1
|
Chávez-Jacobo VM, Reyes-González AR, Girard L, Dunn MF. The Fsr transporter of Sinorhizobium meliloti contributes to antimicrobial resistance and symbiosis with alfalfa. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40397014 DOI: 10.1099/mic.0.001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Major facilitator superfamily (MFS) transporters in bacteria participate in both the uptake and export of ions, metabolites or toxic compounds. In rhizobia, specific MFS transporters increase resistance to plant-produced compounds and may also affect other phenotypic traits, including symbiosis with legume host plants. Here, we describe the importance of the Sinorhizobium meliloti 1021 Fsr efflux pump in resistance to selected antimicrobial compounds and in modulating biofilm formation, motility and symbiotic efficiency with alfalfa. The fsr gene (smc00990) is annotated as encoding an MFS family fosmidomycin efflux pump. Unexpectedly, both the 1021 wild type and an fsr null mutant were highly resistant to fosmidomycin. Our assays indicate that this is due to an inability to transport the antibiotic. Unlike the wild type, the fsr mutant was highly sensitive to the fosmidomycin structural analogue fosfomycin, and moderately more sensitive to hydrogen peroxide (H2O2) and deoxycholate (DOC). Root and seed exudates from alfalfa did not inhibit the growth of the wild type or fsr mutant. fsr transcription significantly increased proportionally to the concentration of fosfomycin added to cultures but was unaffected by the addition of other antibiotics, H2O2, DOC or SDS. Alfalfa seed exudate moderately increased fsr transcriptional expression. Fluorometric assays using ethidium bromide as a substrate and carbonyl cyanide m-chlorophenyl hydrazone as an energy decoupler showed that Fsr was a proton-dependent efflux pump. Biofilm formation and swimming motility were decreased and increased, respectively, in the fsr mutant, and its symbiotic efficiency with alfalfa was decreased in terms of nodule numbers per plant and plant dry weights.
Collapse
Affiliation(s)
- Victor M Chávez-Jacobo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, Mexico
| | - Alma R Reyes-González
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Bustamante JA, Ceron JS, Gao IT, Ramirez HA, Aviles MV, Bet Adam D, Brice JR, Cuellar RA, Dockery E, Jabagat MK, Karp DG, Lau JKO, Li S, Lopez-Magaña R, Moore RR, Morin BKR, Nzongo J, Rezaeihaghighi Y, Sapienza-Martinez J, Tran TTK, Huang Z, Duthoy AJ, Barnett MJ, Long SR, Chen JC. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts. PLoS Genet 2023; 19:e1010776. [PMID: 37871041 PMCID: PMC10659215 DOI: 10.1371/journal.pgen.1010776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.
Collapse
Affiliation(s)
- Julian A. Bustamante
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Josue S. Ceron
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Hector A. Ramirez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Milo V. Aviles
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Demsin Bet Adam
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Jason R. Brice
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Eva Dockery
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Miguel Karlo Jabagat
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Donna Grace Karp
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Kin-On Lau
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Suling Li
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Raymondo Lopez-Magaña
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rebecca R. Moore
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Bethany Kristi R. Morin
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Juliana Nzongo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Yasha Rezaeihaghighi
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Sapienza-Martinez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Tuyet Thi Kim Tran
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron J. Duthoy
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Melanie J. Barnett
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joseph C. Chen
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
3
|
Soto MJ, Pérez J, Muñoz-Dorado J, Contreras-Moreno FJ, Moraleda-Muñoz A. Transcriptomic response of Sinorhizobium meliloti to the predatory attack of Myxococcus xanthus. Front Microbiol 2023; 14:1213659. [PMID: 37405170 PMCID: PMC10315480 DOI: 10.3389/fmicb.2023.1213659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Bacterial predation impacts microbial community structures, which can have both positive and negative effects on plant and animal health and on environmental sustainability. Myxococcus xanthus is an epibiotic soil predator with a broad range of prey, including Sinorhizobium meliloti, which establishes nitrogen-fixing symbiosis with legumes. During the M. xanthus-S. meliloti interaction, the predator must adapt its transcriptome to kill and lyse the target (predatosome), and the prey must orchestrate a transcriptional response (defensome) to protect itself against the biotic stress caused by the predatory attack. Here, we describe the transcriptional changes taking place in S. meliloti in response to myxobacterial predation. The results indicate that the predator induces massive changes in the prey transcriptome with up-regulation of protein synthesis and secretion, energy generation, and fatty acid (FA) synthesis, while down-regulating genes required for FA degradation and carbohydrate transport and metabolism. The reconstruction of up-regulated pathways suggests that S. meliloti modifies the cell envelop by increasing the production of different surface polysaccharides (SPSs) and membrane lipids. Besides the barrier role of SPSs, additional mechanisms involving the activity of efflux pumps and the peptide uptake transporter BacA, together with the production of H2O2 and formaldehyde have been unveiled. Also, the induction of the iron-uptake machinery in both predator and prey reflects a strong competition for this metal. With this research we complete the characterization of the complex transcriptional changes that occur during the M. xanthus-S. meliloti interaction, which can impact the establishment of beneficial symbiosis with legumes.
Collapse
Affiliation(s)
- María José Soto
- Departamento de Biotecnología y Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
4
|
Albicoro FJ, Vacca C, Cafiero JH, Draghi WO, Martini MC, Goulian M, Lagares A, Del Papa MF. Comparative Proteomic Analysis Revealing ActJ-Regulated Proteins in Sinorhizobium meliloti. J Proteome Res 2023; 22:1682-1694. [PMID: 37017314 PMCID: PMC10834056 DOI: 10.1021/acs.jproteome.2c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.
Collapse
Affiliation(s)
- Francisco Javier Albicoro
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Hilario Cafiero
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Carla Martini
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA. USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA. USA
| | - Antonio Lagares
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
5
|
Werner N, Werten S, Hoppen J, Palm GJ, Göttfert M, Hinrichs W. The induction mechanism of the flavonoid-responsive regulator FrrA. FEBS J 2022; 289:507-518. [PMID: 34314575 DOI: 10.1111/febs.16141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Bradyrhizobium diazoefficiens, a bacterial symbiont of soybean and other leguminous plants, enters a nodulation-promoting genetic programme in the presence of host-produced flavonoids and related signalling compounds. Here, we describe the crystal structure of an isoflavonoid-responsive regulator (FrrA) from Bradyrhizobium, as well as cocrystal structures with inducing and noninducing ligands (genistein and naringenin, respectively). The structures reveal a TetR-like fold whose DNA-binding domain is capable of adopting a range of orientations. A single molecule of either genistein or naringenin is asymmetrically bound in a central cavity of the FrrA homodimer, mainly via C-H contacts to the π-system of the ligands. Strikingly, however, the interaction does not provoke any conformational changes in the repressor. Both the flexible positioning of the DNA-binding domain and the absence of structural change upon ligand binding are corroborated by small-angle X-ray scattering (SAXS) experiments in solution. Together with a model of the promoter-bound state of FrrA our results suggest that inducers act as a wedge, preventing the DNA-binding domains from moving close enough together to interact with successive positions of the major groove of the palindromic operator.
Collapse
Affiliation(s)
- Nadine Werner
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Jens Hoppen
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Gottfried J Palm
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Michael Göttfert
- Institute of Genetics, Dresden University of Technology, Germany
| | - Winfried Hinrichs
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| |
Collapse
|
6
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
7
|
Rodríguez S, Correa-Galeote D, Sánchez-Pérez M, Ramírez M, Isidra-Arellano MC, Reyero-Saavedra MDR, Zamorano-Sánchez D, Hernández G, Valdés-López O, Girard L. A Novel OmpR-Type Response Regulator Controls Multiple Stages of the Rhizobium etli - Phaseolus vulgaris N 2-Fixing Symbiosis. Front Microbiol 2021; 11:615775. [PMID: 33384681 PMCID: PMC7769827 DOI: 10.3389/fmicb.2020.615775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022] Open
Abstract
OmpR, is one of the best characterized response regulators families, which includes transcriptional regulators with a variety of physiological roles including the control of symbiotic nitrogen fixation (SNF). The Rhizobium etli CE3 genome encodes 18 OmpR-type regulators; the function of the majority of these regulators during the SNF in common bean, remains elusive. In this work, we demonstrated that a R. etli mutant strain lacking the OmpR-type regulator RetPC57 (ΔRetPC57), formed less nodules when used as inoculum for common bean. Furthermore, we observed reduced expression level of bacterial genes involved in Nod Factors production (nodA and nodB) and of plant early-nodulation genes (NSP2, NIN, NF-YA and ENOD40), in plants inoculated with ΔRetPC57. RetPC57 also contributes to the appropriate expression of genes which products are part of the multidrug efflux pumps family (MDR). Interestingly, nodules elicited by ΔRetPC57 showed increased expression of genes relevant for Carbon/Nitrogen nodule metabolism (PEPC and GOGAT) and ΔRetPC57 bacteroids showed higher nitrogen fixation activity as well as increased expression of key genes directly involved in SNF (hfixL, fixKf, fnrN, fixN, nifA and nifH). Taken together, our data show that the previously uncharacterized regulator RetPC57 is a key player in the development of the R. etli - P. vulgaris symbiosis.
Collapse
Affiliation(s)
- Susana Rodríguez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Correa-Galeote
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mishael Sánchez-Pérez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Ramírez
- Programa de Genómica Funcional de Eucariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - María Del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - David Zamorano-Sánchez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Georgina Hernández
- Programa de Genómica Funcional de Eucariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Pasqua M, Grossi M, Zennaro A, Fanelli G, Micheli G, Barras F, Colonna B, Prosseda G. The Varied Role of Efflux Pumps of the MFS Family in the Interplay of Bacteria with Animal and Plant Cells. Microorganisms 2019; 7:microorganisms7090285. [PMID: 31443538 PMCID: PMC6780985 DOI: 10.3390/microorganisms7090285] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.
Collapse
Affiliation(s)
- Martina Pasqua
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Alessandro Zennaro
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Giulia Fanelli
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR), P.le A. Moro 5, 00185 Roma, Italy
| | - Frederic Barras
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France
- Équipe de Recherche Labellisée (ERL) Microbiology, Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| | - Bianca Colonna
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy.
| |
Collapse
|
9
|
Khemthong S, Nuonming P, Dokpikul T, Sukchawalit R, Mongkolsuk S. Regulation and function of the flavonoid-inducible efflux system, emrR-emrAB, in Agrobacterium tumefaciens C58. Appl Microbiol Biotechnol 2019; 103:5763-5780. [PMID: 31127355 DOI: 10.1007/s00253-019-09899-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
The expression of the Agrobacterium tumefaciens emrAB operon, which encodes a membrane fusion protein and an inner membrane protein, is inducible by various flavonoids, including apigenin, genistein, luteolin, naringenin, and quercetin. Among these flavonoids, quercetin is the best inducer, followed by genistein. The emrR gene is divergently transcribed from the emrAB operon. The EmrR protein, which belongs to the TetR transcriptional regulator family, negatively regulates the expression of emrAB and of itself. Electrophoretic mobility shift assays and DNase I footprinting showed that EmrR binds directly at two EmrR-binding sites in the emrR-emrAB intergenic region and that quercetin inhibits the DNA-binding activity of EmrR. Promoter-lacZ fusion analyses and 5' rapid amplification of cDNA ends were performed to map the emrR and emrAB promoters. Compared with the wild-type strain, the emrA mutant strain exhibited similar levels of resistance to the tested antibiotics. In contrast, disruption of emrR conferred protection against nalidixic acid and novobiocin, but it rendered A. tumefaciens sensitive to tetracycline and erythromycin. The emrR mutation also destabilized the outer membrane of A. tumefaciens, resulting in increased sensitivity to SDS and low pH. These findings demonstrate that proper regulation of emrR-emrAB is required for free-living A. tumefaciens to survive in deleterious environments in which toxic compounds are present. Nonetheless, A. tumefaciens strains that lack emrR or emrA still have the ability to cause tumors when infecting Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Sasimaporn Khemthong
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand
| | - Puttamas Nuonming
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand
| | - Thanittra Dokpikul
- Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand
| | - Rojana Sukchawalit
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand.
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
10
|
Wippel K, Long SR. Symbiotic Performance of Sinorhizobium meliloti Lacking ppGpp Depends on the Medicago Host Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:717-728. [PMID: 30576265 DOI: 10.1094/mpmi-11-18-0306-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Host specificity in the root-nodule symbiosis between legumes and rhizobia is crucial for the establishment of a successful interaction and ammonia provision to the plant. The specificity is mediated by plant-bacterial signal exchange during early stages of interaction. We observed that a Sinorhizobium meliloti mutant ∆relA, which is deficient in initiating the bacterial stringent response, fails to nodulate Medicago sativa (alfalfa) but successfully infects Medicago truncatula. We used biochemical, histological, transcriptomic, and imaging approaches to compare the behavior of the S. meliloti ∆relA mutant and wild type (WT) on the two plant hosts. ∆relA performed almost WT-like on M. truncatula, except for reduced nitrogen-fixation capacity and a disorganized positioning of bacteroids within nodule cells. In contrast, ∆relA showed impaired root colonization on alfalfa and failed to infect nodule primordia. Global transcriptome analyses of ∆relA cells treated with the alfalfa flavonoid luteolin and of mature nodules induced by the mutant on M. truncatula revealed normal nod gene expression but overexpression of exopolysaccharide biosynthesis genes and a slight suppression of plant defense-like reactions. Many RelA-dependent transcripts overlap with the hypo-osmolarity-related FeuP regulon or are characteristic of stress responses. Based on our findings, we suggest that RelA is not essential until the late stages of symbiosis with M. truncatula, in which it may be involved in processes that optimize nitrogen fixation.
Collapse
Affiliation(s)
- Kathrin Wippel
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Sharon R Long
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
11
|
Ratib NR, Sabio EY, Mendoza C, Barnett MJ, Clover SB, Ortega JA, Dela Cruz FM, Balderas D, White H, Long SR, Chen EJ. Genome-wide identification of genes directly regulated by ChvI and a consensus sequence for ChvI binding in Sinorhizobium meliloti. Mol Microbiol 2018; 110:596-615. [PMID: 30192418 DOI: 10.1111/mmi.14119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
ExoS/ChvI two-component signaling in the nitrogen-fixing α-proteobacterium Sinorhizobium meliloti is required for symbiosis and regulates exopolysaccharide production, motility, cell envelope integrity and nutrient utilization in free-living bacteria. However, identification of many ExoS/ChvI direct transcriptional target genes has remained elusive. Here, we performed chromatin immunoprecipitation followed by microarray analysis (chIP-chip) to globally identify DNA regions bound by ChvI protein in S. meliloti. We then performed qRT-PCR with chvI mutant strains to test ChvI-dependent expression of genes downstream of the ChvI-bound DNA regions. We identified 64 direct target genes of ChvI, including exoY, rem and chvI itself. We also identified ChvI direct target candidates, like exoR, that are likely controlled by additional regulators. Analysis of upstream sequences from the 64 ChvI direct target genes identified a 15 bp-long consensus sequence. Using electrophoretic mobility shift assays and transcriptional fusions with exoY, SMb21440, SMc00084, SMc01580, chvI, and ropB1, we demonstrated this consensus sequence is important for ChvI binding to DNA and transcription of ChvI direct target genes. Thus, we have comprehensively identified ChvI regulon genes and a 'ChvI box' bound by ChvI. Many ChvI direct target genes may influence the cell envelope, consistent with the critical role of ExoS/ChvI in growth and microbe-host interactions.
Collapse
Affiliation(s)
- Nicole R Ratib
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Erich Y Sabio
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Carolina Mendoza
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | | | - Sarah B Clover
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Jesus A Ortega
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Francesca M Dela Cruz
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - David Balderas
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Holly White
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Sharon R Long
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Esther J Chen
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
12
|
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. J Bacteriol 2018; 200:JB.00501-17. [PMID: 29158240 DOI: 10.1128/jb.00501-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Sinorhizobium meliloti is a soil-dwelling alphaproteobacterium that engages in a nitrogen-fixing root nodule symbiosis with leguminous plants. Cell surface polysaccharides are important both for adapting to stresses in the soil and for the development of an effective symbiotic interaction. Among the polysaccharides characterized to date, the acidic exopolysaccharides I (EPS-I; succinoglycan) and II (EPS-II; galactoglucan) are particularly important for protection from abiotic stresses, biofilm formation, root colonization, and infection of plant roots. Previous genetic screens discovered mutants with impaired EPS production, allowing the delineation of EPS biosynthetic pathways. Here we report on a genetic screen to isolate mutants with mucoid colonial morphologies that suggest EPS overproduction. Screening with Tn5-110, which allows the recovery of both null and upregulation mutants, yielded 47 mucoid mutants, most of which overproduce EPS-I; among the 30 unique genes and intergenic regions identified, 14 have not been associated with EPS production previously. We identified a new protein-coding gene, emmD, which may be involved in the regulation of EPS-I production as part of the EmmABC three-component regulatory circuit. We also identified a mutant defective in EPS-I production, motility, and symbiosis, where Tn5-110 was not responsible for the mutant phenotypes; these phenotypes result from a missense mutation in rpoA corresponding to the domain of the RNA polymerase alpha subunit known to interact with transcription regulators.IMPORTANCE The alphaproteobacterium Sinorhizobium meliloti converts dinitrogen to ammonium while inhabiting specialized plant organs termed root nodules. The transformation of S. meliloti from a free-living soil bacterium to a nitrogen-fixing plant symbiont is a complex developmental process requiring close interaction between the two partners. As the interface between the bacterium and its environment, the S. meliloti cell surface plays a critical role in adaptation to varied soil environments and in interaction with plant hosts. We isolated and characterized S. meliloti mutants with increased production of exopolysaccharides, key cell surface components. Our diverse set of mutants suggests roles for exopolysaccharide production in growth, metabolism, cell division, envelope homeostasis, biofilm formation, stress response, motility, and symbiosis.
Collapse
|
13
|
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front Microbiol 2016; 7:1483. [PMID: 27708632 PMCID: PMC5030252 DOI: 10.3389/fmicb.2016.01483] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 01/24/2023] Open
Abstract
Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals’ and plants’ pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial–host interactions during infection.
Collapse
Affiliation(s)
- Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
14
|
Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms 2016; 4:microorganisms4010014. [PMID: 27681908 PMCID: PMC5029519 DOI: 10.3390/microorganisms4010014] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.
Collapse
Affiliation(s)
- Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Jose Antonio Reales-Calderon
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Felipe Lira
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Alejandra Bernardini
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Maria Blanca Sanchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 2015; 198:521-35. [PMID: 26574513 DOI: 10.1128/jb.00795-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3',5'-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG(0)) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE We present the first systematic genome-wide investigation of the role of 3',5'-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of an S. meliloti strain unable to produce cdG (cdG(0)) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility of S. meliloti and uncovered a single-domain PilZ protein as regulator of motility.
Collapse
|
16
|
Amaya-Gómez CV, Hirsch AM, Soto MJ. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiol 2015; 15:58. [PMID: 25887945 PMCID: PMC4381460 DOI: 10.1186/s12866-015-0390-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/18/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Swarming motility and biofilm formation are opposite, but related surface-associated behaviors that allow various pathogenic bacteria to colonize and invade their hosts. In Sinorhizobium meliloti, the alfalfa endosymbiont, these bacterial processes and their relevance for host plant colonization are largely unexplored. Our previous work demonstrated distinct swarming abilities in two S. meliloti strains (Rm1021 and GR4) and revealed that both environmental cues (iron concentration) and bacterial genes (fadD, rhb, rirA) play crucial roles in the control of surface motility in this rhizobial species. In the current study, we investigate whether these factors have an impact on the ability of S. meliloti to establish biofilms and to colonize host roots. RESULTS We found that strain GR4, which is less prone to translocate on solid surfaces than strain Rm1021, is more efficient in developing biofilms on glass and plant root surfaces. High iron conditions, known to prevent surface motility in a wild-type strain of S. meliloti, promote biofilm development in Rm1021 and GR4 strains by inducing the formation of more structured and thicker biofilms than those formed under low iron levels. Moreover, three different S. meliloti mutants (fadD, rhb, and rirA) that exhibit an altered surface translocation behavior compared with the wild-type strain, establish reduced biofilms on both glass and alfalfa root surfaces. Iron-rich conditions neither rescue the defect in biofilm formation shown by the rhb mutant, which is unable to produce the siderophore rhizobactin 1021 (Rhb1021), nor have any impact on biofilms formed by the iron-response regulator rirA mutant. On the other hand, S. meliloti FadD loss-of-function mutants do not establish normal biofilms irrespective of iron levels. CONCLUSIONS Our studies show that siderophore Rhb1021 is not only required for surface translocation, but also for biofilm formation on glass and root surfaces by strain Rm1021. In addition, we present evidence for the existence of control mechanisms that inversely regulate swarming and biofilm formation in S. meliloti, and that contribute to efficient plant root colonization. One of these mechanisms involves iron levels and the iron global regulator RirA. The other mechanism involves the participation of the fatty acid metabolism-related enzyme FadD.
Collapse
Affiliation(s)
- Carol V Amaya-Gómez
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| | - Ann M Hirsch
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095-1606, USA.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
17
|
Rossbach S, Kunze K, Albert S, Zehner S, Göttfert M. The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:379-387. [PMID: 24224534 DOI: 10.1094/mpmi-09-13-0282-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The divergently oriented Sinorhizobium meliloti emrAB (SMc03168 and SMc03167) and emrR (SMc03169) genes are predicted to encode an efflux system of the major facilitator superfamily and a TetR-like transcriptional regulator, respectively. The transcription of the emrA gene was found to be inducible by flavonoids, including luteolin and apigenin, which are known inducers of the nodulation genes in S. meliloti. Interestingly, quercetin, which does not induce nodulation genes, was also a potent inducer of emrA, indicating that NodD is not directly involved in regulation of emrA. The likely regulator of emrAB is EmrR, which binds to palindrome-like sequences in the intergenic region. Several modifications of the palindromes, including an increase of the spacing between the two half sites, prevented binding of EmrR. Binding was also impaired by the presence of luteolin. Mutations in emrA had no obvious effect on symbiosis. This was in contrast to the emrR mutant, which exhibited a symbiotic deficiency with Medicago sativa. Conserved binding sites for TetR-like regulators within the intergenic regions between the emrAB and emrR genes were identified in many symbiotic and pathogenic members of the order Rhizobiales.
Collapse
|