1
|
Zhang H, Hou Y, Hu Z, Zhang G, Luo S, Liu C, Li Z, Chen T. Feruloylation of arabinoxylan enhances the protective effects on probiotic viability and stability in tablet formulations. Carbohydr Polym 2025; 357:123475. [PMID: 40158997 DOI: 10.1016/j.carbpol.2025.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Maintaining probiotic viability during storage and gastrointestinal transit is crucial for supplement efficacy. This study was to investigate the protective effects of modified arabinoxylan (AX) by feruloylation in tablets. AX was feruloylated with various ferulic acid (FA) contents (0-106 mg/g) into high (H-FAX), medium (M-FAX), and low (L-FAX) FA content matrices. Tube inversion test revealed that increased FA content reduced the critical concentration for gel formation, with H-FAX showing gelation at 25 % w/v compared to 35 % w/v for L-FAX. The FAX matrices demonstrated superior protection of probiotic during tablet compression compared to conventional excipients, maintaining viability above 7.95 × 109 CFU/tablet. Higher FA content improved mechanical properties resulted in better probiotic survival rates in simulated gastric (pH 2.0) and intestinal (pH 7.2) conditions. Storage at 4 °C maintained probiotic viability above 4.67 × 109 CFU/tablet for 12 months. The FAX matrix's protective barrier slowed probiotic release and shielded cells from harsh gastrointestinal conditions, while bound ferulic acid's antioxidant effects enhanced survival, ensuring effective colon delivery. These findings demonstrate that FAX matrices' potential in probiotic tablet formulations, with FA content being critical for optimizing protection. This work provides new insights for developing improved probiotic delivery tablets using naturally derived polymers.
Collapse
Affiliation(s)
- Huibin Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Yaqin Hou
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Zebang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
2
|
Sheraz M, Sun XF, Wang Y, Siddiqui A, Chen J, Sun L. Preparation of Magnetic Hemicellulosic Composite Microspheres and Adsorption of Copper Ions. Polymers (Basel) 2024; 16:3460. [PMID: 39771312 PMCID: PMC11679899 DOI: 10.3390/polym16243460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, the fabrication of magnetic hemicellulosic composite microspheres and the adsorption of copper ions are explored. The microspheres were prepared by the micro-emulsion technique, using Fe3O4 nanoparticles and hemicellulose extracted from wheat straw with the ionic liquid B[mim]Cl as a solvent. Fe3O4 nanoparticles, synthesized through coprecipitation, were evenly encapsulated within the hemicellulosic microspheres. The Fe3O4 nanoparticles measured 10-15 nm in size, while the microspheres had an average diameter of about 20 μm and displayed a saturation magnetization of 35.95 emu/g. The optimal conditions for copper adsorption by the microspheres were found to be a pH of 5.0, a temperature of 323 K, and an initial copper ion concentration of 80 mg/L, resulting in an adsorption capacity of 85.65 mg/g after 24 h. The adsorption kinetics followed a pseudo-second-order model, and the Langmuir isotherm suggested a monomolecular layer adsorption mechanism, with a theoretical maximum capacity of 149.25 mg/g. In summary, the magnetic hemicellulosic microspheres exhibited considerable adsorption potential and favorable recycling capabilities for copper ions.
Collapse
Affiliation(s)
- Muhammad Sheraz
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| | - Xiao-Feng Sun
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
- Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen 518063, China
| | - Yongke Wang
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| | - Adeena Siddiqui
- Faculty of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology University, Karachi 75600, Pakistan
| | - Jiayi Chen
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| | - Le Sun
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| |
Collapse
|
3
|
Hussain SA, Yadav MP, Sharma BK, Qi PX, Jin TZ. Biodegradable Food Packaging Films Using a Combination of Hemicellulose and Cellulose Derivatives. Polymers (Basel) 2024; 16:3171. [PMID: 39599262 PMCID: PMC11597997 DOI: 10.3390/polym16223171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
This study aims to develop biodegradable films by combining hemicellulose B (HB) with methylcellulose (MC) and carboxymethyl cellulose (CMC) at two mass ratios, HB/MC 90/10 and HB/CMC 60/40. The effect of plasticizers, glycerol (GLY) and polyethylene glycol (PEG), on these films' mechanical and physicochemical properties was also investigated. Results showed that the film thickness increased with the addition of GLY and PEG. Moisture content was lower in plasticized films, possibly contributing to better storage. Plasticizers also induced more pronounced color changes, intensifying the lightness and yellowness. Physical attributes such as peel ability, foldability, and transparency were also noticeably improved, particularly in films with higher GLY and PEG concentrations. Additionally, plasticizers enhanced the mechanical properties more significantly in the HB/CMC films, as evidenced by improved tensile stress, elongation at break, elastic modulus, and toughness. However, oxygen and water vapor permeabilities, two of the most critical factors in food packaging, were reduced in the HB/MC films with plasticizers compared to the HB/CMC counterparts. The findings of this study bear significant implications for developing sustainable packaging solutions using hemicellulose B isolated from agricultural material processing waste. These biopolymer-based films, in conjunction with biobased plasticizers, such as glycerol biopolymer, can help curtail our reliance on conventional plastics and alleviate the environmental impact of plastic waste.
Collapse
Affiliation(s)
| | | | | | | | - Tony Z. Jin
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA; (S.A.H.); (M.P.Y.); (B.K.S.); (P.X.Q.)
| |
Collapse
|
4
|
Ramatsui L, Sithole T, Gandla ML, Jönsson LJ, Edkins AL, Malgas S, Pletschke BI. In vitro evaluation of the application of an optimized xylanase cocktail for improved monogastric feed digestibility. J Anim Physiol Anim Nutr (Berl) 2024; 108:596-610. [PMID: 38169048 DOI: 10.1111/jpn.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Xylanases from glycoside hydrolase (GH) families 10 and 11 are common feed additives for broiler chicken diets due to their catalytic activity on the nonstarch polysaccharide xylan. This study investigated the potential of an optimized binary GH10 and GH11 xylanase cocktail to mitigate the antinutritional effects of xylan on the digestibility of locally sourced chicken feed. Immunofluorescence visualization of the activity of the xylanase cocktail on xylan in the yellow corn of the feed showed a substantial collapse in the morphology of cell walls. Secondly, the reduction in the viscosity of the digesta of the feed by the cocktail showed an effective degradation of the soluble fraction of xylan. Analysis of the xylan degradation products from broiler feeds by the xylanase cocktail showed that xylotriose and xylopentaose were the major xylooligosaccharides (XOS) produced. In vitro evaluation of the prebiotic potential of these XOS showed that they improved the growth of the beneficial bacteria Streptococcus thermophilus and Lactobacillus bulgaricus. The antibacterial activity of broths from XOS-supplemented probiotic cultures showed a suppressive effect on the growth of the extraintestinal infectious bacterium Klebsiella pneumoniae. Supplementing the xylanase cocktail in cereal animal feeds attenuated xylan's antinutritional effects by reducing digesta viscosity and releasing entrapped nutrients. Furthermore, the production of prebiotic XOS promoted the growth of beneficial bacteria while inhibiting the growth of pathogens. Based on these effects of the xylanase cocktail on the feed, improved growth performance and better feed conversion can potentially be achieved during poultry rearing.
Collapse
Affiliation(s)
- Lebogang Ramatsui
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Tariro Sithole
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | | | | | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
5
|
Askari H, Soleimanian-Zad S, Kadivar M, Shahbazi S. Creating a novel genetic diversity of Trichoderma afroharzianum by γ-radiation for xylanase-cellulase production. Heliyon 2024; 10:e28349. [PMID: 38590889 PMCID: PMC10999882 DOI: 10.1016/j.heliyon.2024.e28349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Creating novel sources of a microbial strain using induced mutation can increase enzyme production for industrial use. According to this, we have developed a mutant strain of Trichoderma afroharzianum by Co60 gamma irradiation. Trichoderma mutants were isolated from an optimum dose of 250 Gy. The qualitative and quantitative screening were used for evaluating their enzyme production and the DNA barcoding method was used to identify the best Trichoderma mutant isolates. The highest cellulase (exo-glucanase, endoglucanase, β-glucosidase, and total cellulase) and xylanase activities were observed in superior mutant isolates of Trichoderma afroharzianum NAS107-M44 and Trichoderma afroharzianum NAS107-M82, which is approximately 1.6-2.5 times higher than its parent strain, respectively. The electrophoretic pattern of proteins showed that the exo-glucanase I, endo-glucanase III, and the xylanase I enzymes hydrolyzed the corn bran, synergistically. Overall, gamma irradiation-induced mutation could be an expedient technique to access such superior mutants for the bioconversion of corn bran wastes.
Collapse
Affiliation(s)
- Hamed Askari
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahdi Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Samira Shahbazi
- Nuclear Agriculture School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Karaj, Iran
| |
Collapse
|
6
|
Abik F, Palasingh C, Bhattarai M, Leivers S, Ström A, Westereng B, Mikkonen KS, Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2667-2683. [PMID: 36724217 PMCID: PMC9936590 DOI: 10.1021/acs.jafc.2c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.
Collapse
Affiliation(s)
- Felix Abik
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Mamata Bhattarai
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo 00076, Finland
| | - Shaun Leivers
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Anna Ström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Bjørge Westereng
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Kirsi S. Mikkonen
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, Gothenburg 41296, Sweden
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 00760, Finland
| |
Collapse
|
7
|
Matrix-entrapped fibers create ecological niches for gut bacterial growth. Sci Rep 2023; 13:1884. [PMID: 36732599 PMCID: PMC9895076 DOI: 10.1038/s41598-023-27907-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Insoluble plant cell walls are a main source of dietary fiber. Both chemical and physical fiber structures create distinct niches for gut bacterial utilization. Here, we have taken key fermentable solubilized polysaccharides of plant cell walls and fabricated them back into cell wall-like film forms to understand how fiber physical structure directs gut bacterial fermentation outcomes. Solubilized corn bran arabinoxylan (Cax), extracted to retain some ferulate residues, was covalently linked using laccase to form an insoluble cell wall-like film (Cax-F) that was further embedded with pectin (CaxP-F). In vitro fecal fermentation using gut microbiota from three donors was performed on the films and soluble fibers. Depending on the donor, CaxP-F led to higher relative abundance of recognized beneficial bacteria and/or butyrate producers-Akkermansia, Bifidobacterium, Eubacterium halii, unassigned Lachnospiraceae, Blautia, and Anaerostipes-than free pectin and Cax, and Cax-F. Thus, physical form and location of fibers within cell walls form niches for some health-related gut bacteria. This work brings a new understanding of the importance of insoluble cell wall-associated fibers and shows that targeted fiber materials can be fabricated to support important gut microbiota taxa and metabolites of health significance.
Collapse
|
8
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
9
|
Li Z, Zhang H, He L, Hou Y, Che Y, Liu T, Xiong S, Zhang X, Luo S, Liu C, Chen T. Influence of structural features and feruloylation on fermentability and ability to modulate gut microbiota of arabinoxylan in in vitro fermentation. Front Microbiol 2023; 13:1113601. [PMID: 36713199 PMCID: PMC9874102 DOI: 10.3389/fmicb.2022.1113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Arabinoxylan (AX) is a versatile polysaccharide that shows various effects in modulating gut microbiota and health. The influence of arabinoxylan carbohydrate structural feature and feruloylation on fermentability and the effect of modulation of gut microbiota of AX was not clear. Methods Arabinoxylans from rice bran and corn bran (RAX and CAX), and their deferulyolated counterpart dRAX and dCAX were fermented using an in vitro fermentation model. Structural information was determined based on monosaccharide composition. Gas production of fermentation products, SCFAs production, pH change, and microbiota change were measured. Results RAX and dRAX posessed lower A/X ratio compared with CAX and dCAX. The gas and total SCFAs production were lower in RAX and dRAX, and the butyrate production were higher in RAX and dRAX compared with CAX and dCAX. Butyrate production was lower at dRAX compared to RAX. On the other hand, butyrate production was higher in dCAX than in CAX. The microbiota shift were different for the four fibers. Discussion The AXs from rice have a higher A/X ratio than the AXs from maize, suggesting more branching and a more complex side chain. The structural difference was crucial for the difference in fermentation pattern. Different Bacteroides species are responsible for the utilization of rice AXs and corn AXs. Although feruloylation had a minor effect on the overall fermentation pattern, it significantly affected butyrate production and alpha diversity. dRAX promoted less butyrate than RAX, which is associated with a significantly lower amount of Faecalibacterium prausnitzi. dCAX promoted more butyrate than CAX, which may be associated with a lower amount of Bacteroides ovatus and a higher amount of Blautia in dCAX compared to CAX. The effects of feruloylation on the fermentation pattern and the resulted microbiota shift of AX varied depending on the carbohydrate structure.
Collapse
Affiliation(s)
- Zhongxia Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Huibin Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Li He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yaqin Hou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yingjuan Che
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tian Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Shaobai Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,Chengmei Liu,
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Tingting Chen,
| |
Collapse
|
10
|
Zhou Z, Ouyang D, Liu D, Zhao X. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128208. [PMID: 36323374 DOI: 10.1016/j.biortech.2022.128208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.
Collapse
Affiliation(s)
- Ziyuan Zhou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Soluble corn arabinoxylan has desirable material properties for high incorporation in expanded cereal extrudates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Pfeifer L, Mueller KK, Classen B. The cell wall of hornworts and liverworts: innovations in early land plant evolution? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4454-4472. [PMID: 35470398 DOI: 10.1093/jxb/erac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| |
Collapse
|
13
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
14
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
15
|
Holistic review of corn fiber gum: Structure, properties, and potential applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Kaur D, Singla G, Singh U, Krishania M. Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Budtova T, Aguilera DA, Beluns S, Berglund L, Chartier C, Espinosa E, Gaidukovs S, Klimek-Kopyra A, Kmita A, Lachowicz D, Liebner F, Platnieks O, Rodríguez A, Tinoco Navarro LK, Zou F, Buwalda SJ. Biorefinery Approach for Aerogels. Polymers (Basel) 2020; 12:E2779. [PMID: 33255498 PMCID: PMC7760295 DOI: 10.3390/polym12122779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022] Open
Abstract
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Collapse
Affiliation(s)
- Tatiana Budtova
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Daniel Antonio Aguilera
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sergejs Beluns
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden;
| | - Coraline Chartier
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Eduardo Espinosa
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Agnieszka Klimek-Kopyra
- Department of Agroecology and Plant Production, Faculty of Agriculture and Economics, University of Agriculture, Aleja Mickieiwcza 21, 31-120 Kraków, Poland;
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Falk Liebner
- Department of Chemistry, Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Alejandro Rodríguez
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Lizeth Katherine Tinoco Navarro
- CEITEC-VUT Central European Institute of Technology—Brno university of Technology, Purkyňova 123, 612 00 Brno-Královo Pole, Czech Republic;
| | - Fangxin Zou
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sytze J. Buwalda
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| |
Collapse
|
18
|
Oxidative Condensation of Furfural with Ethanol Using Pd-Based Catalysts: Influence of the Support. Catalysts 2020. [DOI: 10.3390/catal10111309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PdO nanoparticles were deposited on several supports (β-zeolite, Al2O3, Fe2O3, MgO, and SiO2), which displayed different crystallinity, textural properties, and amount of acid and basic sites. These catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms at −196 °C, NH3 and CO2 thermoprogrammed desorption analyses (NH3- and CO2-TPD, and X-ray photoelectron spectroscopy (XPS). Pd-based catalysts were tested in the oxidative condensation of furfural with ethanol to obtain value-added chemicals. The catalytic results revealed high conversion values, although the presence of a high proportion of carbonaceous deposits, mainly in the case of the PdO supported on β-zeolite and Al2O3, is also noteworthy. The presence of basic sites led to a beneficial effect on the catalytic behavior, since the formation of carbonaceous deposits was minimized. Thus, the 2Pd-MgO (2 wt.% Pd) catalyst reached the highest yield of furan-2-acrolein (70%) after 3 h of reaction at 170 °C. This better catalytic performance can be explained by the high basicity of MgO, used as support, together with the large amount of available PdO, as inferred from XPS.
Collapse
|
19
|
Parsimehr H, Ehsani A. Corn‐based Electrochemical Energy Storage Devices. CHEM REC 2020; 20:1163-1180. [DOI: 10.1002/tcr.202000058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry Faculty of Science University of Qom Qom Iran
- Color and Surface Coatings Group Polymer Processing Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Ali Ehsani
- Department of Chemistry Faculty of Science University of Qom Qom Iran
| |
Collapse
|
20
|
Mao Y, Millett R, Lee CS, Yakubov G, Harding SE, Binner E. Investigating the influence of pectin content and structure on its functionality in bio-flocculant extracted from okra. Carbohydr Polym 2020; 241:116414. [DOI: 10.1016/j.carbpol.2020.116414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
|
21
|
Ai C, Guo X, Lin J, Zhang T, Meng H. Characterization of the properties of amphiphilic, alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Mao Y, Lei R, Ryan J, Arrutia Rodriguez F, Rastall B, Chatzifragkou A, Winkworth-Smith C, Harding SE, Ibbett R, Binner E. Understanding the influence of processing conditions on the extraction of rhamnogalacturonan-I "hairy" pectin from sugar beet pulp. FOOD CHEMISTRY-X 2019; 2:100026. [PMID: 31423484 PMCID: PMC6690420 DOI: 10.1016/j.fochx.2019.100026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Conventional and microwave-assisted extraction of “hairy” pectin from sugar beet. Determined effect of heating method, temperature, time & pH on yield & composition. No difference between microwave and conventional extraction under conditions tested. Strong alkaline is favoured in rhamnogalacturonan-I “hairy” pectin extraction. Hydrothermal water extraction can be an alternative to strong alkaline extraction.
Sugar beet pectin is rich in rhamnogalacturonan-I (RG-I) region, which is a potential source of prebiotics. RG-I pectin cannot be extracted the same way as commercial homogalacturan-rich pectin using hot acid. Therefore, this study has explored several alternative methods, including microwave-assisted extraction (MAE) and conventional-solvent extraction (CSE) at atmospheric pressure using different solvents, and microwave-assisted hydrothermal extraction (MAHE) under pressure using water. No conclusive differences in microwave and conventional heating were found with heating rate controlled. The optimum treatment times of both MAE and CSE at 90 °C atmospheric pressure and regardless of the solvents used were 120 min; however, MAHE at 130 °C under pressure can dramatically reduce the time to 10 min. Alcohol-insoluble solids (AIS) extracted using pH13 solvent by MAE had both the highest RG-I yield at 25.3% and purity at 260.2 mg/g AIS, followed by AIS extracts using water by MAHE with 7.5% and 166.7 mg/g AIS respectively.
Collapse
Affiliation(s)
- Yujie Mao
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Rui Lei
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - John Ryan
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Fatima Arrutia Rodriguez
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Bob Rastall
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, 13 Whiteknights, Reading RG6 6AP, UK
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, 13 Whiteknights, Reading RG6 6AP, UK
| | - Charles Winkworth-Smith
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Eleanor Binner
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| |
Collapse
|
23
|
Campbell G, Čukelj Mustač N, Alyassin M, Gomez L, Simister R, Flint J, Philips D, Gronnow M, Westwood N. Integrated processing of sugarcane bagasse: Arabinoxylan extraction integrated with ethanol production. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Meng X, Liu F, Xiao Y, Cao J, Wang M, Duan X. Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment. FOOD CHEMISTRY-X 2019; 3:100029. [PMID: 31432021 PMCID: PMC6694851 DOI: 10.1016/j.fochx.2019.100029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023]
Abstract
The untreated IDF tended to strong antioxidant properties in vitro. The changes of antioxidation might be related to specific substrates. AHP treatment could led to redistribution of monosaccharide in IDF. AHP treatment could improve physicochemical properties of IDF.
To enhance the physicochemical and functional properties of insoluble dietary fiber (IDF) from buckwheat straw, we investigated the effects of alkaline hydrogen peroxide (AHP) treatment. Electron microscopy showed that the IDF had regular and compact tubes that turned into wrinkled lamellar products. After AHP treatment, X-ray diffraction indicated that the crystalline structure of the IDF was perturbed. And an undesirable decrease was observed in the content of hydroxybenzoic acid derivatives, hydroxycinnamic acid derivatives, flavonoids and the antioxidant capacity of IDF modified by AHP; however, the hydration properties (such as water holding capacity), α-amylase inhibition activity and glucose adsorption capacity of IDF were significantly enhanced by AHP. Furthermore, AHP led to a redistribution of monosaccharides in soluble dietary fiber and IDF, an interesting finding hinting at the mechanism and potential applications of AHP modification of IDF. In this study, AHP enhanced the physiological and functional properties of buckwheat straw IDF.
Collapse
Affiliation(s)
- Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Fang Liu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Junwei Cao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| |
Collapse
|
25
|
Mendis M, Leclerc E, Simsek S. Arabinoxylan hydrolyzates as immunomodulators in Caco-2 and HT-29 colon cancer cell lines. Food Funct 2018; 8:220-231. [PMID: 27966731 DOI: 10.1039/c6fo00866f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The use of plant derived polysaccharides as health promoters has gained immense interest in the past few years. Arabinoxylan (AX) is the predominant non-starch polysaccharide in cereals and grasses including wheat. The current research aimed to investigate the structure-function relationship of arabinoxylan hydrolyzates (AXH), obtained by the enzymatic hydrolysis of AX using xylanase and arabinofuranosidase as immunomodulators in two colon cancer cell lines: Caco-2 and HT-29. Fine structural details had a strong correlation with the immunological properties of the wheat AXH. As a general trend, as the presence of arabinose substitution increased in the AXH, the production of proinflammatory cytokines, IL-8 and TNF-α, decreased in both cell lines. Thus, AXH with a higher degree of arabinose substitution might be better adept in lowering inflammation in colon cancer cells.
Collapse
Affiliation(s)
- Mihiri Mendis
- North Dakota State University, Department of Plant Sciences, P.O. Box 6050, Department 7670, Fargo, ND 58105, USA.
| | - Estelle Leclerc
- North Dakota State University, Department of Pharmaceutical Sciences, College of Health Professions, Fargo, ND, USA
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, P.O. Box 6050, Department 7670, Fargo, ND 58105, USA.
| |
Collapse
|
26
|
Yadav MP, Hicks KB. Isolation, characterization and functionalities of bio-fiber gums isolated from grain processing by-products, agricultural residues and energy crops. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2. Carbohydr Polym 2018; 181:442-449. [DOI: 10.1016/j.carbpol.2017.09.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 11/18/2022]
|
28
|
Farhat W, Venditti RA, Hubbe M, Taha M, Becquart F, Ayoub A. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. CHEMSUSCHEM 2017; 10:305-323. [PMID: 28029233 DOI: 10.1002/cssc.201601047] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/26/2016] [Indexed: 05/25/2023]
Abstract
Hemicelluloses, due to their hydrophilic nature, may tend to be overlooked as a component in water-resistant product applications. However, their domains of use can be greatly expanded by chemical derivatization. Research in which hydrophobic derivatives of hemicelluloses or combinations of hemicelluloses with hydrophobic materials are used with to prepare films and composites is considered herein. Isolation methods that have been used to separate hemicellulose from biomass are also reviewed. Finally, the most useful pathways to change the hydrophilic character of hemicelluloses to hydrophobic are reviewed. In this way, the water resistance can be increased and applications of targeted water-resistant hemicellulose developed. Several applications of these materials are discussed.
Collapse
Affiliation(s)
- Wissam Farhat
- College of Natural Resources, Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
- Université Jean Monnet, IMP, UMR CNRS 5223, Université de Lyon, 42023, Saint-Etienne, France
| | - Richard A Venditti
- College of Natural Resources, Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | - Martin Hubbe
- College of Natural Resources, Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mohamed Taha
- Université Jean Monnet, IMP, UMR CNRS 5223, Université de Lyon, 42023, Saint-Etienne, France
| | - Frederic Becquart
- Université Jean Monnet, IMP, UMR CNRS 5223, Université de Lyon, 42023, Saint-Etienne, France
| | - Ali Ayoub
- College of Natural Resources, Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
29
|
Zhang Z, Smith C, Li W, Ashworth J. Characterization of Nitric Oxide Modulatory Activities of Alkaline-Extracted and Enzymatic-Modified Arabinoxylans from Corn Bran in Cultured Human Monocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8128-8137. [PMID: 27718577 DOI: 10.1021/acs.jafc.6b02896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ingestion of foods and food-derived substances that may mediate the immune system is widely studied. Evidence suggests cereal arabinoxylans (AXs) have immunomodulatory activities that may impart health benefits in terms of immune enhancement. This study extracted AXs from corn bran using alkali and developed a modification process using three endoxylanases to obtain fractions of lower molecular weight ranges. In vitro studies showed extracted and modified AXs significantly (P < 0.05) elevated nitric oxide (NO) synthesis by the human U937 monocytic cell line (ranging from 53.7 ± 1.1 to 62.9 ± 1.2 μM per million viable cells) at all concentrations tested (5-1000 μg/mL), indicative of immune enhancement compared to an untreated control (43.7 ± 1.9 μM per million viable cells). The study suggested the dose range and Mw distribution of AXs are key determinants of immune-modulatory activity. AXs in the low Mw range (0.1-10 KDa) were the most effective at inducing NO secretion by U937 macrophages at low AX concentration ranges (5-50 μg/mL), with NO production peaking at 62.9 ± 1.2 μM per million viable cells with 5 μg/mL of AX (P = 0.0009). In contrast, AXs in the high Mw range (100-794 kDa) were most effective at inducing NO at high AX concentration ranges (500-1000 μg/mL) with NO production reaching a maximum of 62.7 ± 1.3 μM per million viable cells at 1000 μg/mL of AX (P = 0.0011). The findings suggest that dietary AXs from corn bran may heighten innate immune responses in the absence of infection or disease.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- Department of Food and Tourism Management, Manchester Metropolitan University , Manchester M15 6BG, U.K
| | - Christopher Smith
- Institute of Food Science and Innovation, University of Chester , Chester CH1 4BJ, U.K
| | - Weili Li
- Institute of Food Science and Innovation, University of Chester , Chester CH1 4BJ, U.K
| | - Jason Ashworth
- School of Healthcare Science, Manchester Metropolitan University , E203 John Dalton Building, Chester Street, Manchester M1 5GD, U.K
| |
Collapse
|
30
|
Jia H, Shao T, Zhong C, Li H, Jiang M, Zhou H, Wei P. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis. Carbohydr Polym 2016; 151:676-683. [DOI: 10.1016/j.carbpol.2016.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
|
31
|
Pierce BC, Wichmann J, Tran TH, Cheetamun R, Bacic A, Meyer AS. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment. Carbohydr Polym 2016; 144:504-13. [PMID: 27083842 DOI: 10.1016/j.carbpol.2016.02.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation of soluble soy polysaccharides and opens a new range of opportunities for this abundant and underutilized material in future research and industrial applications.
Collapse
Affiliation(s)
- Brian C Pierce
- DuPont™ Nutrition Biosciences ApS, Edwin Rahrs Vej 38, Brabrand 8220, Denmark; Department of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, Technical University of Denmark, Søltofts Plads, Building 229, Kgs. Lyngby 2800, Denmark.
| | - Jesper Wichmann
- DuPont™ Nutrition Biosciences ApS, Edwin Rahrs Vej 38, Brabrand 8220, Denmark.
| | - Tam H Tran
- DuPont™ Protein Solutions, 4300 Duncan Avenue Saint Louis, MO 63110, USA.
| | - Roshan Cheetamun
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne VIC, 3010, Australia.
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne VIC, 3010, Australia.
| | - Anne S Meyer
- Department of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, Technical University of Denmark, Søltofts Plads, Building 229, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
32
|
Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA. Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 2016; 55:1514-28. [PMID: 24915309 DOI: 10.1080/10408398.2012.702288] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Xylitol is a pentahydroxy sugar-alcohol which exists in a very low quantity in fruits and vegetables (plums, strawberries, cauliflower, and pumpkin). On commercial scale, xylitol can be produced by chemical and biotechnological processes. Chemical production is costly and extensive in purification steps. However, biotechnological method utilizes agricultural and forestry wastes which offer the possibilities of economic production of xylitol by reducing required energy. The precursor xylose is produced from agricultural biomass by chemical and enzymatic hydrolysis and can be converted to xylitol primarily by yeast strain. Hydrolysis under acidic condition is the more commonly used practice influenced by various process parameters. Various fermentation process inhibitors are produced during chemical hydrolysis that reduce xylitol production, a detoxification step is, therefore, necessary. Biotechnological xylitol production is an integral process of microbial species belonging to Candida genus which is influenced by various process parameters such as pH, temperature, time, nitrogen source, and yeast extract level. Xylitol has application and potential for food and pharmaceutical industries. It is a functional sweetener as it has prebiotic effects which can reduce blood glucose, triglyceride, and cholesterol level. This review describes recent research developments related to bioproduction of xylitol from agricultural wastes, application, health, and safety issues.
Collapse
Affiliation(s)
- Salim Ur-Rehman
- a National Institute of Food Science & Technology, University of Agriculture , Faisalabad , 38040 , Pakistan
| | | | | | | | | |
Collapse
|
33
|
Yadav MP, Hicks KB, Johnston DB, Hotchkiss AT, Chau HK, Hanah K. Production of bio-based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Nascimento VM, Manrich A, Tardioli PW, de Campos Giordano R, de Moraes Rocha GJ, Giordano RDLC. Alkaline pretreatment for practicable production of ethanol and xylooligosaccharides. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bioeth-2016-0008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe economics for production of secondgeneration (2G) ethanol from sugarcane bagasse in large scale, competing with the cogeneration of electric energy, is still not consolidated. In this scenario, the key for feasibility may be the biorefinery concept, a multiproduct industry using biomass fractions to produce energy, chemicals and by-products. Xylooligosaccharides (XOS) are oligomers of xylose often used as additives in food, animal feeds, and drugs. The effect of NaOH pretreatment on the recovery of xylan for XOS production from sugarcane bagasse under different conditions, namely 121°C, 4-7% NaOH loading, was investigated. The best condition was 4% NaOH and 60 min of reaction, achieving 55% of xylan extraction, without monomer production. In order to produce XOS, soluble and immobilized xylanases were used to hydrolyze commercial birchwood xylan (as control) and the sugarcane bagasse xylan. The immobilized endoxylanase produced XOS with 37% of xylobiose and 20% of xylotriose (w/w). The small production of xylose clearly indicated the purity of the xylan extracted from sugarcane bagasse. The biocatalyst had more than 90% of its activity preserved after 5 reaction cycles. The results showed the suitability of sugarcane bagasse as a raw material for production of ethanol and of XOS using immobilized xylanase.
Collapse
|
35
|
|
36
|
Chatzifragkou A, Kosik O, Prabhakumari PC, Lovegrove A, Frazier RA, Shewry PR, Charalampopoulos D. Biorefinery strategies for upgrading Distillers’ Dried Grains with Solubles (DDGS). Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Li Y, Yang C. Synthesis and properties of feruloyl corn bran arabinoxylan esters. Int J Cosmet Sci 2015; 38:238-45. [DOI: 10.1111/ics.12281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Li
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - C. Yang
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| |
Collapse
|
38
|
Yadav MP, Hicks KB. Isolation of barley hulls and straw constituents and study of emulsifying properties of their arabinoxylans. Carbohydr Polym 2015; 132:529-36. [DOI: 10.1016/j.carbpol.2015.06.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
|
39
|
Mannich reaction of polysaccharides: Xylan functionalization in aqueous basic medium. Carbohydr Polym 2015; 127:19-27. [DOI: 10.1016/j.carbpol.2015.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/17/2022]
|
40
|
Caballero-Briones F, Chalé-Lara F, Zapata-Navarro A. Method to estimate crystallinity in nixtamalized corn pericarp from sequential extractions and X-ray diffraction. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ubeyitogullari A, Cekmecelioglu D. Optimization of Hemicellulose Coating as Applied to Apricot Drying and Comparison with Chitosan Coating and Sulfite Treatment. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Engineering; Middle East Technical University; Ankara 06800 Turkey
| | - Deniz Cekmecelioglu
- Department of Food Engineering; Middle East Technical University; Ankara 06800 Turkey
| |
Collapse
|
42
|
Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.068] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Zhang X, Nghiem NP, Hicks KB, Johnston DB, Hector RE. Ethanol Production by High-Solids Simultaneous Saccharification and Fermentation of Cellulose-Enriched Barley Straw and Hull Residues Obtained by Alkaline Hydrogen Peroxide Pretreatment. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xiu Zhang
- Department of Bioscience and Bioengineering, Beifang University of Nationalities, Yinchuan, Ningxia, People's Republic of China
| | - Nhuan P. Nghiem
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
| | - Kevin B. Hicks
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
| | - David B. Johnston
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Peoria, IL
| |
Collapse
|
44
|
|
45
|
Samanta A, Jayapal N, Kolte A, Senani S, Sridhar M, Dhali A, Suresh K, Jayaram C, Prasad C. Process for Enzymatic Production of Xylooligosaccharides from the Xylan of Corn Cobs. J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- A.K. Samanta
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - N. Jayapal
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - A.P. Kolte
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - S. Senani
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - M. Sridhar
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - A. Dhali
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - K.P. Suresh
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - C. Jayaram
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| | - C.S. Prasad
- Feed Additives and Nutraceuticals Laboratory; Animal Nutrition Division; National Institute of Animal Nutrition and Physiology; Bangalore Karnataka 560030 India
| |
Collapse
|
46
|
Badhan A, Wang Y, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister T. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases. BMC Biotechnol 2014; 14:31. [PMID: 24766728 PMCID: PMC4022426 DOI: 10.1186/1472-6750-14-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). RESULTS Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. CONCLUSION The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tim McAllister
- Agriculture and Agri food Canada, Lethbridge research Centre, Lethbridge, Alberta, Canada.
| |
Collapse
|
47
|
Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsisirregular xylemmutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 2014; 49:212-41. [DOI: 10.3109/10409238.2014.889651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Barmana DN, Haquea MA, Kang TH, Kim GH, Kim TY, Kim MK, Yun HD. Effect of mild alkali pretreatment on structural changes of reed (Phragmites communis Trinius) straw. ENVIRONMENTAL TECHNOLOGY 2014; 35:232-241. [PMID: 24600861 DOI: 10.1080/09593330.2013.824009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of dilute sodium hydroxide (NaOH) on reed straw structural change at 105 degreeC temperature was evaluated in this study. Various concentrations of NaOH (1% to 2.5%) were used for pretreatment of reed straw at 105 degreeC for 10min. Scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy studies showed that 2% and 2.5% NaOH pretreated sample exposed more cellulose fibers compared with other treatments. The cellulose crystalline index was increased by the 1% to 2.0% NaOH treatments and slightly lowered by the 2.5% NaOH treatment due to destructing cellulose fibres. Two per cent NaOH pretreatment caused 69.9% lignin removal, whereas 2.5% NaOH pretreatment removed 72.4% lignin. Besides, reed straw, when pretreated at 2% and 2.5% NaOH, resulted 56.4% and 60.5% hemicellulose removal, respectively. However, the difference in removal of lignin and hemicellulose between 2% and 2.5% NaOH treated reed straw was very marginal. In addition, very negligible increase of cellulose level was estimated, amounting 78.8% and 76.6% in 2.5% and 2% NaOH-treated sample, respectively. Moreover, after 72 h, reducing sugar yield was 81.2% and 83.3% using enzyme loading of 15 FPU (g dry biomass)-' and 30 IU (g dry biomass)- and xylanase 4 FXU (g dry biomass)-1 from 2% and 2.5% NaOH pretreated reed straw, respectively. Reducing sugar yield was increased very marginally when NaOH concentration increased from 2% to 2.5% for reed straw pretreatment. Therefore, 2% NaOH is supposed to be effective for reed straw pretreatment at this mentioned condition.
Collapse
Affiliation(s)
- Dhirendra Nath Barmana
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Chinju, Republic of Korea
| | - Md Azizul Haquea
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Chinju, Republic of Korea
| | - Tae Ho Kang
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Chinju, Republic of Korea
| | - Gi Hwan Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Chinju, Republic of Korea
| | - Tae Yang Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Chinju, Republic of Korea
| | - Min Keun Kim
- Gyeongsangnam-do Agricultural Research and Extension Service, Chinju, Republic of Korea
| | - Han Dae Yun
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Chinju, Republic of Korea
| |
Collapse
|
49
|
Li Z, Chen CH, Hegg EL, Hodge DB. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:119. [PMID: 23971902 PMCID: PMC3765420 DOI: 10.1186/1754-6834-6-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/20/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. RESULTS We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. CONCLUSIONS This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach.
Collapse
Affiliation(s)
- Zhenglun Li
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
| | - Charles H Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
| | - Eric L Hegg
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, USA
| | - David B Hodge
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- Department of Biosystems & Agricultural Engineering, Michigan State University, East Lansing, USA
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
50
|
Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent. Top Catal 2013. [DOI: 10.1007/s11244-013-0113-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|