1
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
2
|
Tava V, Reséndiz-Sharpe A, Vanhoffelen E, Saracchi M, Cortesi P, Lagrou K, Velde GV, Pasquali M. Fusarium musae Infection in Animal and Plant Hosts Confirms Its Cross-Kingdom Pathogenicity. J Fungi (Basel) 2025; 11:90. [PMID: 39997383 PMCID: PMC11856682 DOI: 10.3390/jof11020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium musae is a pathogen belonging to the Fusarium fujikuroi species complex, isolated from both banana fruits and immunocompromised patients, therefore hypothesized to be a cross-kingdom pathogen. We aimed to characterize F. musae infection in plant and animal hosts to prove its cross-kingdom pathogenicity. Therefore, we developed two infection models, one in banana and one in Galleria mellonella larvae, as a human proxy for the investigation of cross-kingdom pathogenicity of F. musae, along with accurate disease indexes effective to differentiate infection degrees in animal and plant hosts. We tested a worldwide collection of F. musae strains isolated both from banana fruits and human patients, and we provided the first experimental proof of the ability of all strains of F. musae to cause significant disease in banana fruits, as well as in G. mellonella. Thereby, we confirmed that F. musae can be considered a cross-kingdom pathogen. We, thus, provide a solid basis and toolbox for the investigation of the host-pathogen interactions of F. musae with its hosts.
Collapse
Affiliation(s)
- Valeria Tava
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | | | - Eliane Vanhoffelen
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| |
Collapse
|
3
|
Degradi L, Tava V, Esposto MC, Prigitano A, Bulgari D, Kunova A, Saracchi M, Cortesi P, Pasquali M. Genomic Insights into Fusarium verticillioides Diversity: The Genome of Two Clinical Isolates and Their Demethylase Inhibitor Fungicides Susceptibility. Pathogens 2024; 13:1062. [PMID: 39770322 PMCID: PMC11728828 DOI: 10.3390/pathogens13121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Fusarium verticillioides is an important plant pathogen in maize and other cereals that is seldom detected as the cause of human fusariosis. Here, we provide the analysis of the available diversity of F. verticillioides sequenced worldwide and report the first two genome assemblies and annotations (including mitochondrial DNA) of Fusarium verticillioides from clinical settings. Fusarium verticillioides 05-0160 (IUM05-0160) and Fusarium verticillioides 09-1037 (IUM09-1037) strains were obtained from the bone marrow and blood of two immunocompromised patients, respectively. The phylogenomic analysis confirmed the species identity of our two strains. Comparative genomic analyses among the reannotated F. verticillioides genomes (n = 46) did not lead to the identification of unique genes specific to the clinical samples. Two subgroups in the F. verticillioides clade were also identified and confirmed by a mitochondrial diversity study. Clinical strains (n = 4) were positioned in the multigene phylogenetic tree without any correlation between the host and the tree branches, grouping with plant-derived strains. To investigate the existence of a potential fitness advantage of our two clinical strains, we compared demethylase inhibitor fungicides susceptibility against the reference Fusarium verticillioides 7600, showing, on average, lower susceptibility to agricultural and medical-used antifungals. A significant reduction in susceptibility was observed for itraconazole and tetraconazole, which might be explained by structural changes in CYP51A and CYP51C sequences. By providing the first two annotated genomes of F. verticillioides from clinical settings comprehensive of their mitogenomes, this study can serve as a base for exploring the fitness and adaptation capacities of Fusarium verticillioides infecting different kingdoms.
Collapse
Affiliation(s)
- Luca Degradi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (D.B.); (A.K.); (M.S.); (P.C.)
| | - Valeria Tava
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (D.B.); (A.K.); (M.S.); (P.C.)
- Department of Imaging & Pathology, KU Leuven, RK-Herestraat 49, 3000 Leuven, Belgium
| | - Maria Carmela Esposto
- Department of Biomedical Sciences for Health (SCIBIS), University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.C.E.); (A.P.)
| | - Anna Prigitano
- Department of Biomedical Sciences for Health (SCIBIS), University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.C.E.); (A.P.)
| | - Daniela Bulgari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (D.B.); (A.K.); (M.S.); (P.C.)
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (D.B.); (A.K.); (M.S.); (P.C.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (D.B.); (A.K.); (M.S.); (P.C.)
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (D.B.); (A.K.); (M.S.); (P.C.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (D.B.); (A.K.); (M.S.); (P.C.)
| |
Collapse
|
4
|
Valenti I, Saracchi M, Degradi L, Kunova A, Cortesi P, Pasquali M. A Genome Resource for Ciborinia camelliae, the Causal Agent of Camellia Flower Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:131-133. [PMID: 36513026 DOI: 10.1094/mpmi-09-22-0175-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ciborinia camelliae Kohn is a camellia pathogen belonging to family Sclerotiniaceae, infecting only flowers of camellias. To better understand the virulence mechanism in this species, the draft genome sequence of the Italian strain of C. camelliae was obtained with a hybrid approach, combining Illumina HiSeq paired reads and MinIon Nanopore long-read sequencing. This combination improved significantly the existing National Center for Biotechnology Information reference genome. The assembly contiguity was implemented decreasing the contig number from 2,604 to 49. The N50 contig size increased from 31,803 to 2,726,972 bp and the completeness of assembly increased from 94.5 to 97.3% according to BUSCO analysis. This work is foundational to allow functional analysis of the infection process in this scarcely known floral pathogen. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Irene Valenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Luca Degradi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Degradi L, Tava V, Prigitano A, Esposto MC, Tortorano AM, Saracchi M, Kunova A, Cortesi P, Pasquali M. Exploring Mitogenomes Diversity of Fusarium musae from Banana Fruits and Human Patients. Microorganisms 2022; 10:1115. [PMID: 35744633 PMCID: PMC9227538 DOI: 10.3390/microorganisms10061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium musae has recently been described as a cross-kingdom pathogen causing post-harvest disease in bananas and systemic and superficial infection in humans. The taxonomic identity of fungal cross-kingdom pathogens is essential for confirming the identification of the species on distant infected hosts. Understanding the level of variability within the species is essential to decipher the population homogeneity infecting human and plant hosts. In order to verify that F. musae strains isolated from fruits and patients are part of a common population and to estimate their overall diversity, we assembled, annotated and explored the diversity of the mitogenomes of 18 F. musae strains obtained from banana fruits and human patients. The mitogenomes showed a high level of similarity among strains with different hosts' origins, with sizes ranging from 56,493 to 59,256 bp. All contained 27 tRNA genes and 14 protein-coding genes, rps3 protein, and small and large ribosomal subunits (rns and rnl). Variations in the number of endonucleases were detected. A comparison of mitochondrial endonucleases distribution with a diverse set of Fusarium mitogenomes allowed us to specifically discriminate F. musae from its sister species F. verticillioides and the other Fusarium species. Despite the diversity in F. musae mitochondria, strains from bananas and strains from human patients group together, indirectly confirming F. musae as a cross-kingdom pathogen.
Collapse
Affiliation(s)
- Luca Degradi
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (M.S.); (A.K.); (P.C.)
| | - Valeria Tava
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (M.S.); (A.K.); (P.C.)
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, University of Milan, Via Pascal 36, 20133 Milan, Italy; (A.P.); (M.C.E.); (A.M.T.)
| | - Maria Carmela Esposto
- Department of Biomedical Sciences for Health, University of Milan, Via Pascal 36, 20133 Milan, Italy; (A.P.); (M.C.E.); (A.M.T.)
| | - Anna Maria Tortorano
- Department of Biomedical Sciences for Health, University of Milan, Via Pascal 36, 20133 Milan, Italy; (A.P.); (M.C.E.); (A.M.T.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (M.S.); (A.K.); (P.C.)
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (M.S.); (A.K.); (P.C.)
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (M.S.); (A.K.); (P.C.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.D.); (V.T.); (M.S.); (A.K.); (P.C.)
| |
Collapse
|
6
|
Wang Y, Zhang X, Wang T, Zhou S, Liang X, Xie C, Kang Z, Chen D, Zheng L. The Small Secreted Protein FoSsp1 Elicits Plant Defenses and Negatively Regulates Pathogenesis in Fusarium oxysporum f. sp. cubense (Foc4). FRONTIERS IN PLANT SCIENCE 2022; 13:873451. [PMID: 35620677 PMCID: PMC9129915 DOI: 10.3389/fpls.2022.873451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 05/13/2023]
Abstract
Fusarium wilt of banana (Musa spp.), a typical vascular wilt disease caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense race 4 (Foc4), seriously threatens banana production worldwide. Pathogens, including vascular wilt fungi, secrete small cysteine-rich proteins during colonization. Some of these proteins are required for pathogenicity. In this study, 106 small secretory proteins that contain a classic N-terminal signal peptide were identified using bioinformatic methods in Foc4. Among them, 11 proteins were selected to show transient expressions in tobacco. Interestingly, transient expression of FoSsp1 in tobacco, an uncharacterized protein (of 145 aa), induced necrotic cell death reactive oxygen burst, and callous deposition. Furthermore, the expression of FoSSP1 in Foc4 wild type (WT) was up-regulated during the stage of banana roots colonization. A split-marker approach was used to knock out FoSSP1 in the Foc4 WT strain. Compared with the WT, the deletion mutant Fossp1 was normal in growth rate but increased in conidiation and virulence. RT-qPCR analysis showed that the expression of four conidiation regulator genes in the Fossp1 deletion mutant was significantly decreased compared to the WT strain. In addition, the expression of four pathogenesis-related genes of bananas infected with Fossp1 deletion mutant was down-regulated in comparison with that of the WT. In summary, these results suggested that FoSSP1 is a putative elicitor that negatively regulates conidiation and pathogenicity in Foc4.
Collapse
Affiliation(s)
- Yuhua Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Xinchun Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tian Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Siyu Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Daipeng Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Li Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
7
|
Yang X, Gong R, Chu Y, Liu S, Xiang D, Li C. Mechanistic Insights into Stereospecific Antifungal Activity of Chiral Fungicide Prothioconazole against Fusarium oxysporum F. sp. cubense. Int J Mol Sci 2022; 23:2352. [PMID: 35216468 PMCID: PMC8875126 DOI: 10.3390/ijms23042352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023] Open
Abstract
As a typical triazole fungicide, prothioconazole (Pro) has been used extensively due to its broad spectrum and high efficiency. However, as a racemic mixture of two enantiomers (R-Pro and S-Pro), the enantiomer-specific outcomes on the bioactivity have not been fully elucidated. Here, we investigate how chirality affects the activity and mechanism of action of Pro enantiomers on Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), the notorious virulent strain causing Fusarium wilt of banana (FWB). The Pro enantiomers were evaluated in vivo and in vitro with the aid of three bioassay methods for their fungicidal activities against TR4 and the results suggested that the fungicidal activities of Pro enantiomers are stereoselective in a dose-dependent manner with R-Pro making a major contribution to the treatment outcomes. We found that R-Pro led to more severe morphological changes and impairment in membrane integrity than S-Pro. R-Pro also led to the increase of more MDA contents and the reduction of more SOD and CAT activities compared with the control and S-Pro groups. Furthermore, the expression of Cytochrome P450 14α-sterol demethylases (CYP51), the target for triazole fungicides, was significantly increased upon treatment with R-Pro rather than S-Pro, at both transcriptional and translational levels; so were the activities of the Cytochrome P450 enzymes. In addition, surface plasmon resonance (SPR) and molecular docking illuminated the stereoselective interactions between the Pro enantiomers and CYP51 of TR4 at the target site, and R-Pro showed a better binding affinity with CYP51 than S-Pro. These results suggested an enantioselective mechanism of Pro against TR4, which may rely on the enantioselective damages to the fungal cell membrane and the enantiospecific CYP51 binding affinity. Taken together, our study shed some light on the mechanisms underlying the differential activities of the Pro enantiomers against TR4 and demonstrated that Pro can be used as a potential candidate in the treatment of FWB.
Collapse
Affiliation(s)
- Xiaofang Yang
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yuanqi Chu
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Siwen Liu
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
| | - Dandan Xiang
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
| | - Chunyu Li
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
| |
Collapse
|
8
|
Valenti I, Degradi L, Kunova A, Cortesi P, Pasquali M, Saracchi M. The First Mitochondrial Genome of Ciborinia camelliae and Its Position in the Sclerotiniaceae Family. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:802511. [PMID: 37744111 PMCID: PMC10512376 DOI: 10.3389/ffunb.2021.802511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 09/26/2023]
Abstract
Ciborinia camelliae is the causal agent of camellia flower blight (CFB). It is a hemibiotrophic pathogen, inoperculate Discomycete of the family Sclerotiniaceae. It shows host and organ specificity infecting only flowers of species belonging to the genus Camellia, causing serious damage to the ornamental component of the plant. In this work, the first mitochondrial genome of Ciborinia camellia is reported. The mitogenome was obtained by combining Illumina short read and Nanopore long read technology. To resolve repetitive elements, specific primers were designed and used for Sanger sequencing. The manually curated mitochondrial DNA (mtDNA) of the Italian strain DSM 112729 is a circular sequence of 114,660 bp, with 29.6% of GC content. It contains two ribosomal RNA genes, 33 transfer RNAs, one RNase P gene, and 62 protein-coding genes. The latter include one gene coding for a ribosomal protein (rps3) and the 14 typical proteins involved in the oxidative metabolism. Moreover, a partial mtDNA assembled from a contig list was obtained from the deposited genome assembly of a New Zealand strain of C. camelliae. The present study contributes to understanding the mitogenome arrangement and the evolution of this phytopathogenic fungus in comparison to other Sclerotiniaceae species and confirms the usefulness of mitochondrial analysis to define phylogenetic positioning of this newly sequenced species.
Collapse
Affiliation(s)
| | | | | | | | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
9
|
Turco S, Grottoli A, Drais MI, De Spirito C, Faino L, Reverberi M, Cristofori V, Mazzaglia A. Draft Genome Sequence of a New Fusarium Isolate Belonging to Fusarium tricinctum Species Complex Collected From Hazelnut in Central Italy. FRONTIERS IN PLANT SCIENCE 2021; 12:788584. [PMID: 34975974 PMCID: PMC8718101 DOI: 10.3389/fpls.2021.788584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/12/2021] [Indexed: 05/14/2023]
Abstract
In summer 2019, during a survey on the health status of a hazelnut orchard located in the Tuscia area (the province of Viterbo, Latium, Italy), nuts showing symptoms, such as brown-grayish spots at the bottom of the nuts progressing upward to the apex, and necrotic patches on the bracts and, sometimes, on the petioles, were found and collected for further studies. This syndrome is associated with the nut gray necrosis (NGN), whose main causal agent is Fusarium lateritium. Aiming to increase knowledge about this fungal pathogen, the whole-genome sequencing of a strain isolated from symptomatic hazelnut was performed using long Nanopore reads technology in combination with the higher precision of the Illumina reads, generating a high-quality genome assembly. The following phylogenetic and comparative genomics analysis suggested that this isolate is caused by the F. tricinctum species complex rather than F. lateritium one, as initially hypothesized. Thus, this study demonstrates that different Fusarium species can infect Corylus avellana producing the same symptomatology. In addition, it sheds light onto the genetic features of the pathogen in subject, clarifying facets about its biology, epidemiology, infection mechanisms, and host spectrum, with the future objective to develop specific and efficient control strategies.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Alessandro Grottoli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Difesa e Certificazione (CREA-DC), Rome, Italy
| | - Mounira Inas Drais
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Carlo De Spirito
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Luigi Faino
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Valerio Cristofori
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Tava V, Prigitano A, Cortesi P, Esposto MC, Pasquali M. Fusarium musae from Diseased Bananas and Human Patients: Susceptibility to Fungicides Used in Clinical and Agricultural Settings. J Fungi (Basel) 2021; 7:jof7090784. [PMID: 34575822 PMCID: PMC8467134 DOI: 10.3390/jof7090784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Fusarium musae belongs to the Fusarium fujikuroi species complex. It causes crown rot disease in banana but also keratitis and skin infections as well as systemic infections in immunocompromised patients. Antifungal treatments in clinical and agricultural settings rely mostly on molecules belonging to the azole class. Given the potential risk of pathogen spread from food to clinical settings, the goal of the work was to define the level of susceptibility to different azoles of a worldwide population of F. musae. Eight fungicides used in agriculture and five antifungals used in clinical settings (4 azoles and amphotericin B) were tested using the CLSI (Clinical and Laboratory Standards Institute) protocol methodology on 19 F. musae strains collected from both infected patients and bananas. The level of susceptibility to the different active molecules was not dependent on the source of isolation with the exception of fenbuconazole and difenoconazole which had a higher efficiency on banana-isolated strains. Minimal inhibitory concentrations (MICs) of the different molecules ranged from 0.12–0.25 mg/L for prochloraz to more than 16 mg/L for tetraconazole and fenbuconazole. Compared to the F. verticillioides, F. musae MICs were higher suggesting the importance of monitoring the potential future spread of this species also in clinical settings.
Collapse
Affiliation(s)
- Valeria Tava
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, 20133 Milano, Italy; (V.T.); (P.C.)
| | - Anna Prigitano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milano, Italy; (A.P.); (M.C.E.)
| | - Paolo Cortesi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, 20133 Milano, Italy; (V.T.); (P.C.)
| | - Maria Carmela Esposto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milano, Italy; (A.P.); (M.C.E.)
| | - Matias Pasquali
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, 20133 Milano, Italy; (V.T.); (P.C.)
- Correspondence:
| |
Collapse
|