1
|
Braley LE, Jewell JB, Figueroa J, Humann JL, Main D, Mora-Romero GA, Moroz N, Woodhall JW, White RA, Tanaka K. Nanopore Sequencing with GraphMap for Comprehensive Pathogen Detection in Potato Field Soil. PLANT DISEASE 2023; 107:2288-2295. [PMID: 36724099 DOI: 10.1094/pdis-01-23-0052-sr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Early detection of causal pathogens is important to prevent crop loss from diseases. However, some diseases, such as soilborne diseases, are difficult to diagnose due to the absence of visible or characteristic symptoms. In the present study, the use of the Oxford Nanopore MinION sequencer as a molecular diagnostic tool was assessed due to its long-read sequencing capabilities and portability. Nucleotide samples (DNA or RNA) from potato field soils were sequenced and analyzed using a locally curated pathogen database, followed by identification via sequence mapping. We performed computational speed tests of three commonly used mapping/annotation tools (BLAST, BWA-BLAST, and BWA-GraphMap) and found BWA-GraphMap to be the fastest tool for local searching against our curated pathogen database. The data collected demonstrate the high potential of Nanopore sequencing as a minimally biased diagnostic tool for comprehensive pathogen detection in soil from potato fields. Our GraphMap-based MinION sequencing method could be useful as a predictive approach for disease management by identifying pathogens present in field soil prior to planting. Although this method still needs further experimentation with a larger sample size for practical use, the data analysis pipeline presented can be applied to other cropping systems and diagnostics for detecting multiple pathogens.
Collapse
Affiliation(s)
- Lauren E Braley
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Jeremy B Jewell
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Jose Figueroa
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC 28081, U.S.A
| | - Jodi L Humann
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, U.S.A
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, U.S.A
| | - Guadalupe A Mora-Romero
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Los Mochis, Sinaloa 81223, México
| | - Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - James W Woodhall
- Parma Research and Extension Center, University of Idaho, Parma, ID 83660-6699, U.S.A
| | - Richard Allen White
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC 28081, U.S.A
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| |
Collapse
|
2
|
Functional Genomics and Comparative Lineage-Specific Region Analyses Reveal Novel Insights into Race Divergence in Verticillium dahliae. Microbiol Spectr 2021; 9:e0111821. [PMID: 34937170 PMCID: PMC8694104 DOI: 10.1128/spectrum.01118-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Verticillium dahliae is a widespread soilborne fungus that causes Verticillium wilt on numerous economically important plant species. In tomato, until now, three races have been characterized based on the response of differential cultivars to V. dahliae, but the genetic basis of race divergence in V. dahliae remains undetermined. To investigate the genetic basis of race divergence, we sequenced the genomes of two race 2 strains and four race 3 strains for comparative analyses with two known race 1 genomes. The genetic basis of race divergence was described by the pathogenicity-related genes among the three races, orthologue analyses, and genomic structural variations. Global comparative genomics showed that chromosomal rearrangements are not the only source of race divergence and that race 3 should be split into two genotypes based on orthologue clustering. Lineage-specific regions (LSRs), frequently observed between genomes of the three races, encode several predicted secreted proteins that potentially function as suppressors of immunity triggered by known effectors. These likely contribute to the virulence of the three races. Two genes in particular that can act as markers for race 2 and race 3 (VdR2e and VdR3e, respectively) contribute to virulence on tomato, and the latter acts as an avirulence factor of race 3. We elucidated the genetic basis of race divergence through global comparative genomics and identified secreted proteins in LSRs that could potentially play critical roles in the differential virulence among the races in V. dahliae. IMPORTANCE Deciphering the gene-for-gene relationships during host-pathogen interactions is the basis of modern plant resistance breeding. In the Verticillium dahliae-tomato pathosystem, two races (races 1 and 2) and their corresponding avirulence (Avr) genes have been identified, but strains that lack these two Avr genes exist in nature. In this system, race 3 has been described, but the corresponding Avr gene has not been identified. We de novo-sequenced genomes of six strains and identified secreted proteins within the lineage-specific regions (LSRs) distributed among the genomes of the three races that could potentially function as manipulators of host immunity. One of the LSR genes, VdR3e, was confirmed as the Avr gene for race 3. The results indicate that differences in transcriptional regulation may contribute to race differentiation. This is the first study to describe these differences and elucidate roles of secreted proteins in LSRs that play roles in race differentiation.
Collapse
|
3
|
Zhang YD, Zhang YY, Chen JY, Huang JQ, Zhang J, Liu L, Wang D, Zhao J, Song J, Li R, Yang L, Kong ZQ, Klosterman SJ, Subbarao KV, Dai XF, Zhang DD. Genome Sequence Data of MAT1-1 and MAT1-2 Idiomorphs from Verticillium dahliae. PHYTOPATHOLOGY 2021; 111:1686-1691. [PMID: 33673752 DOI: 10.1094/phyto-01-21-0012-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Though Verticillium dahliae is an asexually reproducing fungus, it is considered heterothallic owing to the presence of only one of the two mating-type idiomorphs (MAT1-1 or MAT1-2) in individual isolates. But sexual reproduction has never been observed either in nature or in the laboratory. All of the genomic information in the literature thus far has therefore come from studies on isolates carrying only the MAT1-2 idiomorph. Herein, we sequenced and compared high-quality reference genomes of MAT1-1 strain S011 and MAT1-2 strain S023 obtained from the same sunflower field. The two genomic sequences displayed high synteny, and encoded similar number genes, a similarity especially notable among pathogenicity-related genes. Homolog analysis between these two genomes revealed that 80% of encoded genes are highly conserved (95% identity and coverage), but only 20% of the single copy genes were identical. These novel genome resources will support the analysis of the structure and function of the two idiomorphs and provide valuable tools to elucidate the evolution and potential mechanisms of sexual reproduction in V. dahliae.
Collapse
Affiliation(s)
- Ya-Duo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan-Yuan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lin Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Yang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
Chen JY, Zhang DD, Huang JQ, Li R, Wang D, Song J, Puri KD, Yang L, Kong ZQ, Tong BZ, Li JJ, Huang YS, Simko I, Klosterman SJ, Dai XF, Subbarao KV. Dynamics of Verticillium dahliae race 1 population under managed agricultural ecosystems. BMC Biol 2021; 19:131. [PMID: 34172070 PMCID: PMC8235872 DOI: 10.1186/s12915-021-01061-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Plant pathogens and their hosts undergo adaptive changes in managed agricultural ecosystems, by overcoming host resistance, but the underlying genetic adaptations are difficult to determine in natural settings. Verticillium dahliae is a fungal pathogen that causes Verticillium wilt on many economically important crops including lettuce. We assessed the dynamics of changes in the V. dahliae genome under selection in a long-term field experiment. RESULTS In this study, a field was fumigated before the Verticillium dahliae race 1 strain (VdLs.16) was introduced. A derivative 145-strain population was collected over a 6-year period from this field in which a seggregating population of lettuce derived from Vr1/vr1 parents were evaluated. We de novo sequenced the parental genome of VdLs.16 strain and resequenced the derivative strains to analyze the genetic variations that accumulate over time in the field cropped with lettuce. Population genomics analyses identified 2769 single-nucleotide polymorphisms (SNPs) and 750 insertion/deletions (In-Dels) in the 145 isolates compared with the parental genome. Sequence divergence was identified in the coding sequence regions of 378 genes and in the putative promoter regions of 604 genes. Five-hundred and nine SNPs/In-Dels were identified as fixed. The SNPs and In-Dels were significantly enriched in the transposon-rich, gene-sparse regions, and in those genes with functional roles in signaling and transcriptional regulation. CONCLUSIONS Under the managed ecosystem continuously cropped to lettuce, the local adaptation of V. dahliae evolves at a whole genome scale to accumulate SNPs/In-Dels nonrandomly in hypervariable regions that encode components of signal transduction and transcriptional regulation.
Collapse
Affiliation(s)
- Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna D Puri
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, USA
| | - Lin Yang
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Jun-Jiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Ivan Simko
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, USA
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, USA.
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, USA.
| |
Collapse
|