1
|
Virus Elimination from Naturally Infected Field Cultivars of Potato (Solanum tuberosum) by Transgenic RNA Interference. Int J Mol Sci 2022; 23:ijms23148020. [PMID: 35887367 PMCID: PMC9321115 DOI: 10.3390/ijms23148020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue culture methods enable virus elimination from vegetatively propagated crop plants but cannot prevent new infections. Here we used a tissue culture transgenic approach for curing field cultivars of Solanum tuberosum through the stimulation of RNA interference (RNAi)-based antiviral defenses. Expression cassettes carrying inverted repeats of potato virus S (PVS, genus Carlavirus) movement or coat protein sequences were used for the transformation of potato cultivars naturally infected with PVS and/or a related carlavirus potato virus M (PVM), without or with potato virus Y (PVY, genus Potyvirus). A high proportion of transformants PCR-positive for transgenes were cured from both carlaviruses and PVY. After 3-year field trials, 22 transgenic lines representing seven cultivars remained free of any virus or became infected only with PVY. Vegetative progenies of the transgenic lines of cultivar Zeren (initially coinfected with PVS, PVM, and PVY), sampled after in vitro propagation or field trials, and other field cultivars accumulated transgene-derived 21, 22, and 24 nt small interfering (si)RNAs almost exclusively from the PVS inverted repeats. Additionally, some field progenies accumulated 21–22 nt siRNAs from the entire PVY genome, confirming PVY infection. Taken together, transgenic RNAi is effective for virus elimination from naturally infected potato cultivars and their sequence-specific immunization against new infections.
Collapse
|
2
|
Rodriguez-Rodriguez M, Quintero-Ferrer A, Green KJ, Robles-Hernández L, Gonzalez-Franco AC, Karasev AV. Molecular and Biological Characterization of Recombinant Isolates of Potato virus Y Circulating in Potato Fields in Mexico. PLANT DISEASE 2021; 105:2688-2696. [PMID: 33267640 DOI: 10.1094/pdis-10-20-2215-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potato virus Y (PVY) is a significant threat to potato (Solanum tuberosum) production in Mexico. The presence of recombinant strains of PVY circulating in potato has been reported in the country, but no systematic study on the genetic diversity of PVY in potato and prevalence of PVY strains has been conducted yet. We report on a series of surveys in seed potato production areas in two states in Mexico, namely, Chihuahua and Jalisco, between 2011 and 2019. PVY was detected through the period of nine years in multiple potato cultivars in both states, often remaining asymptomatic in the most popular cultivars, such as 'Fianna' and 'Agata'. When typed to strain, all PVY samples studied were found to have N-serotype, and were all identified molecularly as isolates of the same recombinant strain, PVYNTN. Five of these PVY isolates were tested on tobacco (Nicotiana tabacum), where they induced vein necrosis supporting the molecular typing. This identification was also confirmed biologically on differential potato cultivars, where one PVYNTN isolate from the 2013 survey triggered the hypersensitive resistance conferred by the Nztbr gene in the cv. Maris Bard. Seven of these Mexican PVYNTN isolates, collected between 2013 and 2019, including two PVY isolates from potato tubers exhibiting potato tuber necrotic ringspot disease, were subjected to whole genome sequencing and found to show a typical PVYNTNa recombinant structure. When subjected to phylogenetic analysis, Mexican PVYNTN sequences clustered in more than three separate clades, suggesting multiple introductions of PVYNTN in the country. The wide circulation of the PVYNTN strain in Mexican potato should be considered by potato producers, to develop mitigation strategies for this PVY strain associated with tuber necrotic symptoms.
Collapse
Affiliation(s)
- Mariana Rodriguez-Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31310 Mexico
| | - Arturo Quintero-Ferrer
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
| | - Kelsie J Green
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
| | - Loreto Robles-Hernández
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31310 Mexico
| | - Ana C Gonzalez-Franco
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31310 Mexico
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
| |
Collapse
|
3
|
Quintanilha-Peixoto G, Fonseca PLC, Raya FT, Marone MP, Bortolini DE, Mieczkowski P, Olmo RP, Carazzolle MF, Voigt CA, Soares ACF, Pereira GAG, Góes-Neto A, Aguiar ERGR. The Sisal Virome: Uncovering the Viral Diversity of Agave Varieties Reveals New and Organ-Specific Viruses. Microorganisms 2021; 9:microorganisms9081704. [PMID: 34442783 PMCID: PMC8400513 DOI: 10.3390/microorganisms9081704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Sisal is a common name for different plant varieties in the genus Agave (especially Agave sisalana) used for high-quality natural leaf fiber extraction. Despite the economic value of these plants, we still lack information about the diversity of viruses (virome) in non-tequilana species from the genus Agave. In this work, by associating RNA and DNA deep sequencing we were able to identify 25 putative viral species infecting A. sisalana, A. fourcroydes, and Agave hybrid 11648, including one strain of Cowpea Mild Mottle Virus (CPMMV) and 24 elements likely representing new viruses. Phylogenetic analysis indicated they belong to at least six viral families: Alphaflexiviridae, Betaflexiviridae, Botourmiaviridae, Closteroviridae, Partitiviridae, Virgaviridae, and three distinct unclassified groups. We observed higher viral taxa richness in roots when compared to leaves and stems. Furthermore, leaves and stems are very similar diversity-wise, with a lower number of taxa and dominance of a single viral species. Finally, approximately 50% of the identified viruses were found in all Agave organs investigated, which suggests that they likely produce a systemic infection. This is the first metatranscriptomics study focused on viral identification in species from the genus Agave. Despite having analyzed symptomless individuals, we identified several viruses supposedly infecting Agave species, including organ-specific and systemic species. Surprisingly, some of these putative viruses are probably infecting microorganisms composing the plant microbiota. Altogether, our results reinforce the importance of unbiased strategies for the identification and monitoring of viruses in plant species, including those with asymptomatic phenotypes.
Collapse
Affiliation(s)
- Gabriel Quintanilha-Peixoto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Paula Luize Camargos Fonseca
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Fábio Trigo Raya
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Marina Pupke Marone
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Dener Eduardo Bortolini
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Roenick Proveti Olmo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, 67084 Strasbourg, France
| | - Marcelo Falsarella Carazzolle
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | | | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Brazil;
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| |
Collapse
|
4
|
Kutnjak D, Tamisier L, Adams I, Boonham N, Candresse T, Chiumenti M, De Jonghe K, Kreuze JF, Lefebvre M, Silva G, Malapi-Wight M, Margaria P, Mavrič Pleško I, McGreig S, Miozzi L, Remenant B, Reynard JS, Rollin J, Rott M, Schumpp O, Massart S, Haegeman A. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms 2021; 9:841. [PMID: 33920047 PMCID: PMC8071028 DOI: 10.3390/microorganisms9040841] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
High-throughput sequencing (HTS) technologies have become indispensable tools assisting plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for plant virus detection and virome characterization. We start from sample preparation and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis requirements, an extensive overview of the in-depth data processing options, and taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview of the consecutive steps that can be used to implement a well-structured HTS data analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in HTS plant virome projects.
Collapse
Affiliation(s)
- Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Lucie Tamisier
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Ian Adams
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, King’s Rd, Newcastle Upon Tyne NE1 7RU, UK;
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Michela Chiumenti
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola, 122/D, 70126 Bari, Italy;
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| | - Jan F. Kreuze
- International Potato Center (CIP), Avenida la Molina 1895, La Molina, Lima 15023, Peru;
| | - Marie Lefebvre
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Martha Malapi-Wight
- Biotechnology Risk Analysis Programs, Biotechnology Regulatory Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Riverdale, MD 20737, USA;
| | - Paolo Margaria
- Leibniz Institute-DSMZ, Inhoffenstrasse 7b, 38124 Braunschweig, Germany;
| | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia;
| | - Sam McGreig
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - Benoit Remenant
- ANSES Plant Health Laboratory, 7 Rue Jean Dixméras, CEDEX 01, 49044 Angers, France;
| | | | - Johan Rollin
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
- DNAVision, 6041 Charleroi, Belgium
| | - Mike Rott
- Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada;
| | - Olivier Schumpp
- Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (J.-S.R.); (O.S.)
| | - Sébastien Massart
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| |
Collapse
|
5
|
Elvira González L, Peiró R, Rubio L, Galipienso L. Persistent Southern Tomato Virus (STV) Interacts with Cucumber Mosaic and/or Pepino Mosaic Virus in Mixed- Infections Modifying Plant Symptoms, Viral Titer and Small RNA Accumulation. Microorganisms 2021; 9:689. [PMID: 33810543 PMCID: PMC8066132 DOI: 10.3390/microorganisms9040689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Southern tomato virus (STV) is a persistent virus that was, at the beginning, associated with some tomato fruit disorders. Subsequent studies showed that the virus did not induce apparent symptoms in single infections. Accordingly, the reported symptoms could be induced by the interaction of STV with other viruses, which frequently infect tomato. Here, we studied the effect of STV in co- and triple-infections with Cucumber mosaic virus (CMV) and Pepino mosaic virus (PepMV). Our results showed complex interactions among these viruses. Co-infections leaded to a synergism between STV and CMV or PepMV: STV increased CMV titer and plant symptoms at early infection stages, whereas PepMV only exacerbated the plant symptoms. CMV and PepMV co-infection showed an antagonistic interaction with a strong decrease of CMV titer and a modification of the plant symptoms with respect to the single infections. However, the presence of STV in a triple-infection abolished this antagonism, restoring the CMV titer and plant symptoms. The siRNAs analysis showed a total of 78 miRNAs, with 47 corresponding to novel miRNAs in tomato, which were expressed differentially in the plants that were infected with these viruses with respect to the control mock-inoculated plants. These miRNAs were involved in the regulation of important functions and their number and expression level varied, depending on the virus combination. The number of vsiRNAs in STV single-infected tomato plants was very small, but STV vsiRNAs increased with the presence of CMV and PepMV. Additionally, the rates of CMV and PepMV vsiRNAs varied depending on the virus combination. The frequencies of vsiRNAs in the viral genomes were not uniform, but they were not influenced by other viruses.
Collapse
Affiliation(s)
- Laura Elvira González
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Rosa Peiró
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Luis Rubio
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
| | - Luis Galipienso
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
| |
Collapse
|
6
|
Rego-Machado CM, Nakasu EYT, Silva JMF, Lucinda N, Nagata T, Inoue-Nagata AK. siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants. Sci Rep 2020; 10:22277. [PMID: 33335295 PMCID: PMC7746768 DOI: 10.1038/s41598-020-79360-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
A non-transgenic approach based on RNA interference was employed to induce protection against tomato mosaic virus (ToMV) infection in tomato plants. dsRNA molecules targeting the cp gene of ToMV were topically applied on plants prior to virus inoculation. Protection was dose-dependent and sequence-specific. While no protection was achieved when 0-16 µg dsRNA were used, maximum rates of resistance (60 and 63%) were observed in doses of 200 and 400 µg/plant, respectively. Similar rates were also obtained against potato virus Y when targeting its cp gene. The protection was quickly activated upon dsRNA application and lasted for up to 4 days. In contrast, no detectable antiviral response was triggered by the dsRNA from a begomovirus genome, suggesting the method is not effective against phloem-limited DNA viruses. Deep sequencing was performed to analyze the biogenesis of siRNA populations. Although long-dsRNA remained in the treated leaves for at least 10 days, its systemic movement was not observed. Conversely, dsRNA-derived siRNA populations (mainly 21- and 22-nt) were detected in non-treated leaves, which indicates endogenous processing and transport through the plant. Altogether, this study provides critical information for the development of novel tools against plant viruses; strengths and limitations inherent to the systems are discussed.
Collapse
Affiliation(s)
- Camila M Rego-Machado
- Department of Plant Pathology, University of Brasília, Federal District, Brazil
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil
| | - Erich Y T Nakasu
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil.
| | - João M F Silva
- Department of Molecular Biology, University of Brasília, Federal District, Brazil
| | - Natália Lucinda
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil
- Department of Plant Pathology, University of Florida, Florida, USA
| | - Tatsuya Nagata
- Department of Molecular Biology, University of Brasília, Federal District, Brazil
| | - Alice K Inoue-Nagata
- Department of Plant Pathology, University of Brasília, Federal District, Brazil.
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil.
| |
Collapse
|
7
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, van der Werf W, Civera AV, Yuen J, Zappalà L, Candresse T, Lacomme C, Bottex B, Oplaat C, Roenhorst A, Schenk M, Di Serio F. Pest categorisation of potato virus X (non-EU isolates). EFSA J 2020; 18:e05937. [PMID: 32626491 PMCID: PMC7008906 DOI: 10.2903/j.efsa.2020.5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non‐EU isolates of potato virus X (PVX). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact and availability of control measures of non‐EU isolates of PVX has been evaluated with regard to the criteria to qualify as a potential Union quarantine pest. Because non‐EU isolates of PVX are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non‐quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. On the basis of their ability to overcome potato resistance genes, PVX isolates can be divided into several pathotypes. PVX isolates that are not able to overcome resistance genes and PVX isolates that are able to overcome the Nb and/or Nx resistance genes are already present in the EU. Isolates able to overcome the Rx resistance gene have only been reported from South America. These Rx breaking isolates could potentially have an additional impact over the current situation in the EU and therefore meet all the criteria to qualify as a potential Union quarantine pest. All other non‐EU isolates, should they be introduced, are not expected to have additional impact and therefore do not meet this criterion to qualify as a potential Union quarantine pest.
Collapse
|
8
|
The Potential Risk of Plant-Virus Disease Initiation by Infected Tomatoes. PLANTS 2020; 9:plants9050623. [PMID: 32422863 PMCID: PMC7285381 DOI: 10.3390/plants9050623] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
During 2019, tomato fruits showing viral-like symptoms of marbled yellow spots were abundant in Israel. The new symptoms were distinctive from those typical of tomato brown rugose fruit virus (ToBRFV) infection but resembled symptoms of pepino mosaic virus (PepMV) infection. RT-PCR analysis and the serological tests (enzyme linked immunosorbent assay, western blot and in situ immunofluorescence) revealed and confirmed the presence of both the tobamovirus ToBRFV and the potexvirus PepMV in the symptomatic fruits. A mixture of rod-like and filamentous particles, characteristic of viruses belonging to tobamovirus and potexvirus genera, was visualized by transmission electron microscopy of the tomato fruit viral extract. Sanger sequencing of amplified PepMV-coat protein gene segments showed ~98% sequence identity to the Chilean (CH2)-strain. In a biological assay testing the contribution of traded infected tomatoes to the establishment of tomato plant disease, we applied direct and indirect inoculation modes using Tm-22-resistant tomato plants. The results, assessed by disease symptom development along with serological and molecular analyses, showed that the ToBRFV and PepMV co-infected fruits were an effective inoculum source for disease spread only when fruits were damaged. Importantly, intact fruits did not spread the viral disease. These results added a new factor to disease epidemiology of these viruses.
Collapse
|
9
|
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P. Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res 2020; 106:145-169. [PMID: 32327147 DOI: 10.1016/bs.aivir.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mixed viral infections occur more commonly than would be expected by chance in nature. Virus-virus interactions may affect viral traits and leave a genetic signature in the population, and thus influence the prevalence and emergence of viral diseases. Understanding about how the interactions between viruses within a host shape the evolutionary dynamics of the viral populations is needed for viral disease prevention and management. Here, we first synthesize concepts implied in the occurrence of virus-virus interactions. Second, we consider the role of the within-host interactions of virus-virus and virus-other pathogenic microbes, on the composition and structure of viral populations. Third, we contemplate whether mixed viral infections can create opportunities for the generation and maintenance of viral genetic diversity. Fourth, we attempt to summarize the evolutionary response of viral populations to mixed infections to understand how they shape the spatio-temporal dynamics of viral populations at the individual plant and field scales. Finally, we anticipate the future research under the reconciliation of molecular epidemiology and evolutionary ecology, drawing attention to the need of adding more complexity to future research in order to gain a better understanding about the mechanisms operating in nature.
Collapse
Affiliation(s)
- Cristina Alcaide
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M Pilar Rabadán
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Manuel G Moreno-Pérez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
10
|
Golyaev V, Candresse T, Rabenstein F, Pooggin MM. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci Rep 2019; 9:19268. [PMID: 31848375 PMCID: PMC6917709 DOI: 10.1038/s41598-019-55547-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
In plants, RNA interference (RNAi) generates small interfering (si)RNAs from entire genomes of viruses, satellites and viroids. Therefore, deep small (s)RNA sequencing is a universal approach for virome reconstruction and RNAi characterization. We tested this approach on dried barley leaves from field surveys. Illumina sequencing of sRNAs from 2 plant samples identified in both plants Hordeum vulgare endornavirus (HvEV) and barley yellow mosaic bymovirus (BaYMV) and, additionally in one plant, a novel strain of Japanese soil-borne wheat mosaic furovirus (JSBWMV). De novo and reference-based sRNA assembly yielded complete or near-complete genomic RNAs of these viruses. While plant sRNAs showed broad size distribution, viral sRNAs were predominantly 21 and 22 nucleotides long with 5′-terminal uridine or adenine, and were derived from both genomic strands. These bona fide siRNAs are presumably processed from double-stranded RNA precursors by Dicer-like (DCL) 4 and DCL2, respectively, and associated with Argonaute 1 and 2 proteins. For BaYMV (but not HvEV, or JSBWMV), 24-nucleotide sRNAs represented the third most abundant class, suggesting DCL3 contribution to anti-bymovirus defence. Thus, viral siRNAs are well preserved in dried leaf tissues and not contaminated by non-RNAi degradation products, enabling both complete virome reconstruction and inference of RNAi components mediating antiviral defense.
Collapse
Affiliation(s)
- Victor Golyaev
- BGPI, INRA Centre Occitanie, CIRAD, SupAgro, Université de Montpellier, Montpellier, 34984, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS20032, Villenave d'Ornon cedex, 33882, France
| | - Frank Rabenstein
- Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Erwin-Baur-Straße 27, Quedlinburg, 06484, Germany
| | - Mikhail M Pooggin
- BGPI, INRA Centre Occitanie, CIRAD, SupAgro, Université de Montpellier, Montpellier, 34984, France.
| |
Collapse
|
11
|
Fukuhara T, Tabara M, Koiwa H, Takahashi H. Effect of asymptomatic infection with southern tomato virus on tomato plants. Arch Virol 2019; 165:11-20. [PMID: 31620899 DOI: 10.1007/s00705-019-04436-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Southern tomato virus (STV) is often found infecting healthy tomato plants (Solanum lycopersicum). In this study, we compared STV-free and STV-infected plants of cultivar M82 to determine the effect of STV infection on the host plant. STV-free plants exhibited a short and bushy phenotype, whereas STV-infected plants were taller. STV-infected plants produced more fruit than STV-free plants, and the germination rate of seeds from STV-infected plants was higher than that of seeds from STV-free plants. This phenotypic difference was also observed in progeny plants (siblings) derived from a single STV-infected plant in which the transmission rate of STV to progeny plants via the seeds was approximately 86%. These results suggest that the interaction between STV and host plants is mutualistic. Transcriptome analysis revealed that STV infection affects gene expression in the host plant and results in downregulation of genes involved in ethylene biosynthesis and signaling. STV-infected tomato plants might thus be artificially selected due to their superior traits as a crop.
Collapse
Affiliation(s)
- Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| | - Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hisashi Koiwa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.,Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai, 980-0845, Japan
| |
Collapse
|
12
|
Chikh-Ali M, Rodriguez-Rodriguez M, Green KJ, Kim DJ, Chung SM, Kuhl JC, Karasev AV. Identification and Molecular Characterization of Recombinant Potato Virus Y (PVY) in Potato from South Korea, PVY NTN Strain. PLANT DISEASE 2019; 103:137-142. [PMID: 30412456 DOI: 10.1094/pdis-05-18-0715-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Potato is an important source of food in South Korea, and viruses represent a significant threat to sustainable and profitable potato production. However, information about viruses affecting the potato crop in South Korea is limited. In 2017, potato plants of five cultivars exhibiting foliar mosaic, crinkling, and mottle were collected in two seed potato production areas, in Gangwon-do and Jeollabuk-do Provinces, and subjected to virus testing and characterization. Potato virus Y (PVY) was found associated with mosaic symptoms, and samples were characterized using reverse transcription polymerase chain reaction (RT-PCR) and whole genome sequencing. All analyzed PVY-positive samples were found to represent the same recombinant PVY strain: PVYNTN. Three PVY isolates were subjected to whole genome sequencing using overlapping RT-PCR fragments and Sanger methodology, and all three were confirmed to represent strain PVYNTNa after a recombination analysis of the complete genomes. In phylogenetic analysis, the three South Korean isolates were placed most closely to several PVYNTNa isolates reported from Japan and Vietnam, suggesting a common source of infection. This is the first report and complete molecular characterization of a PVYNTN strain present in the country, and because this strain induces tuber necrotic ringspot disease in susceptible cultivars of potato, appropriate management tools need to be implemented to mitigate potential tuber quality losses.
Collapse
Affiliation(s)
- Mohamad Chikh-Ali
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, 83844-2329
| | | | - Kelsie J Green
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, 83844-2329
| | - Dong-Jun Kim
- Inno Seed Co., Dong-myeon Chuncheon-si Gangwon-do, 24210, South Korea
| | - Sang-Min Chung
- Life Science Department, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Joseph C Kuhl
- Department of Plant Science, University of Idaho, Moscow, 83844-2333
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, 83844-2329, and Bioinformatics and Computational Biology Program, University of Idaho, Moscow, 83844-3050
| |
Collapse
|
13
|
Pooggin MM. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Front Microbiol 2018; 9:2779. [PMID: 30524398 PMCID: PMC6256188 DOI: 10.3389/fmicb.2018.02779] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi)-based antiviral defense generates small interfering RNAs that represent the entire genome sequences of both RNA and DNA viruses as well as viroids and viral satellites. Therefore, deep sequencing and bioinformatics analysis of small RNA population (small RNA-ome) allows not only for universal virus detection and genome reconstruction but also for complete virome reconstruction in mixed infections. Viral infections (like other stress factors) can also perturb the RNAi and gene silencing pathways regulating endogenous gene expression and repressing transposons and host genome-integrated endogenous viral elements which can potentially be released from the genome and contribute to disease. This review describes the application of small RNA-omics for virus detection, virome reconstruction and antiviral defense characterization in cultivated and non-cultivated plants. Reviewing available evidence from a large and ever growing number of studies of naturally or experimentally infected hosts revealed that all families of land plant viruses, their satellites and viroids spawn characteristic small RNAs which can be assembled into contigs of sufficient length for virus, satellite or viroid identification and for exhaustive reconstruction of complex viromes. Moreover, the small RNA size, polarity and hotspot profiles reflect virome interactions with the plant RNAi machinery and allow to distinguish between silent endogenous viral elements and their replicating episomal counterparts. Models for the biogenesis and functions of small interfering RNAs derived from all types of RNA and DNA viruses, satellites and viroids as well as endogenous viral elements are presented and discussed.
Collapse
Affiliation(s)
- Mikhail M. Pooggin
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|