1
|
Erdin M, Smura T, Kalkan KK, Cetintas O, Cogal M, Irmak S, Matur F, Polat C, Sironen T, Sozen M, Oktem IMA. Detection of divergent Orthohantavirus tulaense provides insight into wide host range and viral evolutionary patterns. NPJ VIRUSES 2024; 2:62. [PMID: 40295885 PMCID: PMC11721384 DOI: 10.1038/s44298-024-00072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 04/30/2025]
Abstract
Orthohantavirus tulaense (TULV) is a member of the orthohantavirus genus and distributed in Europe and Asia. To shed light on TULV epidemiology and evolution, we trapped wild rodents from eastern Turkiye and found 15 TULV positive rodents. Sequencing and phylogenetic analyses confirmed the presence of diverse TULV strains. Global phylogenetic characterization suggested 5 distinct TULV lineages. Global phylogeographic reconstruction estimated different rooting times for each three segments, a potential ancestor location in Eastern Black Sea region, and strongly supported phylogeographic structure with 11 clusters. Dispersal velocity of TULV was estimated to be much faster than some other orthohantaviruses. Eastern Black Sea seemed to have lineages evolving faster and genetically closer to proto-Tula virus. Host switching estimates suggested potential switching events from Microtus arvalis to M. obscurus to M. irani with host-dependent sub-clustering within geographic clusters and suggested substantial evidence for no clear virus jumps from M. arvalis to M. irani.
Collapse
Affiliation(s)
- Mert Erdin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Medical Microbiology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye.
| | - Teemu Smura
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kursat Kenan Kalkan
- Department of Biology, Faculty of Science, Zonguldak Bulent Ecevit University, Zonguldak, Türkiye
| | - Ortac Cetintas
- Department of Biology, Faculty of Science, Zonguldak Bulent Ecevit University, Zonguldak, Türkiye
| | - Muhsin Cogal
- Department of Biology, Faculty of Science, Zonguldak Bulent Ecevit University, Zonguldak, Türkiye
| | - Sercan Irmak
- Science and Technology Application and Research Center, Balikesir University, Balikesir, Türkiye
| | - Ferhat Matur
- Department of Biology, Faculty of Science, Dokuz Eylul University, Izmir, Türkiye
| | - Ceylan Polat
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Tarja Sironen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mustafa Sozen
- Department of Biology, Faculty of Science, Zonguldak Bulent Ecevit University, Zonguldak, Türkiye
| | - Ibrahim Mehmet Ali Oktem
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye.
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye.
| |
Collapse
|
2
|
Dellicour S, Bastide P, Rocu P, Fargette D, Hardy OJ, Suchard MA, Guindon S, Lemey P. How fast are viruses spreading in the wild? PLoS Biol 2024; 22:e3002914. [PMID: 39625970 PMCID: PMC11614233 DOI: 10.1371/journal.pbio.3002914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/27/2024] [Indexed: 12/06/2024] Open
Abstract
Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal history of viral lineages in a two-dimensional space using continuous phylogeographic inference. These spatially explicit reconstructions can subsequently be used to estimate dispersal metrics that can be informative of the dispersal dynamics and the capacity to spread among hosts. Heterogeneous sampling efforts of genomic sequences can however impact the accuracy of phylogeographic dispersal metrics. While the impact of spatial sampling bias on the outcomes of continuous phylogeographic inference has previously been explored, the impact of sampling intensity (i.e., sampling size) when aiming to characterise dispersal patterns through continuous phylogeographic reconstructions has not yet been thoroughly evaluated. In our study, we use simulations to evaluate the robustness of 3 dispersal metrics - a lineage dispersal velocity, a diffusion coefficient, and an isolation-by-distance (IBD) signal metric - to the sampling intensity. Our results reveal that both the diffusion coefficient and IBD signal metrics appear to be the most robust to the number of samples considered for the phylogeographic reconstruction. We then use these 2 dispersal metrics to compare the dispersal pattern and capacity of various viruses spreading in animal populations. Our comparative analysis reveals a broad range of IBD patterns and diffusion coefficients mostly reflecting the dispersal capacity of the main infected host species but also, in some cases, the likely signature of rapid and/or long-distance dispersal events driven by human-mediated movements through animal trade. Overall, our study provides key recommendations for the use of lineage dispersal metrics to consider in future studies and illustrates their application to compare the spread of viruses in various settings.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
| | - Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
| | - Pauline Rocu
- Department of Computer Science, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRS and Université de Montpellier, Montpellier, France
| | - Denis Fargette
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Olivier J. Hardy
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratoire d’Evolution Biologique et Ecologie, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc A. Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, California, United States of America
| | - Stéphane Guindon
- Department of Computer Science, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRS and Université de Montpellier, Montpellier, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Dellicour S, Bastide P, Rocu P, Fargette D, Hardy OJ, Suchard MA, Guindon S, Lemey P. How fast are viruses spreading in the wild? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588821. [PMID: 38645268 PMCID: PMC11030353 DOI: 10.1101/2024.04.10.588821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal history of viral lineages in a two-dimensional space using continuous phylogeographic inference. These spatially explicit reconstructions can subsequently be used to estimate dispersal metrics allowing to unveil the dispersal dynamics and evaluate the capacity to spread among hosts. Heterogeneous sampling intensity of genomic sequences can however impact the accuracy of dispersal insights gained through phylogeographic inference. In our study, we implement a simulation framework to evaluate the robustness of three dispersal metrics - a lineage dispersal velocity, a diffusion coefficient, and an isolation-by-distance signal metric - to the sampling effort. Our results reveal that both the diffusion coefficient and isolation-by-distance signal metrics appear to be robust to the number of samples considered for the phylogeographic reconstruction. We then use these two dispersal metrics to compare the dispersal pattern and capacity of various viruses spreading in animal populations. Our comparative analysis reveals a broad range of isolation-by-distance patterns and diffusion coefficients mostly reflecting the dispersal capacity of the main infected host species but also, in some cases, the likely signature of rapid and/or long-distance dispersal events driven by human-mediated movements through animal trade. Overall, our study provides key recommendations for the lineage dispersal metrics to consider in future studies and illustrates their application to compare the spread of viruses in various settings.
Collapse
|
4
|
Labutin A, Heckel G. Genome-wide support for incipient Tula hantavirus species within a single rodent host lineage. Virus Evol 2024; 10:veae002. [PMID: 38361825 PMCID: PMC10868551 DOI: 10.1093/ve/veae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Evolutionary divergence of viruses is most commonly driven by co-divergence with their hosts or through isolation of transmission after host shifts. It remains mostly unknown, however, whether divergent phylogenetic clades within named virus species represent functionally equivalent byproducts of high evolutionary rates or rather incipient virus species. Here, we test these alternatives with genomic data from two widespread phylogenetic clades in Tula orthohantavirus (TULV) within a single evolutionary lineage of their natural rodent host, the common vole Microtus arvalis. We examined voles from forty-two locations in the contact region between clades for TULV infection by reverse transcription (RT)-PCR. Sequencing yielded twenty-three TULV Central North and twenty-one TULV Central South genomes, which differed by 14.9-18.5 per cent at the nucleotide and 2.2-3.7 per cent at the amino acid (AA) level without evidence of recombination or reassortment between clades. Geographic cline analyses demonstrated an abrupt (<1 km wide) transition between the parapatric TULV clades in continuous landscape. This transition was located within the Central mitochondrial lineage of M. arvalis, and genomic single nucleotide polymorphisms showed gradual mixing of host populations across it. Genomic differentiation of hosts was much weaker across the TULV Central North to South transition than across the nearby hybrid zone between two evolutionary lineages in the host. We suggest that these parapatric TULV clades represent functionally distinct, incipient species, which are likely differently affected by genetic polymorphisms in the host. This highlights the potential of natural viral contact zones as systems for investigating the genetic and evolutionary factors enabling or restricting the transmission of RNA viruses.
Collapse
Affiliation(s)
- Anton Labutin
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| |
Collapse
|
5
|
Nnamani EI, Spruill-Harrell B, Williams EP, Taylor MK, Owen RD, Jonsson CB. Deep Sequencing to Reveal Phylo-Geographic Relationships of Juquitiba Virus in Paraguay. Viruses 2023; 15:1798. [PMID: 37766205 PMCID: PMC10537311 DOI: 10.3390/v15091798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Several hantaviruses result in zoonotic infections of significant public health concern, causing hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in the Old and New World, respectively. Given a 35% case fatality rate, disease-causing New World hantaviruses require a greater understanding of their biology, genetic diversity, and geographical distribution. Juquitiba hantaviruses have been identified in Oligoryzomys nigripes in Brazil, Paraguay, and Uruguay. Brazil has reported the most HCPS cases associated with this virus. We used a multiplexed, amplicon-based PCR strategy to screen and deep-sequence the virus harbored within lung tissues collected from Oligoryzomys species during rodent field collections in southern (Itapúa) and western (Boquerón) Paraguay. No Juquitiba-like hantaviruses were identified in Boquerón. Herein, we report the full-length S and M segments of the Juquitiba hantaviruses identified in Paraguay from O. nigripes. We also report the phylogenetic relationships of the Juquitiba hantaviruses in rodents collected from Itapúa with those previously collected in Canindeyú. We showed, using the TN93 nucleotide substitution model, the coalescent (constant-size) population tree model, and Bayesian inference implemented in the Bayesian evolutionary analysis by sampling trees (BEAST) framework, that the Juquitiba virus lineage in Itapúa is distinct from that in Canindeyú. Our spatiotemporal analysis showed significantly different time to the most recent ancestor (TMRA) estimates between the M and S segments, but a common geographic origin. Our estimates suggest the additional geographic diversity of the Juquitiba virus within the Interior Atlantic Forest and highlight the need for more extensive sampling across this biome.
Collapse
Affiliation(s)
- Evans Ifebuche Nnamani
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (E.I.N.); (B.S.-H.); (E.P.W.); (M.K.T.)
| | - Briana Spruill-Harrell
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (E.I.N.); (B.S.-H.); (E.P.W.); (M.K.T.)
| | - Evan Peter Williams
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (E.I.N.); (B.S.-H.); (E.P.W.); (M.K.T.)
| | - Mariah K. Taylor
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (E.I.N.); (B.S.-H.); (E.P.W.); (M.K.T.)
| | - Robert D. Owen
- Centro Para El Desarrollo de Investigación Científica, Asunción C.P. 1255, Paraguay;
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (E.I.N.); (B.S.-H.); (E.P.W.); (M.K.T.)
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|