1
|
Evangelisti E, Govers F. Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors. Annu Rev Microbiol 2024; 78:493-512. [PMID: 39227351 DOI: 10.1146/annurev-micro-032421-121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.
Collapse
Affiliation(s)
- Edouard Evangelisti
- Current affiliation: Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France;
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
2
|
Nur M, Wood K, Michelmore R. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:397-410. [PMID: 36853198 DOI: 10.1094/mpmi-11-22-0236-ta] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Munir Nur
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Kelsey Wood
- The Genome Center, University of California, Davis, CA, U.S.A
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, CA, U.S.A
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
3
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Hunziker L, Tarallo M, Gough K, Guo M, Hargreaves C, Loo TS, McDougal RL, Mesarich CH, Bradshaw RE. Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and non-host plants. Sci Rep 2021; 11:19958. [PMID: 34620932 PMCID: PMC8497623 DOI: 10.1038/s41598-021-99415-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Forests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen-angiosperm interactions may also be relevant to pathogen-gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.
Collapse
Affiliation(s)
- Lukas Hunziker
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, 6102, Australia
| | - Mariana Tarallo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Keiko Gough
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Melissa Guo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Cathy Hargreaves
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Trevor S Loo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Rebecca L McDougal
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand.
| |
Collapse
|
5
|
Joubert M, Backer R, Engelbrecht J, van den Berg N. Expression of several Phytophthora cinnamomi putative RxLRs provides evidence for virulence roles in avocado. PLoS One 2021; 16:e0254645. [PMID: 34260624 PMCID: PMC8279351 DOI: 10.1371/journal.pone.0254645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
Phytophthora cinnamomi is a plant pathogenic oomycete that causes Phytophthora root rot of avocado (PRR). Currently, there is a limited understanding of the molecular interactions underlying this disease. Other Phytophthora species employ an arsenal of effector proteins to manipulate host physiology, of which the RxLR effectors contribute to virulence by interfering with host immune responses. The aim of this study was to identify candidate RxLR effectors in P. cinnamomi that play a role in establishing PRR, and to infer possible functions for these effectors. We identified 61 candidate RxLR genes which were expressed during infection of a susceptible avocado rootstock. Several of these genes were present in multiple copies in the P. cinnamomi genome, suggesting that they may contribute to pathogen fitness. Phylogenetic analysis of the manually predicted RxLR protein sequences revealed 12 P. cinnamomi RxLRs that were related to characterised effectors in other Phytophthora spp., providing clues to their functions in planta. Expression profiles of nine more RxLRs point to possible virulence roles in avocado-highlighting a way forward for studies of this interaction. This study represents the first investigation of the expression of P. cinnamomi RxLR genes during the course of avocado infection, and puts forward a pipeline to pinpoint effector genes with potential as virulence determinants, providing a foundation for the future functional characterization of RxLRs that contribute to P. cinnamomi virulence in avocado.
Collapse
Affiliation(s)
- Melissa Joubert
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Juanita Engelbrecht
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
6
|
Wood KJ, Nur M, Gil J, Fletcher K, Lakeman K, Gann D, Gothberg A, Khuu T, Kopetzky J, Naqvi S, Pandya A, Zhang C, Maisonneuve B, Pel M, Michelmore R. Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS Pathog 2020; 16:e1009012. [PMID: 33104763 PMCID: PMC7644090 DOI: 10.1371/journal.ppat.1009012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/05/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogens that infect plants and animals use a diverse arsenal of effector proteins to suppress the host immune system and promote infection. Identification of effectors in pathogen genomes is foundational to understanding mechanisms of pathogenesis, for monitoring field pathogen populations, and for breeding disease resistance. We identified candidate effectors from the lettuce downy mildew pathogen Bremia lactucae by searching the predicted proteome for the WY domain, a structural fold found in effectors that has been implicated in immune suppression as well as effector recognition by host resistance proteins. We predicted 55 WY domain containing proteins in the genome of B. lactucae and found substantial variation in both sequence and domain architecture. These candidate effectors exhibit several characteristics of pathogen effectors, including an N-terminal signal peptide, lineage specificity, and expression during infection. Unexpectedly, only a minority of B. lactucae WY effectors contain the canonical N-terminal RXLR motif, which is a conserved feature in the majority of cytoplasmic effectors reported in Phytophthora spp. Functional analysis of 21 effectors containing WY domains revealed 11 that elicited cell death on wild accessions and domesticated lettuce lines containing resistance genes, indicative of recognition of these effectors by the host immune system. Only two of the 11 recognized effectors contained the canonical RXLR motif, suggesting that there has been an evolutionary divergence in sequence motifs between genera; this has major consequences for robust effector prediction in oomycete pathogens.
Collapse
Affiliation(s)
- Kelsey J. Wood
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Munir Nur
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Juliana Gil
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Plant Pathology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Kyle Fletcher
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | - Dasan Gann
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ayumi Gothberg
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Tina Khuu
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Jennifer Kopetzky
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Sanye Naqvi
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Archana Pandya
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Chi Zhang
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | | | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
7
|
Purayannur S, Cano LM, Bowman MJ, Childs KL, Gent DH, Quesada-Ocampo LM. The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Front Genet 2020; 11:910. [PMID: 32849854 PMCID: PMC7432248 DOI: 10.3389/fgene.2020.00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew (DM), one of the most destructive diseases of cultivated hop that can lead to 100% crop loss in susceptible cultivars. We used the published genome of P. humuli to predict the secretome and effectorome and analyze the transcriptome variation among diverse isolates and during infection of hop leaves. Mining the predicted coding genes of the sequenced isolate OR502AA of P. humuli revealed a secretome of 1,250 genes. We identified 296 RXLR and RXLR-like effector-encoding genes in the secretome. Among the predicted RXLRs, there were several WY-motif-containing effectors that lacked canonical RXLR domains. Transcriptome analysis of sporangia from 12 different isolates collected from various hop cultivars revealed 754 secreted proteins and 201 RXLR effectors that showed transcript evidence across all isolates with reads per kilobase million (RPKM) values > 0. RNA-seq analysis of OR502AA-infected hop leaf samples at different time points after infection revealed highly expressed effectors that may play a relevant role in pathogenicity. Quantitative RT-PCR analysis confirmed the differential expression of selected effectors. We identified a set of P. humuli core effectors that showed transcript evidence in all tested isolates and elevated expression during infection. These effectors are ideal candidates for functional analysis and effector-assisted breeding to develop DM resistant hop cultivars.
Collapse
Affiliation(s)
- Savithri Purayannur
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Liliana M. Cano
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Ball Horticultural Company, West Chicago, IL, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - David H. Gent
- United States Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, OR, United States
| | - Lina M. Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Pelgrom AJE, Meisrimler CN, Elberse J, Koorman T, Boxem M, Van den Ackerveken G. Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. PLoS One 2020; 15:e0226540. [PMID: 32396563 PMCID: PMC7217486 DOI: 10.1371/journal.pone.0226540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022] Open
Abstract
Plant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped physical interactions between B. lactucae effectors and lettuce candidate target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten interactors based on the number of independent colonies identified in the Y2H and two interactors that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged lettuce proteins and their interacting effectors. Importantly, relocalization of effectors or their interactors to the nucleus was observed for four protein-pairs upon their co-expression, supporting their interaction in planta.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Joyce Elberse
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Thijs Koorman
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Meisrimler C, Pelgrom AJE, Oud B, Out S, Van den Ackerveken G. Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1098-1115. [PMID: 31077456 PMCID: PMC9545932 DOI: 10.1111/tpj.14383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 05/22/2023]
Abstract
To cause disease in lettuce, the biotrophic oomycete Bremia lactucae secretes potential RxLR effector proteins. Here we report the discovery of an effector-target hub consisting of four B. lactucae effectors and one lettuce protein target by a yeast-two-hybrid (Y2H) screening. Interaction of the lettuce tail-anchored NAC transcription factor, LsNAC069, with B. lactucae effectors does not require the N-terminal NAC domain but depends on the C-terminal region including the transmembrane domain. Furthermore, in Y2H experiments, B. lactucae effectors interact with Arabidopsis and potato tail-anchored NACs, suggesting that they are conserved effector targets. Transient expression of RxLR effector proteins BLR05 and BLR09 and their target LsNAC069 in planta revealed a predominant localization to the endoplasmic reticulum. Phytophthora capsici culture filtrate and polyethylene glycol treatment induced relocalization to the nucleus of a stabilized LsNAC069 protein, lacking the NAC-domain (LsNAC069ΔNAC ). Relocalization was significantly reduced in the presence of the Ser/Cys-protease inhibitor TPCK indicating proteolytic cleavage of LsNAC069 allows for relocalization. Co-expression of effectors with LsNAC069ΔNAC reduced its nuclear accumulation. Surprisingly, LsNAC069 silenced lettuce lines had decreased LsNAC069 transcript levels but did not show significantly altered susceptibility to B. lactucae. In contrast, LsNAC069 silencing increased resistance to Pseudomonas cichorii bacteria and reduced wilting effects under moderate drought stress, indicating a broad role of LsNAC069 in abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Claudia‐Nicole Meisrimler
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
- University of CanterburyIlamPrivate Bag 4800Christchurch8041New Zealand
| | - Alexandra J. E. Pelgrom
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Bart Oud
- Enza ZadenHaling 1‐EEnkhuizen1602 DBthe Netherlands
| | - Suzan Out
- Enza ZadenHaling 1‐EEnkhuizen1602 DBthe Netherlands
| | - Guido Van den Ackerveken
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| |
Collapse
|
10
|
Combier M, Evangelisti E, Piron MC, Rengel D, Legrand L, Shenhav L, Bouchez O, Schornack S, Mestre P. A secreted WY-domain-containing protein present in European isolates of the oomycete Plasmopara viticola induces cell death in grapevine and tobacco species. PLoS One 2019; 14:e0220184. [PMID: 31356604 PMCID: PMC6663016 DOI: 10.1371/journal.pone.0220184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
Plasmopara viticola is a biotrophic oomycete pathogen causing grapevine downy mildew. We characterized the repertoire of P. viticola effector proteins which may be translocated into plants to support the disease. We found several secreted proteins that contain canonical dEER motifs and conserved WY-domains but lack the characteristic RXLR motif reported previously from oomycete effectors. We cloned four candidates and showed that one of them, Pv33, induces plant cell death in grapevine and Nicotiana species. This activity is dependent on the nuclear localization of the protein. Sequence similar effectors were present in seven European, but in none of the tested American isolates. Together our work contributes a new type of conserved P. viticola effector candidates.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, Université de Strasbourg, INRA, Colmar, France
| | - Edouard Evangelisti
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - David Rengel
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Ludovic Legrand
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Liron Shenhav
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, Université de Strasbourg, INRA, Colmar, France
| |
Collapse
|
11
|
Fletcher K, Gil J, Bertier LD, Kenefick A, Wood KJ, Zhang L, Reyes-Chin-Wo S, Cavanaugh K, Tsuchida C, Wong J, Michelmore R. Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Nat Commun 2019; 10:2645. [PMID: 31201315 PMCID: PMC6570648 DOI: 10.1038/s41467-019-10550-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Lettuce downy mildew caused by Bremia lactucae is the most important disease of lettuce globally. This oomycete is highly variable and rapidly overcomes resistance genes and fungicides. The use of multiple read types results in a high-quality, near-chromosome-scale, consensus assembly. Flow cytometry plus resequencing of 30 field isolates, 37 sexual offspring, and 19 asexual derivatives from single multinucleate sporangia demonstrates a high incidence of heterokaryosis in B. lactucae. Heterokaryosis has phenotypic consequences on fitness that may include an increased sporulation rate and qualitative differences in virulence. Therefore, selection should be considered as acting on a population of nuclei within coenocytic mycelia. This provides evolutionary flexibility to the pathogen enabling rapid adaptation to different repertoires of host resistance genes and other challenges. The advantages of asexual persistence of heterokaryons may have been one of the drivers of selection that resulted in the loss of uninucleate zoospores in multiple downy mildews.
Collapse
Affiliation(s)
- Kyle Fletcher
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Juliana Gil
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Pathology Graduate Group, University of California, Davis, CA, 95616, USA
| | - Lien D Bertier
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Aubrey Kenefick
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Kelsey J Wood
- Genome Center, University of California, Davis, CA, 95616, USA
- Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA
| | - Lin Zhang
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Sebastian Reyes-Chin-Wo
- Genome Center, University of California, Davis, CA, 95616, USA
- Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA
- Bayer Crop Science, 37437 CA-16, Woodland, CA, 95695, USA
| | - Keri Cavanaugh
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Cayla Tsuchida
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Pathology Graduate Group, University of California, Davis, CA, 95616, USA
- Arcadia Biosciences, Davis, CA, 95616, USA
| | - Joan Wong
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA
- Pacific Biosciences of California, Inc., Menlo Park, CA, 94025, USA
| | - Richard Michelmore
- Genome Center, University of California, Davis, CA, 95616, USA.
- Departments of Plant Sciences, Molecular and Cellular Biology, Medical Microbiology and Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Pelgrom AJE, Eikelhof J, Elberse J, Meisrimler C, Raedts R, Klein J, Van den Ackerveken G. Recognition of lettuce downy mildew effector BLR38 in Lactuca serriola LS102 requires two unlinked loci. MOLECULAR PLANT PATHOLOGY 2019; 20:240-253. [PMID: 30251420 PMCID: PMC6637914 DOI: 10.1111/mpp.12751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors-BLN06, BLR38 and BLR40-were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Jelle Eikelhof
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Joyce Elberse
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Claudia‐Nicole Meisrimler
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Rob Raedts
- BASF Vegetable SeedsPO Box 4005, 6080 AA, Haelenthe Netherlands
| | - Joël Klein
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Guido Van den Ackerveken
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| |
Collapse
|
13
|
Omidvar V, Dugyala S, Li F, Rottschaefer SM, Miller ME, Ayliffe M, Moscou MJ, Kianian SF, Figueroa M. Detection of Race-Specific Resistance Against Puccinia coronata f. sp. avenae in Brachypodium Species. PHYTOPATHOLOGY 2018; 108:1443-1454. [PMID: 29923800 DOI: 10.1094/phyto-03-18-0084-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oat crown rust caused by Puccinia coronata f. sp. avenae is the most destructive foliar disease of cultivated oat. Characterization of genetic factors controlling resistance responses to Puccinia coronata f. sp. avenae in nonhost species could provide new resources for developing disease protection strategies in oat. We examined symptom development and fungal colonization levels of a collection of Brachypodium distachyon and B. hybridum accessions infected with three North American P. coronata f. sp. avenae isolates. Our results demonstrated that colonization phenotypes are dependent on both host and pathogen genotypes, indicating a role for race-specific responses in these interactions. These responses were independent of the accumulation of reactive oxygen species. Expression analysis of several defense-related genes suggested that salicylic acid and ethylene-mediated signaling but not jasmonic acid are components of resistance reaction to P. coronata f. sp. avenae. Our findings provide the basis to conduct a genetic inheritance study to examine whether effector-triggered immunity contributes to nonhost resistance to P. coronata f. sp. avenae in Brachypodium spp.
Collapse
Affiliation(s)
- Vahid Omidvar
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Sheshanka Dugyala
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Feng Li
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Susan M Rottschaefer
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Marisa E Miller
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Mick Ayliffe
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Matthew J Moscou
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Shahryar F Kianian
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Melania Figueroa
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| |
Collapse
|
14
|
Fletcher K, Klosterman SJ, Derevnina L, Martin F, Bertier LD, Koike S, Reyes-Chin-Wo S, Mou B, Michelmore R. Comparative genomics of downy mildews reveals potential adaptations to biotrophy. BMC Genomics 2018; 19:851. [PMID: 30486780 PMCID: PMC6264045 DOI: 10.1186/s12864-018-5214-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/31/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Spinach downy mildew caused by the oomycete Peronospora effusa is a significant burden on the expanding spinach production industry, especially for organic farms where synthetic fungicides cannot be deployed to control the pathogen. P. effusa is highly variable and 15 new races have been recognized in the past 30 years. RESULTS We virulence phenotyped, sequenced, and assembled two isolates of P. effusa from the Salinas Valley, California, U.S.A. that were identified as race 13 and 14. These assemblies are high quality in comparison to assemblies of other downy mildews having low total scaffold count (784 & 880), high contig N50s (48 kb & 52 kb), high BUSCO completion and low BUSCO duplication scores and share many syntenic blocks with Phytophthora species. Comparative analysis of four downy mildew and three Phytophthora species revealed parallel absences of genes encoding conserved domains linked to transporters, pathogenesis, and carbohydrate activity in the biotrophic species. Downy mildews surveyed that have lost the ability to produce zoospores have a common loss of flagella/motor and calcium domain encoding genes. Our phylogenomic data support multiple origins of downy mildews from hemibiotrophic progenitors and suggest that common gene losses in these downy mildews may be of genes involved in the necrotrophic stages of Phytophthora spp. CONCLUSIONS We present a high-quality draft genome of Peronospora effusa that will serve as a reference for Peronospora spp. We identified several Pfam domains as under-represented in the downy mildews consistent with the loss of zoosporegenesis and necrotrophy. Phylogenomics provides further support for a polyphyletic origin of downy mildews.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Lida Derevnina
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
- Present Address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| | - Frank Martin
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Lien D. Bertier
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Steven Koike
- UC Davis Cooperative Extension Monterey County, Salinas, CA 93901 USA
- Present Address: TriCal Diagnostics, Hollister, CA 95023 USA
| | - Sebastian Reyes-Chin-Wo
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Beiquan Mou
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Richard Michelmore
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, 95616 USA
| |
Collapse
|
15
|
Giesbers AKJ, Pelgrom AJE, Visser RGF, Niks RE, Van den Ackerveken G, Jeuken MJW. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. THE NEW PHYTOLOGIST 2017; 216:915-926. [PMID: 28833168 PMCID: PMC5656935 DOI: 10.1111/nph.14741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 05/03/2023]
Abstract
Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna.
Collapse
Affiliation(s)
- Anne K. J. Giesbers
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | - Alexandra J. E. Pelgrom
- Plant–Microbe InteractionsDepartment of BiologyUtrecht University3584CH Utrechtthe Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | - Rients E. Niks
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | | | - Marieke J. W. Jeuken
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| |
Collapse
|
16
|
Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, Choi E, Choi E, Lee SE, Choi D. Current Understandings of Plant Nonhost Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:5-15. [PMID: 27925500 DOI: 10.1094/mpmi-10-16-0213-cr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Joohyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
17
|
Gascuel Q, Buendia L, Pecrix Y, Blanchet N, Muños S, Vear F, Godiard L. RXLR and CRN Effectors from the Sunflower Downy Mildew Pathogen Plasmopara halstedii Induce Hypersensitive-Like Responses in Resistant Sunflower Lines. FRONTIERS IN PLANT SCIENCE 2016; 7:1887. [PMID: 28066456 PMCID: PMC5165252 DOI: 10.3389/fpls.2016.01887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 05/20/2023]
Abstract
Plasmopara halstedii is an obligate biotrophic oomycete causing downy mildew disease on sunflower, Helianthus annuus, an economically important oil crop. Severe symptoms of the disease (e.g., plant dwarfism, leaf bleaching, sporulation and production of infertile flower) strongly impair seed yield. Pl resistance genes conferring resistance to specific P. halstedii pathotypes were located on sunflower genetic map but yet not cloned. They are present in cultivated lines to protect them against downy mildew disease. Among the 16 different P. halstedii pathotypes recorded in France, pathotype 710 is frequently found, and therefore continuously controlled in sunflower by different Pl genes. High-throughput sequencing of cDNA from P. halstedii led us to identify potential effectors with the characteristic RXLR or CRN motifs described in other oomycetes. Expression of six P. halstedii putative effectors, five RXLR and one CRN, was analyzed by qRT-PCR in pathogen spores and in the pathogen infecting sunflower leaves and selected for functional analyses. We developed a new method for transient expression in sunflower plant leaves and showed for the first time subcellular localization of P. halstedii effectors fused to a fluorescent protein in sunflower leaf cells. Overexpression of the CRN and of 3 RXLR effectors induced hypersensitive-like cell death reactions in some sunflower near-isogenic lines resistant to pathotype 710 and not in susceptible corresponding lines, suggesting they could be involved in Pl loci-mediated resistances.
Collapse
Affiliation(s)
- Quentin Gascuel
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Luis Buendia
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Yann Pecrix
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Nicolas Blanchet
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
| | | | - Laurence Godiard
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de ToulouseCastanet Tolosan, France
- *Correspondence: Laurence Godiard,
| |
Collapse
|
18
|
Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Recent Progress in RXLR Effector Research. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1063-72. [PMID: 26125490 DOI: 10.1094/mpmi-01-15-0022-cr] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Some of the most devastating oomycete pathogens deploy effector proteins, with the signature amino acid motif RXLR, that enter plant cells to promote virulence. Research on the function and evolution of RXLR effectors has been very active over the decade that has transpired since their discovery. Comparative genomics indicate that RXLR genes play a major role in virulence for Phytophthora and downy mildew species. Importantly, gene-for-gene resistance against these oomycete lineages is based on recognition of RXLR proteins. Comparative genomics have revealed several mechanisms through which this resistance can be broken, most notably involving epigenetic control of RXLR gene expression. Structural studies have revealed a core fold that is present in the majority of RXLR proteins, providing a foundation for detailed mechanistic understanding of virulence and avirulence functions. Finally, functional studies have demonstrated that suppression of host immunity is a major function for RXLR proteins. Host protein targets are being identified in a variety of plant cell compartments. Some targets comprise hubs that are also manipulated by bacteria and fungi, thereby revealing key points of vulnerability in the plant immune network.
Collapse
Affiliation(s)
- Ryan G Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Devdutta Deb
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Kevin Fedkenheuer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| |
Collapse
|
19
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:40-50. [PMID: 27839074 DOI: 10.1094/mpmi-10-13-0313-ta.testissue] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
20
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:17-27. [PMID: 27839075 DOI: 10.1094/mpmi-10-13-0313-cr.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
21
|
Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:196-206. [PMID: 24405032 DOI: 10.1094/mpmi-10-13-0313-ia] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
|
22
|
Na R, Yu D, Chapman BP, Zhang Y, Kuflu K, Austin R, Qutob D, Zhao J, Wang Y, Gijzen M. Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus. PLoS One 2014; 9:e89738. [PMID: 24586999 PMCID: PMC3933651 DOI: 10.1371/journal.pone.0089738] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/22/2014] [Indexed: 11/28/2022] Open
Abstract
The aim of this work was to map and identify the Phytophthora sojae Avr1c gene. Progeny from a cross of P. sojae strains ACR10×P7076 were tested for virulence on plants carrying Rps1c. Results indicate that avirulence segregates as a dominant trait. We mapped the Avr1c locus by performing whole genome re-sequencing of composite libraries created from pooled samples. Sequence reads from avirulent (Pool1) and virulent (Pool2) samples were aligned to the reference genome and single nucleotide polymorphisms (SNP) were identified for each pool. High quality SNPs were filtered to select for positions where SNP frequency was close to expected values for each pool. Only three SNP positions fit all requirements, and these occurred in close proximity. Additional DNA markers were developed and scored in the F₂ progeny, producing a fine genetic map that places Avr1c within the Avr1a gene cluster. Transient expression of Avr1c or Avr1a triggers cell death on Rps1c plants, but Avr1c does not trigger cell death on Rps1a plants. Sequence comparisons show that the RXLR effector genes Avr1c and Avr1a are closely related paralogs. Gain of virulence on Rps1c in P. sojae strain P7076 is achieved by gene deletion, but in most other strains this is accomplished by gene silencing. This work provides practical tools for crop breeding and diagnostics, as the Rps1c gene is widely deployed in commercial soybean cultivars.
Collapse
Affiliation(s)
- Ren Na
- Agriculture and Agri-Food Canada, London, Canada
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Dan Yu
- Agriculture and Agri-Food Canada, London, Canada
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Yun Zhang
- Agriculture and Agri-Food Canada, London, Canada
| | - Kuflom Kuflu
- Agriculture and Agri-Food Canada, London, Canada
| | - Ryan Austin
- Agriculture and Agri-Food Canada, London, Canada
| | - Dinah Qutob
- Agriculture and Agri-Food Canada, London, Canada
| | - Jun Zhao
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mark Gijzen
- Agriculture and Agri-Food Canada, London, Canada
| |
Collapse
|
23
|
Stam R, Mantelin S, McLellan H, Thilliez G. The role of effectors in nonhost resistance to filamentous plant pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:582. [PMID: 25426123 PMCID: PMC4224059 DOI: 10.3389/fpls.2014.00582] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops.
Collapse
Affiliation(s)
- Remco Stam
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- *Correspondence: Remco Stam, Division of Plant Sciences, University of Dundee – The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK e-mail:
| | - Sophie Mantelin
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
| | - Gaëtan Thilliez
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|