1
|
Shi Y, Cheng T, Cheang QW, Zhao X, Xu Z, Liang Z, Xu L, Wang J. A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri. MOLECULAR PLANT PATHOLOGY 2024; 25:e13496. [PMID: 39011828 PMCID: PMC11250160 DOI: 10.1111/mpp.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.
Collapse
Affiliation(s)
- Yu Shi
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguanChina
| | - Tianfang Cheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Qing Wei Cheang
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Xiaoyan Zhao
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Zhao‐Xun Liang
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Linghui Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Junxia Wang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Khan F, Jeong GJ, Tabassum N, Kim YM. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Commun Signal 2023; 21:259. [PMID: 37749602 PMCID: PMC10519070 DOI: 10.1186/s12964-023-01263-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
Cyclic bis-(3', 5')-dimeric guanosine monophosphate (c-di-GMP) is ubiquitous in many bacterial species, where it functions as a nucleotide-based secondary messenger and is a vital regulator of numerous biological processes. Due to its ubiquity, most bacterial species possess a wide range of downstream receptors that has a binding affinity to c-di-GMP and elicit output responses. In eukaryotes, several enzymes and riboswitches operate as receptors that interact with c-di-GMP and transduce cellular or environmental signals. This review examines the functional variety of receptors in prokaryotic and eukaryotic systems that exhibit distinct biological responses after interacting with c-di-GMP. Evolutionary relationships and similarities in distance among the c-di-GMP receptors in various bacterial species were evaluated to understand their specificities. Furthermore, residues of receptors involved in c-di-GMP binding are summarized. This review facilitates the understanding of how distinct receptors from different origins bind c-di-GMP equally well, yet fulfill diverse biological roles at the interspecies, intraspecies, and interkingdom levels. Furthermore, it also highlights c-di-GMP receptors as potential therapeutic targets, particularly those found in pathogenic microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
3
|
Chen H, Tian Y, Hu Z, Wang C, Xie P, Chen L, Yang F, Liang Y, Mu C, Wei C, Ting YP, Qiu G, Song Y. Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) mediated membrane fouling in membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Yan W, Wei Y, Fan S, Yu C, Tian F, Wang Q, Yang F, Chen H. Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Microorganisms 2021; 9:microorganisms9030495. [PMID: 33652966 PMCID: PMC7996900 DOI: 10.3390/microorganisms9030495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a secondary messenger present in bacteria. The GGDEF-domain proteins can participate in the synthesis of c-di-GMP as diguanylate cyclase (DGC) or bind with c-di-GMP to function as a c-di-GMP receptor. In the genome of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, there are 11 genes that encode single GGDEF domain proteins. The GGDEF domain protein, PXO_02019 (here GdpX6 [GGDEF-domain protein of Xoo6]) was characterized in the present study. Firstly, the DGC and c-di-GMP binding activity of GdpX6 was confirmed in vitro. Mutation of the crucial residues D403 residue of the I site in GGDEF motif and E411 residue of A site in GGDEF motif of GdpX6 abolished c-di-GMP binding activity and DGC activity of GdpX6, respectively. Additionally, deletion of gdpX6 significantly increased the virulence, swimming motility, and decreased sliding motility and biofilm formation. In contrast, overexpression of GdpX6 in wild-type PXO99A strain decreased the virulence and swimming motility, and increased sliding motility and biofilm formation. Mutation of the E411 residue but not D403 residue of the GGDEF domain in GdpX6 abolished its biological functions, indicating the DGC activity to be imperative for its biological functions. Furthermore, GdpX6 exhibited multiple subcellular localization in bacterial cells, and D403 or E411 did not contribute to the localization of GdpX6. Thus, we concluded that GdpX6 exhibits DGC activity to control the virulence, swimming and sliding motility, and biofilm formation in Xoo.
Collapse
Affiliation(s)
- Weiwei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
- The MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Yiming Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences, Jinan 250014, China;
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Qi Wang
- The MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
- Correspondence: ; Tel.: +86-010-62896063
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| |
Collapse
|