1
|
Liu H, Sun Y, Nie C, Xie X, Yuan X, Ma Q, Zhang M, Chen Z, Hu X, Li J. Highland barley β-glucan alleviated western diet-induced non-alcoholic fatty liver disease via increasing energy expenditure and regulating bile acid metabolism in mice. Food Funct 2022; 13:11664-11675. [PMID: 36278802 DOI: 10.1039/d2fo01167k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a public health burden. Controlling bile acids (BAs) metabolism and energy expenditure are potential therapies for NAFLD. Because one of the main health effects of cereal β-glucan (BG) is its ability to lower cholesterol by interacting with BAs, BG may regulate imbalances of the metabolism of BAs during NAFLD. Therefore, by using metabolic tests coupled with the profiling of hepatic BAs, we have assessed the effect of BG from highland barley on western diet (WD) induced NAFLD mice. BG treatment prevented fat accumulation and increased adipose lipolysis. These moderating effects were associated with an increased energy expenditure. Moreover, BG-treated mice enhanced the production of hepatic BAs, which may be connected with the activation of farnesoid X receptor (FXR) signaling in the liver and inhibition of FXR signaling in the ileum. Our results suggest that BG prevents fat accumulation by increasing energy expenditure, a mechanism associated with major changes in the composition of hepatic BAs.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Yanli Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Xiaoqing Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, People's Republic of China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, 712100, People's Republic of China
| |
Collapse
|
2
|
Marasca E, Zehnder-Wyss O, Boulos S, Nyström L. Estimation of Iron Availability in Modified Cereal β-Glucan Extracts by an in vitro Digestion Model. Front Nutr 2022; 9:879280. [PMID: 35769375 PMCID: PMC9234558 DOI: 10.3389/fnut.2022.879280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
For cereal-based foods rich in dietary fibers, iron bioavailability is known to be poor. For native cereal β-glucan extracts, literature has demonstrated that the main factor impacting the bioavailability is phytic acid, which is often found in association with dietary fibers. During food processing, β-glucan can undergo modifications which could potentially affect the equilibrium between phytic acid, fiber, and iron. In this study, an in vitro digestion was used to elucidate the iron dialysability, and hence estimate iron availability, in the presence of native, chelating resin (Chelex)-treated, oxidised, or partially hydrolysed oat and barley β-glucan extracts (at 1% actual β-glucan concentration), with or without phytase treatment. It was confirmed that pure, phytic acid-free β-glucan polysaccharide does not impede iron availability in cereal foods, while phytic acid, and to a smaller extent, also proteins, associated to β-glucan can do so. Neither Chelex-treatment nor partial hydrolysis, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) or NaIO4 oxidation significantly influenced the phytic acid content of the β-glucan extracts (ranging 2.0-3.9%; p > 0.05). Consequently, as long as intrinsic phytic acid was still present, the β-glucan extracts blocked the iron availability regardless of source (oat, barley) or Chelex-treatment, partial hydrolysis or NaIO4-oxidation down to 0-8% (relative to the reference without β-glucan extract). Remarkably, TEMPO-oxidation released around 50% of the sequestered iron despite unchanged phytic acid levels in the modified extract. We propose an iron-mobilising effect of the TEMPO product β-polyglucuronan from insoluble Fe(II)/phytate/protein aggregates to soluble Fe(II)/bile salt units that can cross the dialysis membrane. In addition, Chelex-treatment was identified as prerequisite for phytase to dramatically diminish iron retention of the extract for virtually full availability, with implications for optimal iron bioavailability in cereal foods.
Collapse
Affiliation(s)
| | | | | | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
3
|
Hakkola S, Nylund L, Rosa-Sibakov N, Yang B, Nordlund E, Pahikkala T, Kalliomäki M, Aura AM, Linderborg KM. Effect of oat β-glucan of different molecular weights on fecal bile acids, urine metabolites and pressure in the digestive tract - A human cross over trial. Food Chem 2020; 342:128219. [PMID: 33077284 DOI: 10.1016/j.foodchem.2020.128219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
While the development of oat products often requires altered molecular weight (MW) of β-glucan, the resulting health implications are currently unclear. This 3-leg crossover trial (n = 14) investigated the effects of the consumption of oat bran with High, Medium and Low MW β-glucan (average > 1000, 524 and 82 kDa respectively) with 3 consequent meals on oat-derived phenolic compounds in urine (UHPLC-MS/MS), bile acids in feces (UHPLC-QTOF), gastrointestinal conditions (ingestible capsule), and perceived gut well-being. Urine excretion of ferulic acid was higher (p < 0.001, p < 0.001), and the fecal excretion of deoxycholic (p < 0.03, p < 0.02) and chenodeoxycholic (p < 0.06, p < 0.02) acids lower after consumption of Low MW β-glucan compared with both Medium and High MW β-glucan. Duodenal pressure was higher after consumption of High MW β-glucan compared to Medium (p < 0.041) and Low (p < 0.022) MW β-glucan. The MW of β-glucan did not affect gut well-being, but the perceptions between females and males differed.
Collapse
Affiliation(s)
- Salla Hakkola
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Lotta Nylund
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | | | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Tapio Pahikkala
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Marko Kalliomäki
- Department of Pediatrics, University of Turku, Turku, Finland; Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
4
|
Marasca E, Boulos S, Nyström L. Bile acid-retention by native and modified oat and barley β-glucan. Carbohydr Polym 2020; 236:116034. [PMID: 32172850 DOI: 10.1016/j.carbpol.2020.116034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/15/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
Abstract
Foods rich in cereal β-glucan are efficient dietary tools to help reduce serum cholesterol levels and hence the risk of cardiovascular diseases. However, β-glucan undergoes various reactions during food processing, which alter its viscous properties and interactions with components of the gastrointestinal tract. It has been proposed in the literature that oxidation and partial hydrolysis increase β-glucan's bile acid-binding activity, and therefore its effectiveness in lowering cholesterol. Here, the passage kinetics of a bile salt mix across a dialysis membrane was studied with or without oat and barley β-glucan extracts, native or modified (partial hydrolysis and oxidations by sodium periodate or TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)). Bile acid-retention turned out to be purely a function of viscosity, with the most viscous native extracts exhibiting the strongest retardation of bile acid permeation. Opposite of what was suggested in the literature, oxidation and molecular weight reduction do not seem to increase the bile acid-binding capability of β-glucan.
Collapse
Affiliation(s)
- Elena Marasca
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Samy Boulos
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
5
|
Rosa-Sibakov N, Mäkelä N, Aura AM, Sontag-Strohm T, Nordlund E. In vitro study for investigating the impact of decreasing the molecular weight of oat bran dietary fibre components on the behaviour in small and large intestine. Food Funct 2020; 11:6680-6691. [DOI: 10.1039/d0fo00367k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of this work was to evaluate the role of β-glucan molecular weight (Mw) and the presence of other carbohydrates on the physiological functionality of oat bran via an in vitro digestion study.
Collapse
Affiliation(s)
| | - Noora Mäkelä
- Department of Food and Nutrition
- University of Helsinki
- Finland
| | | | | | | |
Collapse
|
6
|
Du B, Meenu M, Liu H, Xu B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int J Mol Sci 2019; 20:E4032. [PMID: 31426608 PMCID: PMC6720260 DOI: 10.3390/ijms20164032] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
β-glucan is a non-starch soluble polysaccharide widely present in yeast, mushrooms, bacteria, algae, barley, and oat. β-Glucan is regarded as a functional food ingredient due to its various health benefits. The high molecular weight (Mw) and high viscosity of β-glucan are responsible for its hypocholesterolemic and hypoglycemic properties. Thus, β-glucan is also used in the food industry for the production of functional food products. The inherent gel-forming property and high viscosity of β-glucan lead to the production of low-fat foods with improved textural properties. Various studies have reported the relationship between the molecular structure of β-glucan and its functionality. The structural characteristics of β-glucan, including specific glycosidic linkages, monosaccharide compositions, Mw, and chain conformation, were reported to affect its physiochemical and biological properties. Researchers have also reported some chemical, physical, and enzymatic treatments can successfully alter the molecular structure and functionalities of β-glucan. This review article attempts to review the available literature on the relationship of the molecular structure of β-glucan with its functionalities, and future perspectives in this area.
Collapse
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Hongzhi Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
7
|
Solvent retention capacity of oat flour: Relationship with oat β-glucan content and molecular weight. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lazaridou A, Marinopoulou A, Biliaderis CG. Impact of flour particle size and hydrothermal treatment on dough rheology and quality of barley rusks. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|