1
|
Li KK, Lau B, Suárez NM, Camiolo S, Gunson R, Davison AJ, Orton RJ. Direct Nanopore Sequencing of Human Cytomegalovirus Genomes from High-Viral-Load Clinical Samples. Viruses 2023; 15:1248. [PMID: 37376548 PMCID: PMC10303703 DOI: 10.3390/v15061248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Nanopore sequencing is becoming increasingly commonplace in clinical settings, particularly for diagnostic assessments and outbreak investigations, due to its portability, low cost, and ability to operate in near real-time. Although high sequencing error rates initially hampered the wider implementation of this technology, improvements have been made continually with each iteration of the sequencing hardware and base-calling software. Here, we assess the feasibility of using nanopore sequencing to determine the complete genomes of human cytomegalovirus (HCMV) in high-viral-load clinical samples without viral DNA enrichment, PCR amplification, or prior knowledge of the sequences. We utilised a hybrid bioinformatic approach that involved assembling the reads de novo, improving the consensus sequence by aligning reads to the best-matching genome from a collated set of published sequences, and polishing the improved consensus sequence. The final genomes from a urine sample and a lung sample, the former with an HCMV to human DNA load approximately 50 times greater than the latter, achieved 99.97 and 99.93% identity, respectively, to the benchmark genomes obtained independently by Illumina sequencing. Thus, we demonstrated that nanopore sequencing is capable of determining HCMV genomes directly from high-viral-load clinical samples with a high accuracy.
Collapse
Affiliation(s)
- Kathy K. Li
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (K.K.L.); (N.M.S.); (A.J.D.)
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK
| | - Betty Lau
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (K.K.L.); (N.M.S.); (A.J.D.)
| | - Nicolás M. Suárez
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (K.K.L.); (N.M.S.); (A.J.D.)
| | - Salvatore Camiolo
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (K.K.L.); (N.M.S.); (A.J.D.)
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow & Clyde, Glasgow G31 2ER, UK
| | - Andrew J. Davison
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (K.K.L.); (N.M.S.); (A.J.D.)
| | - Richard J. Orton
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (K.K.L.); (N.M.S.); (A.J.D.)
| |
Collapse
|
2
|
Camiolo S, Hughes J, Baldanti F, Furione M, Lilleri D, Lombardi G, Angelini M, Gerna G, Zavattoni M, Davison AJ, Suárez NM. Identifying high-confidence variants in human cytomegalovirus genomes sequenced from clinical samples. Virus Evol 2022; 8:veac114. [PMID: 37091479 PMCID: PMC10120596 DOI: 10.1093/ve/veac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the intrahost evolution of viral populations has implications in pathogenesis, diagnosis, and treatment and has recently made impressive advances from developments in high-throughput sequencing. However, the underlying analyses are very sensitive to sources of bias, error, and artefact in the data, and it is important that these are addressed adequately if robust conclusions are to be drawn. The key factors include (1) determining the number of viral strains present in the sample analysed; (2) monitoring the extent to which the data represent these strains and assessing the quality of these data; (3) dealing with the effects of cross-contamination; and (4) ensuring that the results are reproducible. We investigated these factors by generating sequence datasets, including biological and technical replicates, directly from clinical samples obtained from a small cohort of patients who had been infected congenitally with the herpesvirus human cytomegalovirus, with the aim of developing a strategy for identifying high-confidence intrahost variants. We found that such variants were few in number and typically present in low proportions and concluded that human cytomegalovirus exhibits a very low level of intrahost variability. In addition to clarifying the situation regarding human cytomegalovirus, our strategy has wider applicability to understanding the intrahost variability of other viruses.
Collapse
Affiliation(s)
- Salvatore Camiolo
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Joseph Hughes
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, School of Infection and Immunity, University of Pavia, Pavia 27100, Italy
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Milena Furione
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Daniele Lilleri
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Giuseppina Lombardi
- Neonatal and Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Micol Angelini
- Neonatal and Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Giuseppe Gerna
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Maurizio Zavattoni
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Andrew J Davison
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Nicolás M Suárez
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
3
|
Külekci B, Schwarz S, Brait N, Perkmann-Nagele N, Jaksch P, Hoetzenecker K, Puchhammer-Stöckl E, Goerzer I. Human cytomegalovirus strain diversity and dynamics reveal the donor lung as a major contributor after transplantation. Virus Evol 2022; 8:veac076. [PMID: 36128049 PMCID: PMC9477073 DOI: 10.1093/ve/veac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mixed human cytomegalovirus (HCMV) strain infections are frequent in lung transplant recipients (LTRs). To date, the influence of the donor (D) and recipient (R) HCMV serostatus on intra-host HCMV strain composition and viral population dynamics after transplantation is only poorly understood. Here, we investigated ten pre-transplant lungs from HCMV-seropositive donors and 163 sequential HCMV-DNA-positive plasma and bronchoalveolar lavage samples from fifty LTRs with multiviremic episodes post-transplantation. The study cohort included D+R+ (38 per cent), D+R- (36 per cent), and D-R+ (26 per cent) patients. All samples were subjected to quantitative genotyping by short amplicon deep sequencing, and twenty-four of them were additionally PacBio long-read sequenced for genotype linkages. We find that D+R+ patients show a significantly elevated intra-host strain diversity compared to D+R- and D-R+ patients (P = 0.0089). Both D+ patient groups display significantly higher viral population dynamics than D- patients (P = 0.0061). Five out of ten pre-transplant donor lungs were HCMV DNA positive, whereof three multiple HCMV strains were detected, indicating that multi-strain transmission via lung transplantation is likely. Using long reads, we show that intra-host haplotypes can share distinctly linked genotypes, which limits overall intra-host diversity in mixed infections. Together, our findings demonstrate donor-derived strains as the main source of increased HCMV strain diversity and dynamics post-transplantation. These results foster strategies to mitigate the potential transmission of the donor strain reservoir to the allograft, such as ex vivo delivery of HCMV-selective immunotoxins prior to transplantation to reduce latent HCMV.
Collapse
Affiliation(s)
- Büsra Külekci
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| | - Stefan Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Nicole Perkmann-Nagele
- Division of Clinical Virology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | | | - Irene Goerzer
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| |
Collapse
|
4
|
Govender K, Parboosing R, Camiolo S, Hubáček P, Görzer I, Puchhammer-Stöckl E, Suárez NM. Complexity of Human Cytomegalovirus Infection in South African HIV-Exposed Infants with Pneumonia. Viruses 2022; 14:855. [PMID: 35632596 PMCID: PMC9147013 DOI: 10.3390/v14050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) can cause significant end-organ diseases such as pneumonia in HIV-exposed infants. Complex viral factors may influence pathogenesis including: a large genome with a sizeable coding capacity, numerous gene regions of hypervariability, multiple-strain infections, and tissue compartmentalization of strains. We used a whole genome sequencing approach to assess the complexity of infection by comparing high-throughput sequencing data obtained from respiratory and blood specimens of HIV-exposed infants with severe HCMV pneumonia with those of lung transplant recipients and patients with hematological disorders. There were significantly more specimens from HIV-exposed infants showing multiple HCMV strain infection. Some genotypes, such as UL73 G4B and UL74 G4, were significantly more prevalent in HIV-exposed infants with severe HCMV pneumonia. Some genotypes were predominant in the respiratory specimens of several patients. However, the predominance was not statistically significant, precluding firm conclusions on anatomical compartmentalization in the lung.
Collapse
Affiliation(s)
- Kerusha Govender
- Department of Virology, University of KwaZulu Natal and National Health Laboratory Service, Durban 4000, South Africa; (K.G.); (R.P.)
- Medical Research Council-University of Glasgow Centre for Virus Research, Bearsden, Glasgow G61 1QH, UK;
| | - Raveen Parboosing
- Department of Virology, University of KwaZulu Natal and National Health Laboratory Service, Durban 4000, South Africa; (K.G.); (R.P.)
| | - Salvatore Camiolo
- Medical Research Council-University of Glasgow Centre for Virus Research, Bearsden, Glasgow G61 1QH, UK;
| | - Petr Hubáček
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (I.G.); (E.P.-S.)
| | | | - Nicolás M. Suárez
- Medical Research Council-University of Glasgow Centre for Virus Research, Bearsden, Glasgow G61 1QH, UK;
| |
Collapse
|