1
|
He Q, He X. Expression characteristics of CsPG23 in citrus and analysis of its interacting protein. PLANT SIGNALING & BEHAVIOR 2025; 20:2508418. [PMID: 40403246 PMCID: PMC12101599 DOI: 10.1080/15592324.2025.2508418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/20/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Exploring the resistance genes of citrus to Huanglongbing (HLB) is the foundation and key to citrus disease-resistant breeding. Through the analysis of comparative transcriptome data, we identified six cell wall degradation genes that respond to citrus infection with CaLas. We selected one of the genes with high differential expression levels and cloned it, naming it CsPG23. The subcellular localization results of tobacco indicated that the CsPG23 protein is localized in the nucleus, cytoplasm, and cell membrane. Real-time fluorescence quantitative PCR (RT-qPCR) analysis showed that the expression of CsPG23 is related to variety tolerance, tissue location, and symptom development. In addition, we constructed overexpression and silencing vectors for CsPG23 and obtained CsPG23 silencing plants, overexpression and silencing hairy roots, and analyzed the expression characteristics of CsPG23 in response to SA, JA, MeSA and H2O2 induction through RT-qPCR. Using Protein-Protein Interaction (PPI) to predict and screen for a citrus protein CsAGD8 that may interact with CsPG23, and preliminarily verifying its interaction with CsPG23 protein through Yeast Two-hybrid (Y2H). We constructed overexpression and silencing vectors for CsAGD8 and obtained CsAGD8 overexpression and silencing hairy roots. In summary, it is indicated that CsPG23 may interact with CsAGD8 in response to CaLas infection.
Collapse
Affiliation(s)
- Qing He
- School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, People’s Republic of China
| | - Xiao He
- School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Qu X, Yang W, Wu Q, Wang X, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Zheng Y, Wang X, Wei Y, Xu Q. A fungal pathogen suppresses host leaf senescence to increase infection. Nat Commun 2025; 16:2864. [PMID: 40128252 PMCID: PMC11933281 DOI: 10.1038/s41467-025-58277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Phytopathogens such as Puccinia striiformis f. sp. tritici (Pst) induce pigment retention at pathogen infection sites. Although pigment retention is commonly observed in diverse pathosystems, its underlying physiological mechanism remains largely unclear. Herein, we identify and characterize a wheat leaf senescence gene, TaSGR1, which enhances resistance against Pst by promoting leaf senescence and H2O2 accumulation while inhibiting photosynthesis. Knockout of TaSGR1 (STAYGREEN) in wheat increases pigment retention and plant susceptibility. Pst_TTP1 (TaTrx-Targeting Protein 1), a secreted rust fungal effector critical for Pst virulence, binds to the plastidial thioredoxin TaTrx (Thioredoxin), preventing its translocation into chloroplasts. Within the chloroplasts, TaTrx catalyzes the transformation of TaSGR1 oligomers into monomers. These TaSGR1 monomers accumulate in the chloroplasts, accelerating leaf senescence, H2O2 accumulation, and cell death. The inhibition of this oligomer-to-monomer transformation, caused by the failure of TaTrx to enter the chloroplast due to Pst_TTP1, impairs plant resistance against Pst. Overall, our study reveals the suppression of redox signaling cascade that catalyzes the transformation of TaSGR1 oligomers into monomers within chloroplasts and the inhibition of leaf chlorosis by rust effectors as key mechanisms underlying disease susceptibility.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenjuan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaodong Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Alves MN, Cifuentes-Arenas J, Niñoles R, Raiol-Junior LL, Carvalho E, Quirós-Rodriguez I, Ferro JA, Licciardello C, Alquezar B, Carmona L, Forment J, Bombarely A, Wulff NA, Peña L, Gadea J. Transcriptomic analysis of early stages of ' Candidatus Liberibacter asiaticus' infection in susceptible and resistant species after inoculation by Diaphorina citri feeding on young shoots. FRONTIERS IN PLANT SCIENCE 2025; 16:1502953. [PMID: 40051881 PMCID: PMC11882604 DOI: 10.3389/fpls.2025.1502953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
Huanglongbing (HLB) is a devastating disease of citrus plants caused by the non-culturable phloem-inhabiting bacterium Candidatus Liberibacter ssp., being Ca. Liberibacter asiaticus (CLas) the most aggressive species. CLas is vectored by the psyllid Diaphorina citri and introduced into sieve cells, establishing a successful infection in all Citrus species. Partial or complete resistance has been documented in the distant relatives Murraya paniculata and Bergera koenigii, respectively, providing excellent systems to investigate the molecular basis of HLB-resistance. It has been shown previously that the first weeks after bacterial release into the phloem are critical for the establishment of the bacterium. In this study, a thorough transcriptomic analysis of young flushes exposed to CLas-positive and negative psyllids has been performed in Citrus × sinensis, as well as in the aforementioned resistant species, along the first eight weeks after exposure. Our results indicate that the resistant species do not deploy a classical immunity response upon CLas recognition. Instead, transcriptome changes are scarce and only a few genes are differentially expressed when flushes exposed to CLas-positive and negative psyllid are compared. Functional analysis suggests that primary metabolism and other basic cellular functions could be rewired in the resistant species to limit infection. Transcriptomes of young flushes of the three species are very different, supporting the existence of distinct biochemical niches for the bacterium. These findings suggest that both intrinsic metabolic inadequacies to CLas survival, as well as inducible reprogramming of physiological functions upon CLas recognition, could orchestrate together restriction of bacterial multiplication in these resistant hosts.
Collapse
Affiliation(s)
- Mônica N. Alves
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
| | | | - Regina Niñoles
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Laudecir Lemos Raiol-Junior
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
| | - Everton Carvalho
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
- Helix Sementes e Biotecnologia, Patos de Minas, MG, Brazil
| | - Isabel Quirós-Rodriguez
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Jesus A. Ferro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, Acireale, Italy
| | - Berta Alquezar
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Javier Forment
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Aureliano Bombarely
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Nelson A. Wulff
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - José Gadea
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| |
Collapse
|
4
|
Lovelace AH, Wang C, Levy A, Ma W. Transcriptomic Profiling of ' Candidatus Liberibacter asiaticus' in Different Citrus Tissues Reveals Novel Insights into Huanglongbing Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:56-71. [PMID: 39499195 DOI: 10.1094/mpmi-08-24-0102-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
'Candidatus Liberibacter asiaticus' (Las) is a gram-negative bacterial pathogen associated with citrus huanglongbing (HLB) or greening disease. Las is transmitted by the Asian citrus psyllid (ACP) where it colonizes the phloem tissue, resulting in substantial economic losses to the citrus industry worldwide. Despite extensive efforts, effective management strategies against HLB remain elusive, necessitating a deeper understanding of the pathogen's biology. Las undergoes cell-to-cell movement through phloem flow and colonizes different tissues in which Las may have varying interactions with the host. Here, we investigate the transcriptomic landscape of Las in citrus seed coat vasculatures, enabling a complete gene expression profiling of Las genome and revealing unique transcriptomic patterns compared with previous studies using midrib tissues. Comparative transcriptomics between seed coat, midrib, and ACP identified specific responses and metabolic states of Las in different host tissue. Two Las virulence factors that exhibit higher expression in seed coat can suppress callose deposition. Therefore, they may contribute to unclogging sieve plate pores during Las colonization in seed coat vasculature. Furthermore, analysis of regulatory elements uncovers a potential role of LuxR-type transcription factors in regulating Liberibacter effector gene expression during plant colonization. Together, this work provides novel insights into the pathogenesis of the devastating citrus HLB. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Amelia H Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
5
|
Hu Y, Lu N, Bao K, Liu S, Li R, Huang G. Swords and shields: the war between Candidatus Liberibacter asiaticus and citrus. FRONTIERS IN PLANT SCIENCE 2025; 15:1518880. [PMID: 39840363 PMCID: PMC11747508 DOI: 10.3389/fpls.2024.1518880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Citrus Huanglongbing (HLB) represents a significant threat to the citrus industry, mainly caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas). In this review, we summarize recent advances in understanding the relationship between citrus and CLas, particularly examining the functions of Sec-dependent effectors (SDEs) and non-classically secreted proteins (ncSPs) in virulence, as well as their targeted interactions with citrus. We further investigate the impact of SDEs on various physiological processes, including systemic acquired resistance (SAR), reactive oxygen species (ROS) accumulation, vesicle trafficking, callose deposition, cell death, autophagy, chlorosis and flowering. Additionally, we focus on the functional research on specific disease-resistant genes in citrus and the molecular mechanisms underlying disease resistance. Finally, we discuss the existing gaps and unresolved questions regarding citrus-CLas interactions, proposing potential solutions to facilitate the development of HLB-resistant citrus varieties.
Collapse
Affiliation(s)
- Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Nannan Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Kaiqiang Bao
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shuting Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
6
|
Yang K, Hu B, Zhang W, Yuan T, Xu Y. Recent progress in the understanding of Citrus Huanglongbing: from the perspective of pathogen and citrus host. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:77. [PMID: 39525404 PMCID: PMC11541981 DOI: 10.1007/s11032-024-01517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Citrus Huanglongbing (HLB) is a devastating disease spread by citrus psyllid, causing severe losses to the global citrus industry. The transmission of HLB is mainly influenced by both the pathogen and the citrus psyllid. The unculturable nature of the HLB bacteria (Candidatus Liberibacter asiaticus, CLas) and the susceptibility of all commercial citrus varieties made it extremely difficult to study the mechanisms of resistance and susceptibility. In recent years, new progress has been made in understanding the virulence factors of CLas as well as the defense strategies of citrus host against the attack of CLas. This paper reviews the recent advances in the pathogenic mechanisms of CLas, the screening of agents targeting the CLas, including antimicrobial peptides, metabolites and chemicals, the citrus host defense response to CLas, and strategies to enhance citrus defense. Future challenges that need to be addressed are also discussed.
Collapse
Affiliation(s)
- Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
7
|
Huang G, Chang X, Hu Y, Li F, Wang N, Li R. SDE19, a SEC-dependent effector from 'Candidatus Liberibacter asiaticus' suppresses plant immunity and targets Citrus sinensis Sec12 to interfere with vesicle trafficking. PLoS Pathog 2024; 20:e1012542. [PMID: 39255299 DOI: 10.1371/journal.ppat.1012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Citrus huanglongbing (HLB), which is caused by the phloem-colonizing bacteria Candidatus Liberibacter asiaticus (CLas), poses a significant threat to citrus production worldwide. The pathogenicity mechanism of HLB remains poorly understood. SEC-dependent effectors (SDEs) have been suggested to play critical roles in the interaction between citrus and CLas. Here, we explored the function of CLIBASIA_05320 (SDE19), a core SDE from CLas, and its interaction with its host target. Our data revealed that SDE19 is expressed at higher level during infection of citrus than that during infection of the Asian citrus psyllid. Subcellular localization assays showed that SDE19 is localized in the nucleus and cytoplasm and is capable of moving from cell to cell in Nicotiana benthamiana. To investigate whether SDE19 facilitates pathogen infection, we generated transgenic Arabidopsis thaliana and citrus plants overexpressing SDE19. Transgenic A. thaliana and citrus plants were more susceptible to Pseudomonas syringae pv. tomato (Pst) and Xanthomonas citri subsp. citri (Xcc), respectively. In addition, RNA-seq analysis demonstrated that overexpression of SDE19 resulted in a reprogramming of expression of genes related to biotic stimulus responses. SDE19 interacts with Citrus sinensis Sec12, a guanine nucleotide exchange factor responsible for the assembly of plant COPII (coat protein II)-coated vesicles, which mediate vesicle trafficking from the ER to the Golgi. SDE19 colocalizes with Sec12 in the ER by binding to its N-terminal catalytic region, affecting the stability of Sec12 through the 26S proteasome. This interaction hinders the secretion of apoplastic defense-related proteins such as PR1, P69B, GmGIP1, and RCR3. Furthermore, the secretion of PR1 and callose deposition is decreased in SDE19-transgenic A. thaliana. Taken together, SDE19 is a novel virulent SDE secreted by CLas that interacts with Sec12 to disrupt vesicle trafficking, inhibit defense-related proteins secretion, and promote bacterial infection. This study sheds light on how CLas manipulates the host vesicle trafficking pathway to suppress the secretion of defense-related proteins and interfere with plant immunity.
Collapse
Affiliation(s)
- Guiyan Huang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Xiaopeng Chang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Yanan Hu
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fuxuan Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Ruimin Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
8
|
Zhang S, Wang X, Zhao T, Zhou C. Effector CLas0185 targets methionine sulphoxide reductase B1 of Citrus sinensis to promote multiplication of 'Candidatus Liberibacter asiaticus' via enhancing enzymatic activity of ascorbate peroxidase 1. MOLECULAR PLANT PATHOLOGY 2024; 25:e70002. [PMID: 39215961 PMCID: PMC11365454 DOI: 10.1111/mpp.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Citrus huanglongbing (HLB) has been causing enormous damage to the global citrus industry. As the main causal agent, 'Candidatus Liberibacter asiaticus' (CLas) delivers a set of effectors to modulate host responses, while the modes of action adopted remain largely unclear. Here, we demonstrated that CLIBASIA_00185 (CLas0185) could attenuate reactive oxygen species (ROS)-mediated cell death in Nicotiana benthamiana. Transgenic expression of CLas0185 in Citrus sinensis 'Wanjincheng' enhanced plant susceptibility to CLas. We found that methionine sulphoxide reductase B1 (CsMsrB1) was targeted by the effector, and its abundance was elevated in CLas0185-transgenic citrus plants. Their interaction promoted CLas proliferation. We then determined that CsMsrB1 sustained redox state and enzymatic activity of ascorbate peroxidase 1 (CsAPX1) under oxidative stress. The latter reduced H2O2 accumulation and was associated with host susceptibility to CLas infection. Consistently, citrus plants expressing CLas0185 and CsMsrB1 conferred enhanced APX activity and decreased H2O2 content. Taken together, these findings revealed how CLas0185 benefits CLas colonization by targeting CsMsrB1, which facilitated the antioxidant activity and depressed ROS during pathogen infection.
Collapse
Affiliation(s)
- Shushe Zhang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Xuefeng Wang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Changyong Zhou
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| |
Collapse
|
9
|
McClelland AJ, Ma W. Zig, Zag, and 'Zyme: leveraging structural biology to engineer disease resistance. ABIOTECH 2024; 5:403-407. [PMID: 39279864 PMCID: PMC11399530 DOI: 10.1007/s42994-024-00152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 09/18/2024]
Abstract
Dynamic host-pathogen interactions determine whether disease will occur. Pathogen effector proteins are central players in such disease development. On one hand, they improve susceptibility by manipulating host targets; on the other hand, they can trigger immunity after recognition by host immune receptors. A major research direction in the study of molecular plant pathology is to understand effector-host interactions, which has informed the development and breeding of crops with enhanced disease resistance. Recent breakthroughs on experiment- and artificial intelligence-based structure analyses significantly accelerate the development of this research area. Importantly, the detailed molecular insight of effector-host interactions enables precise engineering to mitigate disease. Here, we highlight a recent study by Xiao et al., who describe the structure of an effector-receptor complex that consists of a fungal effector, with polygalacturonase (PG) activity, and a plant-derived polygalacturonase-inhibiting protein (PGIP). PGs weaken the plant cell wall and produce immune-suppressive oligogalacturonides (OGs) as a virulence mechanism; however, PGIPs directly bind to PGs and alter their enzymatic activity. When in a complex with PGIPs, PGs produce OG polymers with longer chains that can trigger immunity. Xiao et al. demonstrate that a PGIP creates a new active site tunnel, together with a PG, which favors the production of long-chain OGs. In this way, the PGIP essentially acts as both a PG receptor and enzymatic manipulator, converting virulence to defense activation. Taking a step forward, the authors used the PG-PGIP complex structure as a guide to generate PGIP variants with enhanced long-chain OG production, likely enabling further improved disease resistance. This study discovered a novel mechanism by which a plant receptor plays a dual role to activate immunity. It also demonstrates how fundamental knowledge, obtained through structural analyses, can be employed to guide the design of proteins with desired functions in agriculture.
Collapse
Affiliation(s)
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
10
|
Limayem A, Martin EM, Shankar S. Study on the citrus greening disease: Current challenges and novel therapies. Microb Pathog 2024; 192:106688. [PMID: 38750772 DOI: 10.1016/j.micpath.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The unprecedented worldwide spread of the Citrus greening disorder, called Huanglongbing (HLB), has urged researchers for rapid interventions. HLB poses a considerable threat to global citriculture owing to its devastating impact on citrus species. This disease is caused by Candidatus Liberibacter species (CLs), primarily transferred through psyllid insects, such as Trioza erytreae and Diaphorina citri. It results in phloem malfunction, root decline, and altered plant source-sink relationships, leading to a deficient plant with minimal yield before it dies. Thus, many various techniques have been employed to eliminate HLB and control vector populations through the application of insecticides and antimicrobials. The latter have evidenced short-term efficiency. While nucleic acid-based analyses and symptom-based identification of the disease have been used for detection, they suffer from limitations such as false negatives, complex sample preparation, and high costs. To address these challenges, secreted protein-based biomarkers offer a promising solution for accurate, rapid, and cost-effective disease detection. This paper presents an overview of HLB symptoms in citrus plants, including leaf and fruit symptoms, as well as whole tree symptoms. The differentiation between HLB symptoms and those of nutrient deficiencies is discussed, emphasizing the importance of precise identification for effective disease management. The elusive nature of CLs and the challenges in culturing them in axenic cultures have hindered the understanding of their pathogenic mechanisms. However, genome sequencing has provided insights into CLs strains' metabolic traits and potential virulence factors. Efforts to identify potential host target genes for resistance are discussed, and a high-throughput antimicrobial testing method using Citrus hairy roots is introduced as a promising tool for rapid assessment of potential treatments. This review summarizes current challenges and novel therapies for HLB disease. It highlights the urgency of developing accurate and efficient detection methods and identifying the complex relations between CLs and their host plants. Transgenic citrus in conjunction with secreted protein-based biomarkers and innovative testing methodologies could revolutionize HLB management strategies toward achieving a sustainable citrus cultivation. It offers more reliable and practical solutions to combat this devastating disease and safeguard the global citriculture industry.
Collapse
Affiliation(s)
- Alya Limayem
- Department of Biology, College of Arts & Sciences, University of North Florida, Jacksonville, FL, USA
| | - Elizabeth M Martin
- Food Science, Department of Biological and Agricultural Engineering, University of Arkansas, AR, USA
| | - Shiv Shankar
- Research Laboratories in Science, Applied to Food, INRS-Armand-Frappier Health and Biotechnology Centre, Laval, Quebec, Canada; School of Food Science and Environmental Health, Grangegorman, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Pandey SS, Li J, Oswalt C, Wang N. Dynamics of ' Candidatus Liberibacter asiaticus' Growth, Concentrations of Reactive Oxygen Species, and Ion Leakage in Huanglongbing-Positive Sweet Orange. PHYTOPATHOLOGY 2024; 114:961-970. [PMID: 38478730 DOI: 10.1094/phyto-08-23-0294-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Current affiliation: Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India
| | - Jinyun Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Chris Oswalt
- Institute of Food and Agricultural Sciences, University of Florida, Bartow, FL 33830, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
12
|
Li R, Wang X, Hu Y, Huang G. Analysis of huanglongbing-associated RNA-seq data reveals disturbances in biological processes within Citrus spp. triggered by Candidatus Liberibacter asiaticus infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1388163. [PMID: 38660443 PMCID: PMC11039969 DOI: 10.3389/fpls.2024.1388163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Introduction Huanglongbing (HLB), a disease that's ubiquitous worldwide, wreaks havoc on the citrus industry. The primary culprit of HLB is the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas) that infects the phloem, but its damaging mechanism is yet to be fully understood. Methods and results In this study, a multitude of tools including weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network analysis and gene expression profiling are employed to unravel the intricacies of its pathogenesis. The investigation pinpoints various central genes, such as the ethylene-responsive transcription factor 9 (ERF9) and thioredoxin reductase 1 (TrxR1), that are associated with CLas invasion and resultant disturbances in numerous biological operations. Additionally, the study uncovers a range of responses through the detection of differential expressed genes (DEGs) across different experiments. The discovery of core DEGs leads to the identification of pivotal genes such as the sieve element occlusion (SEO) and the wall-associated receptor kinase-like 15 (WAKL15). PPI network analysis highlights potential vital proteins, while GO and KEGG pathway enrichment analysis illustrate a significant impact on multiple defensive and metabolic pathways. Gene set enrichment analysis (GSEA) indicates significant alterations in biological processes such as leaf senescence and response to biotic stimuli. Discussion This all-encompassing approach extends valuable understanding into the pathogenesis of CLas, potentially aiding future research and therapeutic strategies for HLB.
Collapse
Affiliation(s)
- Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
13
|
Robledo J, Welker S, Shtein I, Bernardini C, Vincent C, Levy A. Phloem and Xylem Responses Are Both Implicated in Huanglongbing Tolerance of Sugar Belle. PHYTOPATHOLOGY 2024; 114:441-453. [PMID: 37551959 DOI: 10.1094/phyto-05-23-0148-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Although huanglongbing (HLB) is a devastating citrus disease, improved tolerant cultivars, such as Sugar Belle (SB) mandarin, have been identified. To understand the responses that HLB-affected SB undergoes, we compared 14CO2 fixation, carbohydrate export, phloem callose accumulation, relative expression of plant defense activators, and anatomical changes between healthy and infected SB trees versus susceptible Pineapple (PA) sweet orange. Eight- to ten-week-old leaves of infected SB showed a 2.5-fold increase in 14CO2 fixation and a 13% decrease in 14C-carbohydrate export, whereas HLB-affected PA presented a decrease of 33 and 50%, respectively. The mean distance of a callose deposit to its closest neighbor was 36% smaller in infected SB versus healthy, whereas in HLB-affected PA, it was 33% higher. Expression of papain-like cysteine proteases (PLCPs) was upregulated in SB but downregulated in PA. Infected SB showed minor alterations in the number of xylem vessels, a 16% larger xylem vessel lumen area, and a 14% increase in the proportional area of the xylem. In contrast, PA showed a 2.4-fold increase in the xylem vessel number and a 2% increase in the proportional xylem area. Three complementary mechanisms of tolerance in SB are hypothesized: (i) increased carbohydrate availability induced by greater CO2 fixation, mild effect in carbohydrate export, and local accumulation of callose in the phloem; (ii) activation of defense response via upregulation of PLCPs, and (iii) increased investment in the xylem structure. Thus, phloem and xylem modifications seem to be involved in SB tolerance.
Collapse
Affiliation(s)
- Jacobo Robledo
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Ilana Shtein
- Eastern Region Research and Development Center, Ariel, Israel
| | - Chiara Bernardini
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Christopher Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
14
|
Mauck KE, Gebiola M, Percy DM. The Hidden Secrets of Psylloidea: Biology, Behavior, Symbionts, and Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:277-302. [PMID: 37738463 DOI: 10.1146/annurev-ento-120120-114738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Marco Gebiola
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
15
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
16
|
Shi J, Gong Y, Shi H, Ma X, Zhu Y, Yang F, Wang D, Fu Y, Lin Y, Yang N, Yang Z, Zeng C, Li W, Zhou C, Wang X, Qiao Y. ' Candidatus Liberibacter asiaticus' secretory protein SDE3 inhibits host autophagy to promote Huanglongbing disease in citrus. Autophagy 2023; 19:2558-2574. [PMID: 37249424 PMCID: PMC10392736 DOI: 10.1080/15548627.2023.2213040] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial acroautophagy/autophagy plays a vital role in degrading intracellular pathogens or microbial molecules in host-microbe interactions. However, microbes evolved various mechanisms to hijack or modulate autophagy to escape elimination. Vector-transmitted phloem-limited bacteria, Candidatus Liberibacter (Ca. Liberibacter) species, cause Huanglongbing (HLB), one of the most catastrophic citrus diseases worldwide, yet contributions of autophagy to HLB disease proliferation remain poorly defined. Here, we report the identification of a virulence effector in "Ca. Liberibacter asiaticus" (Las), SDE3, which is highly conserved among the "Ca. Liberibacter". SDE3 expression not only promotes the disease development of HLB and canker in sweet orange (Citrus sinensis) plants but also facilitates Phytophthora and viral infections in Arabidopsis, and Nicotiana benthamiana (N. benthamiana). SDE3 directly associates with citrus cytosolic glyceraldehyde-3-phosphate dehydrogenases (CsGAPCs), which negatively regulates plant immunity. Overexpression of CsGAPCs and SDE3 significantly inhibits autophagy in citrus, Arabidopsis, and N. benthamiana. Intriguingly, SDE3 undermines autophagy-mediated immunity by the specific degradation of CsATG8 family proteins in a CsGAPC1-dependent manner. CsATG8 degradation is largely rescued by treatment with an inhibitor of the late autophagic pathway, E64d. Furthermore, ectopic expression of CsATG8s enhances Phytophthora resistance. Collectively, these results suggest that SDE3-CsGAPC interactions modulate CsATG8-mediated autophagy to enhance Las progression in citrus.Abbreviations: ACP: asian citrus psyllid; ACD2: ACCELERATED CELL DEATH 2; ATG: autophagy related; Ca. Liberibacter: Candidatus Liberibacter; CaMV: cauliflower mosaic virus; CMV: cucumber mosaic virus; Cs: Citrus sinensis; EV: empty vector; GAPC: cytosolic glyceraldehyde-3-phosphate dehydrogenase; HLB: huanglongbing; H2O2: hydrogen peroxide; Las: liberibacter asiaticus; Laf: liberibacter africanus; Lam: liberibacter americanus; Pst: Pseudomonas syringae pv. tomato; PVX: potato virus X; ROS: reactive oxygen species; SDE3: sec-delivered effector 3; TEM: transmission electron microscopy; VIVE : virus-induced virulence effector; WT: wild-type; Xcc: Xanthomonas citri subsp. citri.
Collapse
Affiliation(s)
- Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinan Gong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhong Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Dan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yating Fu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yu Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naiying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Chunhua Zeng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
17
|
Zhang S, Wang X, He J, Zhang S, Zhao T, Fu S, Zhou C. A Sec-dependent effector, CLIBASIA_04425, contributes to virulence in ' Candidatus Liberibater asiaticus'. FRONTIERS IN PLANT SCIENCE 2023; 14:1224736. [PMID: 37554557 PMCID: PMC10405523 DOI: 10.3389/fpls.2023.1224736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide, mainly caused by 'Candidatus Liberibacter asiaticus' (CLas). It encodes a large number of Sec-dependent effectors that contribute to HLB progression. In this study, an elicitor triggering ROS burst and cell death in Nicotiana benthamiana, CLIBASIA_04425 (CLas4425), was identified. Of particular interest, its cell death-inducing activity is associated with its subcellular localization and the cytoplasmic receptor Botrytis-induced kinase 1 (BIK1). Compared with CLas infected psyllids, CLas4425 showed higher expression level in planta. The transient expression of CLas4425 in N. benthamiana and its overexpression in Citrus sinensis enhanced plant susceptibility to Pseudomonas syringae pv. tomato DC3000 ΔhopQ1-1 and CLas, respectively. Furthermore, the salicylic acid (SA) level along with the expression of genes NPR1/EDS1/NDR1/PRs in SA signal transduction was repressed in CLas4425 transgenic citrus plants. Taken together, CLas4425 is a virulence factor that promotes CLas proliferation, likely by interfering with SA-mediated plant immunity. The results obtained facilitate our understanding of CLas pathogenesis.
Collapse
Affiliation(s)
- Shushe Zhang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agriculture Sciences, Institute of Plant Protection, Beijing, China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jun He
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Song Zhang
- Guangxi Citrus Breeding and Cultivation Engineering Technology Center Academy of Specialty Crops, Guangxi, Guilin, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agriculture Sciences, Institute of Plant Protection, Beijing, China
| | - Shimin Fu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
18
|
Du J, Wang Q, Shi H, Zhou C, He J, Wang X. A prophage-encoded effector from "Candidatus Liberibacter asiaticus" targets ASCORBATE PEROXIDASE6 in citrus to facilitate bacterial infection. MOLECULAR PLANT PATHOLOGY 2023; 24:302-316. [PMID: 36692022 PMCID: PMC10013806 DOI: 10.1111/mpp.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 05/21/2023]
Abstract
Citrus huanglongbing (HLB), associated with the unculturable phloem-limited bacterium "Candidatus Liberibacter asiaticus" (CLas), is the most devastating disease in the citrus industry worldwide. However, the pathogenicity of CLas remains poorly understood. In this study, we show that AGH17488, a secreted protein encoded by the prophage region of the CLas genome, suppresses plant immunity via targeting the host ASCORBATE PEROXIDASE6 (APX6) protein in Nicotiana benthamiana and Citrus sinensis. The transient expression of AGH17488 reduced the chloroplast localization of APX6 and its enzyme activity, inhibited the accumulation of reactive oxygen species (H2 O2 and O2 - ) and the lipid oxidation endproduct malondialdehyde in plants, and promoted the proliferation of Pseudomonas syringae pv. tomato DC3000 and Xanthomonas citri subsp. citri. This study reveals a novel mechanism underlying how CLas uses a prophage-encoded effector, AGH17488, to target a reactive oxygen species accumulation-related gene, APX6, in the host to facilitate its infection.
Collapse
Affiliation(s)
- Jiao Du
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
- Fruit Tree and Melon Information Research CenterZhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhouChina
| | - Qiying Wang
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Hongwei Shi
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Changyong Zhou
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Jun He
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Xuefeng Wang
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| |
Collapse
|
19
|
Levy A, Livingston T, Wang C, Achor D, Vashisth T. Canopy Density, but Not Bacterial Titers, Predicts Fruit Yield in Huanglongbing-Affected Sweet Orange Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:290. [PMID: 36679003 PMCID: PMC9863558 DOI: 10.3390/plants12020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In Florida, almost all citrus trees are affected with Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas). We characterized various parameters of HLB-affected sweet orange trees in response to yield-improving nutritional treatment, including canopy volume, canopy density and CLas Ct values, and found that the treatment improved yield and maintained canopy density for over three years, whereas untreated HLB-affected trees declined in canopy density. The nutritional treatment did not affect CLas titer or the tree canopy volume suggesting that canopy density is a better indicator of fruit yield. To further validate the importance of canopy density, we evaluated three independent orchards (different in tree age or variety) to identify the specific traits that are correlated with fruit yields. We found that canopy density and fruit detachment force (FDF), were positively correlated with fruit yields in independent trials. Canopy density accurately distinguished between mild and severe trees in three field trials. High and low producing HLB trees had the same Ct values. Ct values did not always agree with CLas number in the phloem, as visualized by transmission electron microscopy. Our work identifies canopy density as an efficient trait to predict yields of HLB-affected trees and suggests canopy health is more relevant for yields than the CLas population.
Collapse
Affiliation(s)
- Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Taylor Livingston
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Tripti Vashisth
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Reyes Caldas PA, Zhu J, Breakspear A, Thapa SP, Toruño TY, Perilla-Henao LM, Casteel C, Faulkner CR, Coaker G. Effectors from a Bacterial Vector-Borne Pathogen Exhibit Diverse Subcellular Localization, Expression Profiles, and Manipulation of Plant Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1067-1080. [PMID: 35952362 PMCID: PMC9844206 DOI: 10.1094/mpmi-05-22-0114-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Jie Zhu
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| | | | - Shree P. Thapa
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| | - Tania Y. Toruño
- Plant Pathology Department, University of California, Davis, CA, U.S.A
- Rijk Zwaan Breeding B.V, Burgemeester Crezéelaan 40, De Lier, 2678 KX, The Netherlands
| | | | - Clare Casteel
- Plant Pathology Department, University of California, Davis, CA, U.S.A
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY, U.S.A
| | | | - Gitta Coaker
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| |
Collapse
|
21
|
Garcia L, Molina MC, Padgett-Pagliai KA, Torres PS, Bruna RE, García Véscovi E, González CF, Gadea J, Marano MR. A serralysin-like protein of Candidatus Liberibacter asiaticus modulates components of the bacterial extracellular matrix. Front Microbiol 2022; 13:1006962. [DOI: 10.3389/fmicb.2022.1006962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.
Collapse
|
22
|
Hu Y, Su C, Zhang Y, Li Y, Chen X, Shang H, Hu X. A Puccinia striiformis f. sp. tritici effector inhibits high-temperature seedling-plant resistance in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:249-267. [PMID: 35960661 DOI: 10.1111/tpj.15945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1)-induced protein kinase (RIPK) in Arabidopsis belongs to the receptor-like cytoplasmic kinase (RLCK) family and plays a vital role in immunity. However, the role of RLCKs in the high-temperature seedling-plant (HTSP) resistance of wheat (Triticum aestivum) to Puccinia striiformis f. sp. tritici (Pst), the stripe rust pathogen, remains unclear. Here, we identified a homologous gene of RIPK in wheat, namely TaRIPK. Expression of TaRIPK was induced by Pst inoculation and high temperatures. Silencing of TaRIPK reduced the expression level of TaRPM1, resulting in weaker HTSP resistance. Moreover, TaRIPK interacts with and phosphorylates papain-like cysteine protease 1 (TaPLCP1). Meanwhile, we found that the Pst-secreted protein PSTG_01766 targets TaPLCP1. Transient expression of PSTG_01766 inhibited basal immunity in tobacco (Nicotiana benthamiana) and wheat. The role of PSTG_01766 as an effector involved in HTSP resistance was further supported by host-induced gene silencing and bacterial type three secretion system-mediated delivery into wheat. PSTG_01766 inhibited the TaRIPK-induced phosphorylation of TaPLCP1. Furthermore, PSTG_01766 has the potential to influence the subcellular localization of TaPLCP1. Overall, we suggest that the TaRIPK-TaPLCP1-TaRPM1 module fits the guard model for disease resistance, participating in HTSP resistance. PSTG_01766 decreases HTSP resistance via targeting TaPLCP1. Guarded by wheat and attacked by Pst, TaPLCP1 may serve as a central hub of the defense response. Our findings improve the understanding of the molecular mechanism of wheat HTSP resistance, which may be an important strategy for controlling stripe rust in the face of global warming.
Collapse
Affiliation(s)
- Yangshan Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
Du J, Wang Q, Zeng C, Zhou C, Wang X. A prophage-encoded nonclassical secretory protein of "Candidatus Liberibacter asiaticus" induces a strong immune response in Nicotiana benthamiana and citrus. MOLECULAR PLANT PATHOLOGY 2022; 23:1022-1034. [PMID: 35279937 PMCID: PMC9190977 DOI: 10.1111/mpp.13206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Huanglongbing (HLB), associated with "Candidatus Liberibacter asiaticus" (CLas), is a globally devastating plant disease. The highly reduced genome of CLas encodes a number of secretory proteins. The conserved prophage-encoded protein AGH17470 is herein identified as a nonclassical secretory protein. We confirmed that the N-terminal and C-terminal sequences jointly determine the secretion of AGH17470. The transient expression of AGH17470 protein in Nicotiana benthamiana caused hypersensitive response (HR) cell death in infiltrated leaves and systemically infected leaves as well as the dwarfing of the entire plant, suggesting that AGH17470 is involved in the plant immune response, growth, and development. Overexpression of AGH17470 in N. benthamiana and citrus plants up-regulated the transcription of pathogenesis-related and salicylic acid (SA)-signalling pathway genes and promoted SA accumulation. Furthermore, transient expression of AGH17470 enhanced the resistance of sweet orange to Xanthomonas citri subsp. citri. To our knowledge, AGH17470 is the first prophage-encoded secretory protein demonstrated to elicit an HR and induce a strong plant immune response. The findings have increased our understanding of prophage-encoded secretory protein genes, and the results provide clues as to the plant defence response against CLas.
Collapse
Affiliation(s)
- Jiao Du
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Qiying Wang
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Chunhua Zeng
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Changyong Zhou
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Xuefeng Wang
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| |
Collapse
|
24
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
25
|
Jain M, Cai L, Black I, Azadi P, Carlson RW, Jones KM, Gabriel DW. ' Candidatus Liberibacter asiaticus'-Encoded BCP Peroxiredoxin Suppresses Lipopolysaccharide-Mediated Defense Signaling and Nitrosative Stress In Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:257-273. [PMID: 34931906 DOI: 10.1094/mpmi-09-21-0230-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mukesh Jain
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Lulu Cai
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, U.S.A
| | - Dean W Gabriel
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
26
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
27
|
De Francesco A, Lovelace AH, Shaw D, Qiu M, Wang Y, Gurung F, Ancona V, Wang C, Levy A, Jiang T, Ma W. Transcriptome Profiling of ' Candidatus Liberibacter asiaticus' in Citrus and Psyllids. PHYTOPATHOLOGY 2022; 112:116-130. [PMID: 35025694 DOI: 10.1094/phyto-08-21-0327-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
'Candidatus Liberibacter asiaticus' (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.
Collapse
Affiliation(s)
- Agustina De Francesco
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Amelia H Lovelace
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, United Kingdom
| | - Dipan Shaw
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, U.S.A
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fatta Gurung
- Citrus Center, Department of Agriculture, Agribusiness and Environmental Sciences, Texas A&M University-Kingsville, Weslaco, TX 78599, U.S.A
| | - Veronica Ancona
- Citrus Center, Department of Agriculture, Agribusiness and Environmental Sciences, Texas A&M University-Kingsville, Weslaco, TX 78599, U.S.A
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, United Kingdom
| |
Collapse
|
28
|
Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 2021; 17:e1010071. [PMID: 34882744 PMCID: PMC8659345 DOI: 10.1371/journal.ppat.1010071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains a mystery. In this review, we focus on the recent progress in genomic research on the pathogen, the interaction of host and CLas, and the influence of CLas infection on the transcripts, proteins, and metabolism of the host. We have also focused on the identification of candidate genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity, defense regulators, and genetic improvement for HLB tolerance/resistance in the future.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Zhang Y, Gao Y, Wang HL, Kan C, Li Z, Yang X, Yin W, Xia X, Nam HG, Li Z, Guo H. Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynthesis. MOLECULAR PLANT 2021; 14:1901-1917. [PMID: 34303024 DOI: 10.1016/j.molp.2021.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 05/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is influenced by numerous internal and environmental signals. However, how biotic stresses such as pathogen infection regulate leaf senescence remains largely unclear. In this study, we found that the premature leaf senescence in Arabidopsis caused by the soil-borne vascular fungus Verticillium dahliae was impaired by disruption of a protein elicitor from V. dahliae 1 named PevD1. Constitutive or inducible overexpression of PevD1 accelerated Arabidopsis leaf senescence. Interestingly, a senescence-associated NAC transcription factor, ORE1, was targeted by PevD1. PevD1 could interact with and stabilize ORE1 protein by disrupting its interaction with the RING-type ubiquitin E3 ligase NLA. Mutation of ORE1 suppressed the premature senescence caused by overexpressing PevD1, whereas overexpression of ORE1 or PevD1 led to enhanced ethylene production and thereby leaf senescence. We showed that ORE1 directly binds the promoter of ACS6 and promotes its expression for mediating PevD1-induced ethylene biosynthesis. Loss-of-function of ACSs could suppress V. dahliae-induced leaf senescence in ORE1-overexpressing plants. Furthermore, we found thatPevD1 also interacts with Gossypium hirsutum ORE1 (GhORE1) and that virus-induced gene silencing of GhORE1 delays V. dahliae-triggered leaf senescence in cotton, indicating a possibly conserved mechanism in plants. Taken together, these results suggest that V. dahliae induces leaf senescence by secreting the effector PevD1 to manipulate the ORE1-ACS6 cascade, providing new insights into biotic stress-induced senescence in plants.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chengcheng Kan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
30
|
Alquézar B, Carmona L, Bennici S, Peña L. Engineering of citrus to obtain huanglongbing resistance. Curr Opin Biotechnol 2021; 70:196-203. [PMID: 34198205 DOI: 10.1016/j.copbio.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022]
Abstract
Huanglongbing (HLB) disease is threatening the sustainability of citriculture in affected regions because of its rapid spread and the severity of the symptoms it induces. Herein, we summarise the main research findings that can be exploited to develop HLB-resistant cultivars. A major bottleneck has been the lack of a system for the ex vivo cultivation of HLB-associated bacteria (CLs) in true plant hosts, which precludes the evaluation of target genes/metabolites in reliable plant/pathogen/vector environments. With regard to HLB vectors, several biotechnologies which have been proven in laboratory settings to be effective for insect control are presented. Finally, new genotypes that are resistant to CLs or their insect vectors are described, and the most relevant strategies for fighting HLB are highlighted.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Stefania Bennici
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain.
| |
Collapse
|