1
|
Jain A, Li T, Huston DC, Kaur J, Trollip C, Wainer J, Hodda M, Linsell K, Riley IT, Toktay H, Olowu EA, Edwards J, Rodoni B, Sawbridge T. Insights from draft genomes of Heterodera species isolated from field soil samples. BMC Genomics 2025; 26:158. [PMID: 39966714 PMCID: PMC11834393 DOI: 10.1186/s12864-025-11351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The nematode phylum includes many species key to soil food webs with trophic behaviours extending from feeding on microbes to macrofauna and plant roots. Among these, the plant parasitic cyst nematodes retain their eggs in protective cysts prolonging their survival under harsh conditions. These nematodes, including those from the genus Heterodera, cause significant economic losses in agricultural systems. Understanding of nematode diversity and ecology has expanded through application of genomic research, however, for Heterodera species there are very few available whole genome sequences. Sequencing and assembling Heterodera genomes is challenging due to various technical limitations imposed by the biology of Heterodera. Overcoming these limitations is essential for comprehensive insights into Heterodera parasitic interactions with plants, population studies, and for Australian biosecurity implications. RESULTS We hereby present draft genomes of six species of which Heterodera australis, H. humuli, H. mani and H. trifolii are presently recorded in Australia and two species, H. avenae and H. filipjevi, currently absent from Australia. The draft genomes were sequenced from genomic DNA isolated from 50 cysts each using an Illumina NovaSeq short read sequencing platform. The data revealed disparity in sequencing yield between species. What was previously identified as H. avenae in Australia using morphological traits is now confirmed as H. australis and may have consequences for wheat breeding programs in Australia that are breeding for resistance to H. avenae. A multigene phylogeny placed the sequenced species into taxonomic phylogenetic perspective. Genomic comparisons within the Avenae species group revealed orthologous gene clusters within the species, emphasising the shared and unique features of the group. The data also revealed the presence of a Wolbachia species, a putative bacterial endosymbiont from Heterodera humuli short read sequencing data. CONCLUSION Genomic research holds immense significance for agriculture, for understanding pest species diversity and the development of effective management strategies. This study provides insight into Heterodera, cyst nematode genomics and the associated symbionts and this work will serve as a baseline for further genomic analyses in this economically important nematode group.
Collapse
Affiliation(s)
- Akshita Jain
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia.
| | - Tongda Li
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Daniel C Huston
- Australian National Insect Collection, National Research Collection Australia, CSIRO, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Jatinder Kaur
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Conrad Trollip
- Forest Science, NSW Department of Primary Industries, Parramatta, NSW, 2150, Australia
| | - John Wainer
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Mike Hodda
- Australian National Insect Collection, National Research Collection Australia, CSIRO, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Katherine Linsell
- South Australian Research and Development Institute, Adelaide, SA, 5064, Australia
| | - Ian T Riley
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Eniola Ajibola Olowu
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Timothy Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| |
Collapse
|
2
|
Dai D, Xie C, Zhou Y, Bo D, Zhang S, Mao S, Liao Y, Cui S, Zhu Z, Wang X, Li F, Peng D, Zheng J, Sun M. Unzipped chromosome-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization. Nat Commun 2023; 14:7156. [PMID: 37935661 PMCID: PMC10630426 DOI: 10.1038/s41467-023-42700-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The formation and consequences of polyploidization in animals with clonal reproduction remain largely unknown. Clade I root-knot nematodes (RKNs), characterized by parthenogenesis and allopolyploidy, show a widespread geographical distribution and extensive agricultural destruction. Here, we generated 4 unzipped polyploid RKN genomes and identified a putative novel alternative telomeric element. Then we reconstructed 4 chromosome-level assemblies and resolved their genome structures as AAB for triploid and AABB for tetraploid. The phylogeny of subgenomes revealed polyploid RKN origin patterns as hybridization between haploid and unreduced gametes. We also observed extensive chromosomal fusions and homologous gene expression decrease after polyploidization, which might offset the disadvantages of clonal reproduction and increase fitness in polyploid RKNs. Our results reveal a rare pathway of polyploidization in parthenogenic polyploid animals and provide a large number of high-precision genetic resources that could be used for RKN prevention and control.
Collapse
Affiliation(s)
- Dadong Dai
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanshuai Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yayi Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dexin Bo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shurong Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqiang Mao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yucheng Liao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Simeng Cui
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaolu Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueyu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanling Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Arora D, Hernandez AG, Walden KKO, Fields CJ, Yan G. First Draft Genome Assembly of Root-Lesion Nematode Pratylenchus scribneri Generated Using Long-Read Sequencing. Int J Mol Sci 2023; 24:ijms24087311. [PMID: 37108472 PMCID: PMC10138993 DOI: 10.3390/ijms24087311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Root-lesion nematodes (genus Pratylenchus) belong to a diverse group of plant-parasitic nematodes (PPN) with a worldwide distribution. Despite being an economically important PPN group of more than 100 species, genome information related to Pratylenchus genus is scarcely available. Here, we report the draft genome assembly of Pratylenchus scribneri generated on the PacBio Sequel IIe System using the ultra-low DNA input HiFi sequencing workflow. The final assembly created using 500 nematodes consisted of 276 decontaminated contigs, with an average contig N50 of 1.72 Mb and an assembled draft genome size of 227.24 Mb consisting of 51,146 predicted protein sequences. The benchmarking universal single-copy ortholog (BUSCO) analysis with 3131 nematode BUSCO groups indicated that 65.4% of the BUSCOs were complete, whereas 24.0%, 41.4%, and 1.8% were single-copy, duplicated, and fragmented, respectively, and 32.8% were missing. The outputs from GenomeScope2 and Smudgeplots converged towards a diploid genome for P. scribneri. The data provided here will facilitate future studies on host plant-nematode interactions and crop protection at the molecular level.
Collapse
Affiliation(s)
- Deepika Arora
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58105, USA
| | - Alvaro G Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Kimberly K O Walden
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Christopher J Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Guiping Yan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
4
|
Cannabis sativa: A look at protozoa, helminths, insect vectors, and pests. Fitoterapia 2023; 166:105467. [PMID: 36893925 DOI: 10.1016/j.fitote.2023.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Active principles extracted from plants, such as essential oils, have been commonly described in the literature as therapeutic targets for numerous pathological conditions. Cannabis sativa, which has an ancient and peculiar history, has been used for various purposes, from recreational to compounds of pharmacotherapeutic and industrial importance, such as pesticides based on this plant. It is a plant that contains approximately 500 described cannabinoid compounds and is the target of in vitro and in vivo studies at different locations. This review clarifies the role of cannabinoid compounds in parasitic infections caused by helminths and protozoa. In addition, this study briefly presented the use of C. sativa constituents in the formulation of pesticides for vector control, as the latter topic is justified by the economic burden faced by several regions where vector-borne diseases are a troubling reality. Studies involving cannabis compounds with pesticidal potential should be encouraged, especially those that evaluate their effectiveness against the different life cycles of insects, seeking to interrupt vector proliferation after egg laying. Actions aimed at the management and cultivation of plant species with ecologically correct pharmacotherapeutic and pesticide potentials are becoming urgent.
Collapse
|
5
|
Anderson SD, Gleason CA. A molecular beacon real-time polymerase chain reaction assay for the identification of M. chitwoodi, M. fallax, and M. minor. FRONTIERS IN PLANT SCIENCE 2023; 14:1096239. [PMID: 36909438 PMCID: PMC9994647 DOI: 10.3389/fpls.2023.1096239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are major pests of many important crops around the world. In the Northwestern region of the United States of America (USA), Meloidogyne chitwoodi causes economic losses in potatoes because the nematodes can infect the tubers, which leads to potato galling and reductions in marketable yield. Meloidogyne chitwoodi is a quarantine pathogen in certain potato export markets, and there is little industry tolerance for the presence of this nematode. Recently, two Meloidogyne species that are not known to be present in agricultural fields in the USA were detected on golf turfgrasses in California and Washington. These species, M. fallax and M. minor, are morphologically similar to M. chitwoodi and can infect potatoes and cause tuber damage. Their detection in the USA means that they could potentially infest potato fields and become a problem in potato production. Additionally, M. fallax is a regulated plant pest in the USA, which makes the correct identification of potato-infecting root-knot nematodes important. Previously, there was no single-tube assay that could determine whether M. chitwoodi, M. fallax, and/or M. minor were present in a sample. Thus, a molecular beacon real-time PCR assay which can reliably detect M. chitwoodi, M. fallax, or M. minor from crude nematode extracts was designed and characterized.
Collapse
|
6
|
Hamim I, Sekine KT, Komatsu K. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape? PLANT MOLECULAR BIOLOGY 2022; 110:469-484. [PMID: 35962900 DOI: 10.1007/s11103-022-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Long-read sequencing technologies are revolutionizing the sequencing and analysis of plant and pathogen genomes and transcriptomes, as well as contributing to emerging areas of interest in plant-pathogen interactions, disease management techniques, and the introduction of new plant varieties or cultivars. Long-read sequencing (LRS) technologies are progressively being implemented to study plants and pathogens of agricultural importance, which have substantial economic effects. The variability and complexity of the genome and transcriptome affect plant growth, development and pathogen responses. Overcoming the limitations of second-generation sequencing, LRS technology has significantly increased the length of a single contiguous read from a few hundred to millions of base pairs. Because of the longer read lengths, new analysis methods and tools have been developed for plant and pathogen genomics and transcriptomics. LRS technologies enable faster, more efficient, and high-throughput ultralong reads, allowing direct sequencing of genomes that would be impossible or difficult to investigate using short-read sequencing approaches. These benefits include genome assembly in repetitive areas, creating more comprehensive and exact genome determinations, assembling full-length transcripts, and detecting DNA and RNA alterations. Furthermore, these technologies allow for the identification of transcriptome diversity, significant structural variation analysis, and direct epigenetic mark detection in plant and pathogen genomic regions. LRS in plant pathology is found efficient for identifying and characterization of effectors in plants as well as known and unknown plant pathogens. In this review, we investigate how these technologies are transforming the landscape of determination and characterization of plant and pathogen genomes and transcriptomes efficiently and accurately. Moreover, we highlight potential areas of interest offered by LRS technologies for future study into plant-pathogen interactions, disease control strategies, and the development of new plant varieties or cultivars.
Collapse
Affiliation(s)
- Islam Hamim
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ken-Taro Sekine
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan.
| |
Collapse
|
7
|
Rutter WB, Franco J, Gleason C. Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:43-76. [PMID: 35316614 DOI: 10.1146/annurev-phyto-021621-120943] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) engage in complex parasitic interactions with many different host plants around the world, initiating elaborate feeding sites and disrupting host root architecture. Although RKNs have been the focus of research for many decades, new molecular tools have provided useful insights into the biological mechanisms these pests use to infect and manipulate their hosts. From identifying host defense mechanisms underlying resistance to RKNs to characterizing nematode effectors that alter host cellular functions, the past decade of research has significantly expanded our understanding of RKN-plant interactions, and the increasing number of quality parasite and host genomes promises to enhance future research efforts into RKNs. In this review, we have highlighted recent discoveries, summarized the current understanding within the field, and provided links to new and useful resources for researchers. Our goal is to offer insights and tools to support the study of molecular RKN-plant interactions.
Collapse
Affiliation(s)
- William B Rutter
- US Vegetable Laboratory, USDA Agricultural Research Service, Charleston, South Carolina, USA
| | - Jessica Franco
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| |
Collapse
|
8
|
Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. PLANTS 2022; 11:plants11162141. [PMID: 36015444 PMCID: PMC9415668 DOI: 10.3390/plants11162141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Developing control measures of plant-parasitic nematodes (PPNs) rank high as they cause big crop losses globally. The growing awareness of numerous unsafe chemical nematicides and the defects found in their alternatives are calling for rational molecular control of the nematodes. This control focuses on using genetically based plant resistance and exploiting molecular mechanisms underlying plant–nematode interactions. Rapid and significant advances in molecular techniques such as high-quality genome sequencing, interfering RNA (RNAi) and gene editing can offer a better grasp of these interactions. Efficient tools and resources emanating from such interactions are highlighted herein while issues in using them are summarized. Their revision clearly indicates the dire need to further upgrade knowledge about the mechanisms involved in host-specific susceptibility/resistance mediated by PPN effectors, resistance genes, or quantitative trait loci to boost their effective and sustainable use in economically important plant species. Therefore, it is suggested herein to employ the impacts of these techniques on a case-by-case basis. This will allow us to track and optimize PPN control according to the actual variables. It would enable us to precisely fix the factors governing the gene functions and expressions and combine them with other PPN control tactics into integrated management.
Collapse
|
9
|
Zhang L, Gleason C. Transcriptome Analyses of Pre-parasitic and Parasitic Meloidogyne Chitwoodi Race 1 to Identify Putative Effector Genes. J Nematol 2021; 53:e2021-84. [PMID: 34671748 PMCID: PMC8509085 DOI: 10.21307/jofnem-2021-084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/11/2022] Open
Abstract
Meloidogyne chitwoodi is a root-knot nematode that is a major pest of potato in the northwestern United States. Due to the lack of resistance against root-knot nematodes in potato, research has been undertaken to understand the M. chitwoodi-potato interaction at the molecular level. To identify the nematode genes that are playing roles in parasitism, we have performed transcriptome analyses on pre-parasitic and parasitic M. chitwoodi juveniles in susceptible potato. We compared gene expression profiles and identified genes that were significantly up- or down-regulated during nematode parasitism. Because parasitism proteins are typically secreted by the nematode to facilitate infection of host roots, we focused on the genes that encoded proteins that were predicted to be secreted. We found that approximately 34% (43/127) of the genes in the predicted secretome encoded proteins with no significant homology in the public genome databases, and 12% (15/127) encoded either a known effector, putative effectors or putative esophageal gland cell proteins. The transcriptome analyses of M. chitwoodi at the pre-parasitic and parasitic life stages shed light on the genes involved in nematode parasitism.
Collapse
Affiliation(s)
- Lei Zhang
- Plant Pathology Department, Washington State University, Pullman, WA 9916.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907.,Department of Entomology, Purdue University, West Lafayette, IN 47907
| | - Cynthia Gleason
- Plant Pathology Department, Washington State University, Pullman, WA 9916
| |
Collapse
|
10
|
Thi Phan N, Besnard G, Ouazahrou R, Sánchez WS, Gil L, Manzi S, Bellafiore S. Genome sequence of the coffee root-knot nematode Meloidogyne exigua. J Nematol 2021; 53:e2021-65. [PMID: 34296190 PMCID: PMC8290501 DOI: 10.21307/jofnem-2021-065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Root-knot nematodes (Meloidogyne spp.) cause serious damages on most crops. Here, we report a high-quality genome sequence of Meloidogyne exigua (population Mex1, Costa Rica), a major pathogen of coffee. Its mitogenome (20,974 bp) was first assembled and annotated. The nuclear genome was then constructed consisting of 206 contigs, with an N50 length of 1.89 Mb and a total assembly length of 42.1 Mb.
Collapse
Affiliation(s)
- Ngan Thi Phan
- PHIM Plant Health Institute, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, EDB, 118 route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | - Lisa Gil
- US 1426, GeT-PlaGe, Genotoul, INRAE, Castanet-Tolosan, France
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, EDB, 118 route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France
| | - Stéphane Bellafiore
- PHIM Plant Health Institute, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
11
|
Biotechnological advances with applicability in potatoes for resistance against root-knot nematodes. Curr Opin Biotechnol 2021; 70:226-233. [PMID: 34217954 DOI: 10.1016/j.copbio.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Potato production is negatively affected by root-knot nematodes (Meloidogyne spp.). There are no commercially available potato cultivars that are resistant to root-knot nematodes. To reduce the reliance on chemical controls, genetic engineering for nematode resistance in potato shows promise. Genetically modified potatoes that silence a parasitism gene or that express toxic protease inhibitors display reduced nematode infections. Modifying potato immune responses may also offer new opportunities for nematode resistance in potato. Plant defense elicitors, including those secreted by modified bacteria, enhanced resistance against root-knot nematodes in potato. The use of transgenic bacteria as delivery vehicles of defense-related molecules presents several possibilities for sophisticated nematode management and because this does not involve transgenic plants, it may garner greater public acceptance.
Collapse
|