelle S Hsiang
- Malaria Elimination Initiative, Global Health Group, University of California, (UCSF), 550 16th St, San Francisco, CA, USA.
- Department of Pediatrics, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, TX, Dallas, USA.
- Department of Pediatrics, UCSF, San Francisco, USA.
| |
Collapse
|
5
|
Hsiang MS, Ntuku H, Roberts KW, Dufour MSK, Whittemore B, Tambo M, McCreesh P, Medzihradsky OF, Prach LM, Siloka G, Siame N, Gueye CS, Schrubbe L, Wu L, Scott V, Tessema S, Greenhouse B, Erlank E, Koekemoer LL, Sturrock HJW, Mwilima A, Katokele S, Uusiku P, Bennett A, Smith JL, Kleinschmidt I, Mumbengegwi D, Gosling R. Effectiveness of reactive focal mass drug administration and reactive focal vector control to reduce malaria transmission in the low malaria-endemic setting of Namibia: a cluster-randomised controlled, open-label, two-by-two factorial design trial. Lancet 2020; 395:1361-1373. [PMID: 32334702 PMCID: PMC7184675 DOI: 10.1016/s0140-6736(20)30470-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/23/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30·8 per 1000 person-years (95% CI 12·8-48·7) in the clusters that received rfMDA versus 38·3 per 1000 person-years (23·0-53·6) in the clusters that received RACD; 30·2 per 1000 person-years (15·0-45·5) in the clusters that received RAVC versus 38·9 per 1000 person-years (20·7-57·1) in the clusters that did not receive RAVC; and 25·0 per 1000 person-years (5·2-44·7) in the clusters that received rfMDA plus RAVC versus 41·4 per 1000 person-years (21·5-61·2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0·52 [95% CI 0·16-0·88], p=0·009), lower in clusters receiving RAVC than in those that did not (0·48 [0·16-0·80], p=0·002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0·26 [0·10-0·68], p=0·006). No serious adverse events were reported. INTERPRETATION In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund.
Collapse
Affiliation(s)
- Michelle S Hsiang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Kathryn W Roberts
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Mi-Suk Kang Dufour
- Division of Prevention Science, University of California San Francisco, San Francisco, CA, USA
| | - Brooke Whittemore
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Munyaradzi Tambo
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Patrick McCreesh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Oliver F Medzihradsky
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Lisa M Prach
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Griffith Siloka
- Zambezi Ministry of Health and Social Services, Katima, Namibia
| | - Noel Siame
- Zambezi Ministry of Health and Social Services, Katima, Namibia
| | - Cara Smith Gueye
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Leah Schrubbe
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Lindsey Wu
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Valerie Scott
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Sofonias Tessema
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Erica Erlank
- Wits Research Institute for Malaria, South African Medical Research Council Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, South African Medical Research Council Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hugh J W Sturrock
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Agnes Mwilima
- Zambezi Ministry of Health and Social Services, Katima, Namibia
| | - Stark Katokele
- National Vector-Borne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Petrina Uusiku
- National Vector-Borne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer L Smith
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Wits Research Institute for Malaria, South African Medical Research Council Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Southern African Development Community, Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA; Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| |
Collapse
|
6
|
Haiyambo DH, Uusiku P, Mumbengegwi D, Pernica JM, Bock R, Malleret B, Rénia L, Greco B, Quaye IK. Molecular detection of P. vivax and P. ovale foci of infection in asymptomatic and symptomatic children in Northern Namibia. PLoS Negl Trop Dis 2019; 13:e0007290. [PMID: 31042707 PMCID: PMC6513099 DOI: 10.1371/journal.pntd.0007290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/13/2019] [Accepted: 03/11/2019] [Indexed: 11/19/2022] Open
Abstract
Background Knowledge of the foci of Plasmodium species infections is critical for a country with an elimination agenda. Namibia is targeting malaria elimination by 2020. To support decision making regarding targeted intervention, we examined for the first time, the foci of Plasmodium species infections and regional prevalence in northern Namibia, using nested and quantitative polymerase chain reaction (PCR) methods. Methods We used cross-sectional multi-staged sampling to select 952 children below 9 years old from schools and clinics in seven districts in northern Namibia, to assess the presence of Plasmodium species. Results The median participant age was 6 years (25–75%ile 4–8 y). Participants had a median hemoglobin of 12.0 g/dL (25–75%ile 11.1–12.7 g/dL), although 21% of the cohort was anemic, with anemia being severer in the younger population (p<0.002). Most of children with Plasmodium infection were asymptomatic (63.4%), presenting a challenge for elimination. The respective parasite prevalence for Plasmodium falciparum (Pf), Plasmodium vivax (Pv) and Plasmodium ovale curtisi (Po) were (4.41%, 0.84% and 0.31%); with Kavango East and West (10.4%, 6.19%) and Ohangwena (4.5%) having the most prevalence. Pv was localized in Ohangwena, Omusati and Oshana, while Po was found in Kavango. All children with Pv/Pf coinfections in Ohangwena, had previously visited Angola, affirming that perennial migrations are risks for importation of Plasmodium species. The mean hemoglobin was lower in those with Plasmodium infection compared to those without (0.96 g/dL less, 95%CI 0.40–1.52 g/dL less, p = 0.0009) indicating that quasi-endemicity exists in the low transmission setting. Conclusions We conclude that Pv and Po species are present in northern Namibia. Additionally, the higher number of asymptomatic infections present challenges to the efforts at elimination for the country. Careful planning, coordination with neighboring Angola and execution of targeted active intervention, will be required for a successful elimination agenda. Namibia is a member of the SADC elimination 8 (E8) group with a target to eliminate malaria by 2020. This target stems from years of aggressive interventional strategies that has led to significant reductions in morbidity and mortality. The focus of this strategy is mainly on Plasmodium falciparum as the primary parasite species. Foci of transmission is found in the northern border with Angola and Zambia, which also carries the highest population density. Recently as part of the elimination efforts to predict areas likely to have rebound epidemics, three regions Ohangwena, Kavango and Zambezi were identified. In order to affirm these findings and decision-making process for intervention, we assessed the parasite prevalence in 7 northern regional sites for four Plasmodium species. We identified Pv and Po curtisi parasites in Omusati, Ohangwena and Kavango, as well as a significant number of asymptomatic Pf and Pv infections, part of which may be due to importation from neighboring Angola. As Namibia is targeting elimination by 2020, careful thought and planning will be required to reach the goal.
Collapse
Affiliation(s)
- Daniel H. Haiyambo
- Department of Biochemistry and Microbiology, University of Namibia School of Medicine, Windhoek, Namibia
| | - Petrina Uusiku
- National Vector Borne Disease Control Program, Ministry of Health and Social Services, Windhoek, Namibia
| | - Davies Mumbengegwi
- Multidisciplinary Research Center, University of Namibia, Windhoek, Namibia
| | - Jeff M. Pernica
- Division of Infectious Disease, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Ronnie Bock
- Department of Biology, University of Namibia, Windhoek, Namibia
| | - Benoit Malleret
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Beatrice Greco
- Research and Development Access, Global Health Institute, Merck KGaA, Darmstadt, Germany
| | - Isaac K. Quaye
- Department of Biochemistry and Microbiology, University of Namibia School of Medicine, Windhoek, Namibia
- * E-mail: ,
| |
Collapse
|