1
|
Wang Z, Huang X, Nie C, Xiang T, Zhang X. The Lon protease negatively regulates pyoluteorin biosynthesis through the Gac/Rsm-RsmE cascade and directly degrades the transcriptional activator PltR in Pseudomonas protegens H78. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:506-519. [PMID: 35297175 DOI: 10.1111/1758-2229.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Pyoluteorin (Plt) is a broad-spectrum antibiotic with antibacterial and antifungal activities. In Pseudomonas protegens H78, the Plt biosynthetic operon pltLABCDEFG is transcriptionally activated by the LysR-type regulator PltR and is positively regulated by the Gac/Rsm signal transduction cascade (GacS/A-RsmXYZ-RsmE-pltR/pltAB). Additionally, Plt biosynthesis has been shown to be significantly enhanced by mutation of the Lon protease-encoding gene. This study aims to understand the negative regulation pathway and molecular mechanism by which Lon functions in Plt biosynthesis. lon deletion was first found to improve the antimicrobial ability of strain H78 due to its increased Plt production, while partially inhibiting the growth of H78 strain. Lon protease decreases the abundance and stability of the two-component system response regulator GacA and thus participates in the abovementioned Gac/Rsm cascade and negatively regulates Plt biosynthesis. Similarly, Lon protease also decreases the abundance and stability of transcriptional activator PltR. PltR protein can be directly degraded by the Lon protease but not by a mutated form of Lon protease with an amino acid replacement of S674 -A. In summary, Lon protease negatively regulates Plt biosynthesis via both the Gac/Rsm-mediated global regulatory pathway and the direct degradation of the transcriptional activator PltR in P. protegens H78.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxi Nie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Xiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
The Azospirillum brasilense Core Chemotaxis Proteins CheA1 and CheA4 Link Chemotaxis Signaling with Nitrogen Metabolism. mSystems 2021; 6:6/1/e01354-20. [PMID: 33594007 PMCID: PMC8561660 DOI: 10.1128/msystems.01354-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense, chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxis functions, including major changes in transcription, signaling transport, and cell metabolism. We identify specific effects of CheA1 and CheA4 on nitrogen metabolism, including nitrate assimilation and nitrogen fixation, that may depend, at least, on the transcriptional control of rpoN, which encodes RpoN, a global regulator of metabolism, including nitrogen. Consistent with proteomics, the abundance of several nitrogenous compounds (purines, pyrimidines, and amino acids) changed in the metabolomes of the chemotaxis mutants relative to the parental strain. Further, we uncover novel, and yet uncharacterized, layers of transcriptional and posttranscriptional control of nitrogen metabolism regulators. Together, our data reveal roles for CheA1 and CheA4 in linking chemotaxis and nitrogen metabolism, likely through control of global regulatory networks. IMPORTANCE Bacterial chemotaxis is widespread in bacteria, increasing competitiveness in diverse environments and mediating associations with eukaryotic hosts ranging from commensal to beneficial and pathogenic. In most bacteria, chemotaxis signaling is tightly linked to energy metabolism, with this coupling occurring through the sensory input of several energy-sensing chemoreceptors. Here, we show that in A. brasilense the chemotaxis proteins have key roles in modulating nitrogen metabolism, including nitrate assimilation and nitrogen fixation, through novel and yet unknown regulations. These results are significant given that A. brasilense is a model bacterium for plant growth promotion and free-living nitrogen fixation and is used as a bio-inoculant for cereal crops. Chemotaxis signaling in A. brasilense thus links locomotor behaviors to nitrogen metabolism, allowing cells to continuously and reciprocally adjust metabolism and chemotaxis signaling as they navigate gradients.
Collapse
|
3
|
Zhao MM, Lyu N, Wang D, Wu XG, Zhao YZ, Zhang LQ, Zhou HY. PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24. Sci Rep 2020; 10:4296. [PMID: 32152338 PMCID: PMC7062750 DOI: 10.1038/s41598-020-60555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/12/2020] [Indexed: 11/25/2022] Open
Abstract
The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the phlACBD operon at the post-transcriptional level. The phlG gene is located between the phlF and phlH genes, upstream of the phlACBD biosynthetic operon. Herein, we cloned the phlG gene, generated a phlG deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of phlG had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by gacS positively regulated expression of phlG, while rsmE negatively regulated its expression. Deleting phlG did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that phlG collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in P. fluorescens 2P24.
Collapse
Affiliation(s)
- Ming-Min Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Ning Lyu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Xiao-Gang Wu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuan-Zheng Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Li-Qun Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China.,Key Laboratory of Plant Pathology, Ministry of Agriculture, Beijing, 100193, China
| | - Hong-You Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China.
| |
Collapse
|
4
|
Zhang B, Zhao H, Wu X, Zhang LQ. The Oxidoreductase DsbA1 negatively influences 2,4-diacetylphloroglucinol biosynthesis by interfering the function of Gcd in Pseudomonas fluorescens 2P24. BMC Microbiol 2020; 20:39. [PMID: 32093646 PMCID: PMC7041245 DOI: 10.1186/s12866-020-1714-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 02/03/2023] Open
Abstract
Background The polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG), produced by Pseudomonas fluorescens 2P24, is positively regulated by the GacS-GacA two-component system. Results Here we reported on the characterization of DsbA1 (disulfide oxidoreductase) as novel regulator of biocontrol activity in P. fluorescens. Our data showed that mutation of dsbA1 caused the accumulation of 2,4-DAPG in a GacA-independent manner. Further analysis indicated that DsbA1 interacts with membrane-bound glucose dehydrogenase Gcd, which positively regulates the production of 2,4-DAPG. Mutation of cysteine (C)-235, C275, and C578 of Gcd, significantly reduced the interaction with DsbA1, enhanced the activity of Gcd and increased 2,4-DAPG production. Conclusions Our results suggest that DsbA1 regulates the 2,4-DAPG concentration via fine-tuning the function of Gcd in P. fluorescens 2P24.
Collapse
Affiliation(s)
- Bo Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hui Zhao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Li-Qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Improvement of pyoluteorin production in Pseudomonas protegens H78 through engineering its biosynthetic and regulatory pathways. Appl Microbiol Biotechnol 2019; 103:3465-3476. [DOI: 10.1007/s00253-019-09732-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/26/2022]
|
6
|
Liu Y, Shi H, Wang Z, Huang X, Zhang X. Pleiotropic control of antibiotic biosynthesis, flagellar operon expression, biofilm formation, and carbon source utilization by RpoN in Pseudomonas protegens H78. Appl Microbiol Biotechnol 2018; 102:9719-9730. [DOI: 10.1007/s00253-018-9282-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/04/2023]
|
7
|
Transcriptional Regulator PhlH Modulates 2,4-Diacetylphloroglucinol Biosynthesis in Response to the Biosynthetic Intermediate and End Product. Appl Environ Microbiol 2017; 83:AEM.01419-17. [PMID: 28821548 DOI: 10.1128/aem.01419-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/11/2017] [Indexed: 11/20/2022] Open
Abstract
Certain strains of biocontrol bacterium Pseudomonas fluorescens produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named phlACBDEFGH and it is still unclear how the pathway-specific regulator phlH within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in Pseudomonas fluorescens strain 2P24 represses the expression of the phlG gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the -35 site recognized by σ70 factors. Through biochemical screening of PhlH ligands we identified the end product 2,4-DAPG and its biosynthetic intermediate monoacetylphloroglucinol (MAPG), which can act as signaling molecules to modulate the binding of PhlH to the target sequence and activate the expression of phlG Comparison of 2,4-DAPG production between the ΔphlH, ΔphlG, and ΔphlHG mutants confirmed that phlH and phlG impose negative feedback regulation over 2,4-DAPG biosynthesis. It was further demonstrated that the 2,4-DAPG degradation catalyzed by PhlG plays an insignificant role in 2,4-DAPG tolerance but contributes to bacterial growth advantages under carbon/nitrogen starvation conditions. Taken together, our data suggest that by monitoring and down-tuning in situ levels of 2,4-DAPG, the phlHG genes could dynamically modulate the metabolic loads attributed to 2,4-DAPG production and potentially contribute to rhizosphere adaptation.IMPORTANCE 2,4-DAPG, which is synthesized by biocontrol pseudomonad bacteria, is a broad-spectrum antibiotic against bacteria, fungi, oomycetes, and nematodes and plays an important role in suppressing soilborne plant pathogens. Although most of the genes in the 2,4-DAPG biosynthetic gene cluster (phl) have been characterized, it is still not clear how the pathway-specific regulator phlH is involved in 2,4-DAPG metabolism. This work revealed the role of PhlH in modulating 2,4-DAPG levels by controlling the expression of 2,4-DAPG hydrolase PhlG in response to 2,4-DAPG and MAPG. Since 2,4-DAPG biosynthesis imposes a metabolic burden on biocontrol pseudomonads, it is expected that the fine regulation of phlG by PhlH offers a way to dynamically modulate the metabolic loads attributed to 2,4-DAPG production.
Collapse
|
8
|
Li X, Gu GQ, Chen W, Gao LJ, Wu XH, Zhang LQ. The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Microbiol Res 2017; 206:159-167. [PMID: 29146252 DOI: 10.1016/j.micres.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Pseudomonas fluorescens 2P24 produces 2,4-diacetylphloroglucinol (2,4-DAPG) as the major antibiotic compound that protects plants from soil-borne diseases. Expression of the 2,4-DAPG biosynthesis enzymes, which are encoded by the phlACBD locus, is under the control of a delicate regulatory network. In this study, we identified a novel role for the outer membrane protein gene oprF, in negatively regulating the 2,4-DAPG production by using random mini-Tn5 mutagentsis. A sigma factor gene sigX was located immediately upstream of the oprF gene and shown to be a positive regulator for oprF transcription and 2,4-DAPG production. Genetic analysis of an oprF and sigX double-mutant indicated that the 2,4-DAPG regulation by oprF was dependent on SigX. The sigX gene did not affect PhlA and PhlD expression, but positively regulated the level of malonyl-CoA, the substrate of 2,4-DAPG synthesis, by influencing the expression of acetyl-CoA carboxylases. Further investigations revealed that sigX transcription was induced under conditions of salt starvation or glycine addition. All these findings indicate that SigX is a novel regulator of substrate supplements for 2,4-DAPG production.
Collapse
Affiliation(s)
- Xu Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Gao-Qi Gu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wei Chen
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Li-Juan Gao
- Beijing Centre for Physical and Chemical Analysis, Beijing, 100089, China
| | - Xue-Hong Wu
- Department of Plant Pathology, China Agricultural University, Beijing, China; Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Beijing, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China; Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
9
|
Imperiali N, Dennert F, Schneider J, Laessle T, Velatta C, Fesselet M, Wyler M, Mascher F, Mavrodi O, Mavrodi D, Maurhofer M, Keel C. Relationships between Root Pathogen Resistance, Abundance and Expression of Pseudomonas Antimicrobial Genes, and Soil Properties in Representative Swiss Agricultural Soils. FRONTIERS IN PLANT SCIENCE 2017; 8:427. [PMID: 28424714 PMCID: PMC5372754 DOI: 10.3389/fpls.2017.00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 05/24/2023]
Abstract
Strains of Pseudomonas that produce antimicrobial metabolites and control soilborne plant diseases have often been isolated from soils defined as disease-suppressive, i.e., soils, in which specific plant pathogens are present, but plants show no or reduced disease symptoms. Moreover, it is assumed that pseudomonads producing antimicrobial compounds such as 2,4-diacetylphloroglucinol (DAPG) or phenazines (PHZ) contribute to the specific disease resistance of suppressive soils. However, pseudomonads producing antimicrobial metabolites are also present in soils that are conducive to disease. Currently, it is still unknown whether and to which extent the abundance of antimicrobials-producing pseudomonads is related to the general disease resistance of common agricultural soils. Moreover, virtually nothing is known about the conditions under which pseudomonads express antimicrobial genes in agricultural field soils. We present here results of the first side-by-side comparison of 10 representative Swiss agricultural soils with a cereal-oriented cropping history for (i) the resistance against two soilborne pathogens, (ii) the abundance of Pseudomonas bacteria harboring genes involved in the biosynthesis of the antimicrobials DAPG, PHZ, and pyrrolnitrin on roots of wheat, and (iii) the ability to support the expression of these genes on the roots. Our study revealed that the level of soil disease resistance strongly depends on the type of pathogen, e.g., soils that are highly resistant to Gaeumannomyces tritici often are highly susceptible to Pythium ultimum and vice versa. There was no significant correlation between the disease resistance of the soils, the abundance of Pseudomonas bacteria carrying DAPG, PHZ, and pyrrolnitrin biosynthetic genes, and the ability of the soils to support the expression of the antimicrobial genes. Correlation analyses indicated that certain soil factors such as silt, clay, and some macro- and micronutrients influence both the abundance and the expression of the antimicrobial genes. Taken together, the results of this study suggests that pseudomonads producing DAPG, PHZ, or pyrrolnitrin are present and abundant in Swiss agricultural soils and that the soils support the expression of the respective biosynthetic genes in these bacteria to various degrees. The precise role that these pseudomonads play in the general disease resistance of the investigated agricultural soils remains elusive.
Collapse
Affiliation(s)
- Nicola Imperiali
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Francesca Dennert
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) ZurichZurich, Switzerland
| | - Jana Schneider
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) ZurichZurich, Switzerland
| | - Titouan Laessle
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Christelle Velatta
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Marie Fesselet
- Plant Breeding and Genetic Resources, Institute for Plant Production Sciences, AgroscopeNyon, Switzerland
| | - Michele Wyler
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) ZurichZurich, Switzerland
| | - Fabio Mascher
- Plant Breeding and Genetic Resources, Institute for Plant Production Sciences, AgroscopeNyon, Switzerland
| | - Olga Mavrodi
- Department of Biological Sciences, University of Southern Mississippi, HattiesburgMS, USA
| | - Dmitri Mavrodi
- Department of Biological Sciences, University of Southern Mississippi, HattiesburgMS, USA
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) ZurichZurich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| |
Collapse
|
10
|
Yan Q, Philmus B, Hesse C, Kohen M, Chang JH, Loper JE. The Rare Codon AGA Is Involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5. Front Microbiol 2016; 7:497. [PMID: 27148187 PMCID: PMC4836200 DOI: 10.3389/fmicb.2016.00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/27/2016] [Indexed: 11/24/2022] Open
Abstract
The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. The capacity to suppress disease is attributed to Pf-5's production of a large spectrum of antibiotics, which is controlled by complex regulatory circuits operating at the transcriptional and post-transcriptional levels. In this study, we analyzed the genomic sequence of Pf-5 for codon usage patterns and observed that the six rarest codons in the genome are present in all seven known antibiotic biosynthesis gene clusters. In particular, there is an abundance of rare codons in pltR, which encodes a member of the LysR transcriptional regulator family that controls the expression of pyoluteorin biosynthetic genes. To test the hypothesis that rare codons in pltR influence pyoluteorin production, we generated a derivative of Pf-5 in which 23 types of rare codons in pltR were substituted with synonymous preferred codons. The resultant mutant produced pyoluteorin at levels 15 times higher than that of the wild-type Pf-5. Accordingly, the promoter activity of the pyoluteorin biosynthetic gene pltL was 20 times higher in the codon-modified stain than in the wild-type. pltR has six AGA codons, which is the rarest codon in the Pf-5 genome. Substitution of all six AGA codons with preferred Arg codons resulted in a variant of pltR that conferred increased pyoluteorin production and pltL promoter activity. Furthermore, overexpression of tRNAUCUArg, the cognate tRNA for the AGA codon, significantly increased pyoluteorin production by Pf-5. A bias in codon usage has been linked to the regulation of many phenotypes in eukaryotes and prokaryotes but, to our knowledge, this is the first example of the role of a rare codon in the regulation of antibiotic production by a Gram-negative bacterium.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA
| | | | - Cedar Hesse
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service Corvallis, OR, USA
| | - Max Kohen
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA; Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research ServiceCorvallis, OR, USA
| |
Collapse
|
11
|
Posttranscriptional regulation of 2,4-diacetylphloroglucinol production by GidA and TrmE in Pseudomonas fluorescens 2P24. Appl Environ Microbiol 2014; 80:3972-81. [PMID: 24747907 DOI: 10.1128/aem.00455-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a soilborne bacterium that synthesizes and excretes multiple antimicrobial metabolites. The polyketide compound 2,4-diacetylphloroglucinol (2,4-DAPG), synthesized by the phlACBD locus, is its major biocontrol determinant. This study investigated two mutants defective in antagonistic activity against Rhizoctonia solani. Deletion of the gidA (PM701) or trmE (PM702) gene from strain 2P24 completely inhibited the production of 2,4-DAPG and its precursors, monoacetylphloroglucinol (MAPG) and phloroglucinol (PG). The transcription of the phlA gene was not affected, but the translation of the phlA and phlD genes was reduced significantly. Two components of the Gac/Rsm pathway, RsmA and RsmE, were found to be regulated by gidA and trmE, whereas the other components, RsmX, RsmY, and RsmZ, were not. The regulation of 2,4-DAPG production by gidA and trmE, however, was independent of the Gac/Rsm pathway. Both the gidA and trmE mutants were unable to produce PG but could convert PG to MAPG and MAPG to 2,4-DAPG. Overexpression of PhlD in the gidA and trmE mutants could restore the production of PG and 2,4-DAPG. Taken together, these findings suggest that GidA and TrmE are positive regulatory elements that influence the biosynthesis of 2,4-DAPG posttranscriptionally.
Collapse
|
12
|
Park SH, Bao Z, Butcher BG, D'Amico K, Xu Y, Stodghill P, Schneider DJ, Cartinhour S, Filiatrault MJ. Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. MICROBIOLOGY-SGM 2014; 160:941-953. [PMID: 24600027 DOI: 10.1099/mic.0.076497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria contain small non-coding RNAs (ncRNAs) that are typically responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they often regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae DC3000, spot 42 (now referred to as spf), was investigated. A putative RpoE binding site was identified upstream of spf in strain DC3000. RpoE is shown to regulate the expression of spf. Also, deletion of spf results in increased sensitivity to hydrogen peroxide compared with the wild-type strain, suggesting that spf plays a role in susceptibility to oxidative stress. Furthermore, expression of alg8 is shown to be influenced by spf, suggesting that this ncRNA plays a role in alginate biosynthesis. Structural and comparative genomic analyses show this ncRNA is well conserved among the pseudomonads. The findings provide new information on the regulation and role of this ncRNA in P. syringae.
Collapse
Affiliation(s)
- So Hae Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bronwyn G Butcher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Katherine D'Amico
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yun Xu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Stodghill
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - David J Schneider
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samuel Cartinhour
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - M J Filiatrault
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Ramos LS, Lehman BL, Sinn JP, Pfeufer EE, Halbrendt NO, McNellis TW. The fire blight pathogen Erwinia amylovora requires the rpoN gene for pathogenicity in apple. MOLECULAR PLANT PATHOLOGY 2013; 14:838-43. [PMID: 23721085 PMCID: PMC6638816 DOI: 10.1111/mpp.12045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RpoN is a σ(54) factor regulating essential virulence gene expression in several plant pathogenic bacteria, including Pseudomonas syringae and Pectobacterium carotovorum. In this study, we found that mutation of rpoN in the fire blight pathogen Erwinia amylovora caused a nonpathogenic phenotype. The E. amylovora rpoN Tn5 transposon mutant rpoN1250::Tn5 did not cause fire blight disease symptoms on shoots of mature apple trees. In detached immature apple fruits, the rpoN1250::Tn5 mutant failed to cause fire blight disease symptoms and grew to population levels 12 orders of magnitude lower than the wild-type. In addition, the rpoN1250::Tn5 mutant failed to elicit a hypersensitive response when infiltrated into nonhost tobacco plant leaves, and rpoN1250::Tn5 cells failed to express HrpN protein when grown in hrp (hypersensitive response and pathogenicity)-inducing liquid medium. A plasmid-borne copy of the wild-type rpoN gene complemented all the rpoN1250::Tn5 mutant phenotypes tested. The rpoN1250::Tn5 mutant was prototrophic on minimal solid and liquid media, indicating that the rpoN1250::Tn5 nonpathogenic phenotype was not caused by a defect in basic metabolism or growth. This study provides clear genetic evidence that rpoN is an essential virulence gene of E. amylovora, suggesting that rpoN has the same function in E. amylovora as in P. syringae and Pe. carotovorum.
Collapse
Affiliation(s)
- Laura S Ramos
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kidarsa TA, Shaffer BT, Goebel NC, Roberts DP, Buyer JS, Johnson A, Kobayashi DY, Zabriskie TM, Paulsen I, Loper JE. Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. Environ Microbiol 2013; 15:716-35. [PMID: 23297839 DOI: 10.1111/1462-2920.12066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/20/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Gene expression profiles of the biological control strain Pseudomonas protegens Pf-5 inhabiting pea seed surfaces were revealed using a whole-genome oligonucleotide microarray. We identified genes expressed by Pf-5 under the control of two global regulators (GacA and RpoS) known to influence biological control and secondary metabolism. Transcript levels of 897 genes, including many with unknown functions as well as those for biofilm formation, cyclic diguanylate (c-di-GMP) signalling, iron homeostasis and secondary metabolism, were influenced by one or both regulators, providing evidence for expression of these genes by Pf-5 on seed surfaces. Comparison of the GacA and RpoS transcriptomes defined for Pf-5 grown on seed versus in broth culture overlapped, but most genes were regulated by GacA or RpoS under only one condition, likely due to differing levels of expression in the two conditions. We quantified secondary metabolites produced by Pf-5 and gacA and rpoS mutants on seed and in culture, and found that production profiles corresponded generally with biosynthetic gene expression profiles. Future studies evaluating biological control mechanisms can now focus on genes expressed by Pf-5 on seed surfaces, the habitat where the bacterium interacts with seed-infecting pathogens to suppress seedling diseases.
Collapse
Affiliation(s)
- Teresa A Kidarsa
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fighting Plant Diseases Through the Application of Bacillus and Pseudomonas Strains. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Péchy-Tarr M, Borel N, Kupferschmied P, Turner V, Binggeli O, Radovanovic D, Maurhofer M, Keel C. Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environ Microbiol 2013; 15:736-50. [DOI: 10.1111/1462-2920.12050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/30/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Péchy-Tarr
- Department of Fundamental Microbiology; University of Lausanne; Lausanne; Switzerland
| | - Naomi Borel
- Department of Fundamental Microbiology; University of Lausanne; Lausanne; Switzerland
| | - Peter Kupferschmied
- Department of Fundamental Microbiology; University of Lausanne; Lausanne; Switzerland
| | - Vincent Turner
- Department of Fundamental Microbiology; University of Lausanne; Lausanne; Switzerland
| | - Olivier Binggeli
- Department of Fundamental Microbiology; University of Lausanne; Lausanne; Switzerland
| | - Dragica Radovanovic
- Department of Fundamental Microbiology; University of Lausanne; Lausanne; Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology; Swiss Federal Institute of Technology (ETH); Zurich; Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology; University of Lausanne; Lausanne; Switzerland
| |
Collapse
|
17
|
Naushad HS, Gupta RS. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PLoS One 2013; 8:e55216. [PMID: 23408961 DOI: 10.1016/j.biocontrol.2008.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/19/2012] [Indexed: 05/20/2023] Open
Abstract
The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1-3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential targets for development of drugs/agents that specifically target these bacteria.
Collapse
Affiliation(s)
- Hafiz Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
18
|
Park SH, Butcher BG, Anderson Z, Pellegrini N, Bao Z, D’Amico K, Filiatrault MJ. Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. MICROBIOLOGY-SGM 2012; 159:296-306. [PMID: 23258266 PMCID: PMC3709562 DOI: 10.1099/mic.0.063826-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacteria contain small non-coding RNAs (ncRNAs) that are responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae pv. tomato DC3000, P16, was investigated. We determined that RpoS regulates the expression of P16. We found that deletion of P16 results in increased sensitivity to hydrogen peroxide compared to the wild-type strain, suggesting that P16 plays a role in the bacteria’s susceptibility to oxidative stress. Additionally the P16 mutant displayed enhanced resistance to heat stress. Our findings provide new information on the regulation and role of this ncRNA in P. syringae.
Collapse
Affiliation(s)
- So Hae Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bronwyn G. Butcher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zoe Anderson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nola Pellegrini
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Katherine D’Amico
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Melanie J. Filiatrault
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Plant–Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Wu X, Liu J, Zhang W, Zhang L. Multiple-level regulation of 2,4-diacetylphloroglucinol production by the sigma regulator PsrA in Pseudomonas fluorescens 2P24. PLoS One 2012; 7:e50149. [PMID: 23209661 PMCID: PMC3510223 DOI: 10.1371/journal.pone.0050149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/22/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens 2P24 is a rhizospheric bacterium that aggressively colonizes the plant roots. It produces the antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), which contributes to the protection of various crop plants against soil borne diseases caused by bacterial and fungal pathogens. The biosynthesis of 2,4-DAPG is regulated at the transcriptional level in the expression of the phlACBD operon as well as at the posttranscriptional level by the Gac/Rsm signal transduction pathway. However, the detailed mechanism of such regulation is not clear. METHODOLOGY/PRINCIPAL FINDINGS In this study, we identified a binding site for the sigma regulator PsrA in the promoter region of the phlA gene. Electrophoretic mobility shift experiments revealed direct and specific binding of PsrA to the phlA promoter region. Consistent with the fact that its binding site locates within the promoter region of phlA, PsrA negatively regulates phlA expression, and its inactivation led to significant increase in 2,4-DAPG production. Interestingly, PsrA also activates the expression of the sigma factor RpoS, which negatively regulates 2,4-DAPG production by inducing the expression of the RNA-binding protein RsmA. CONCLUSIONS/SIGNIFICANCE These results suggest that PsrA is an important regulator that modulates 2,4-DAPG biosynthesis at both transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Xiaogang Wu
- Department of Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Jiucheng Liu
- Department of Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Liqun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Plant Pathology, Ministry of Agriculture, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 2011; 81:395-414. [PMID: 21564338 DOI: 10.1111/j.1365-2958.2011.07697.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The antibiotics pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) contribute to the biological control of soilborne plant diseases by some strains of Pseudomonas fluorescens, including Pf-5. These secondary metabolites also have signalling functions with each compound reported to induce its own production and repress the other's production. The first step in DAPG biosynthesis is production of phloroglucinol (PG) by PhlD. In this study, we show that PG is required at nanomolar concentrations for pyoluteorin production in Pf-5. At higher concentrations, PG is responsible for the inhibition of pyoluteorin production previously attributed to DAPG. DAPG had no effect on pyoluteorin production, and monoacetylphloroglucinol showed both stimulatory and inhibitory activities but at concentrations 100-fold greater than the levels of PG required for similar effects. We also demonstrate that PG regulates pyoluteorin production in P. aeruginosa and that a phlD gene adjacent to the pyoluteorin biosynthetic gene cluster in P. aeruginosa strain LESB58 can restore pyoluteorin biosynthesis to a ΔphlD mutant of Pf-5. Bioinformatic analyses show that the dual role of PhlD in the biosynthesis of DAPG and the regulation of pyoluteorin production could have arisen within the pseudomonads during the assembly of these biosynthetic gene clusters from genes and gene subclusters of diverse origins.
Collapse
Affiliation(s)
- Teresa A Kidarsa
- USDA-ARS-Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA
| | | | | | | |
Collapse
|
21
|
Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 2011; 77:4579-88. [PMID: 21531826 DOI: 10.1128/aem.00183-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas fluorescens are rhizobacteria known for their biocontrol properties. Several antimicrobial functions are crucial for this process, and the experiments described here investigate the modulation of their expression during the plant-bacterium interaction. The role of a LuxR family regulator in interkingdom signaling has been investigated using genome-scale transcriptome analysis, gene promoter studies in vivo and in vitro, biocontrol assays, and response to plant compounds. PsoR, a LuxR solo or orphan regulator of P. fluorescens, was identified. PsoR is solubilized and activates a lux-box-containing promoter only in the presence of macerated plants, suggesting the presence of a plant molecule(s) that most likely binds to PsoR. Gene expression profiles revealed that genes involved in the inhibition of plant pathogens were affected by PsoR, including a chitinase gene, iron metabolism genes, and biosynthetic genes of antifungal compounds. 2,4-Diacetylphloroglucinol production is PsoR dependent both in vitro and in vivo. psoR mutants were significantly reduced for their ability to protect wheat plants from root rot, and damping-off caused by Pythium ultimum infection. PsoR most likely senses a molecule(s) in the plant and modulates expression of genes that have a role in biocontrol. PsoR and related proteins form a subfamily of LuxR family regulators in plant-associated bacteria.
Collapse
|
22
|
Otterholt E, Charnock C. Microbial quality and nutritional aspects of Norwegian brand waters. Int J Food Microbiol 2010; 144:455-63. [PMID: 21095035 DOI: 10.1016/j.ijfoodmicro.2010.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/22/2010] [Accepted: 10/30/2010] [Indexed: 11/18/2022]
Abstract
The microbiological quality of the five leading brands of Norwegian bottled still waters was investigated. All brands were free for the enteric indicator organisms and named pathogens whose absence is demanded in current quality directives. The relatively nutrient-poor agar R₂A revealed large heterogeneous bacterial populations which grew slowly, or not at all, on clinical media specified for use in substrate-utilization approaches to identification. The main approach used for identification was cultivation of microbes on R₂A, followed by amplification and partial sequencing of 16S rDNA genes. The identity of the heterotrophic plate count of the brands differed significantly to that found in many other similar studies with respect to the dominating species. The bacterial flora was dominated by beta- and alphaproteobacteria most of which were psychrotolerant. Several brands contained Sphingomonas and large populations of Methylobacterium species which have been associated with a variety of opportunistic infections of immunocompromised hosts. Analysis of the isolated strains' nutritional capabilities using the Biolog GN2® system, gave in most instances low positive scores, and strain identifications using the system were generally inconclusive. Measures of assimilable organic carbon in the water revealed that some brands contained levels higher than those which have been associated with biological stability and restricted or no growth of heterotrophs in distribution systems. The relationship between assimilable organic carbon and R₂A plate counts was significant and moderately positive for bottled waters. Assimilable organic carbon correlated strongly with the survival time of Escherichia coli when introduced into bottles as a contaminant. Those brands having high values (~100 μg/L) supported protracted survival, but not growth of E. coli, whereas E. coli quickly became nonculturable in brands with low values. Thus measures of assimilable organic carbon may have a particular value in predicting the survival of this and nutritionally similar species of hygienic relevance. Only small numbers of fungi were found. However, one isolate (Aureobasidium pullulans) has been associated with infections of humans.
Collapse
Affiliation(s)
- Eli Otterholt
- Faculty of Health Sciences, Oslo University College, Norway
| | | |
Collapse
|
23
|
Rochat L, Péchy-Tarr M, Baehler E, Maurhofer M, Keel C. Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:949-61. [PMID: 20521957 DOI: 10.1094/mpmi-23-7-0949] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Some root-associated pseudomonads sustain plant growth by suppressing root diseases caused by pathogenic fungi. We investigated to which extent select cereal cultivars influence expression of relevant biocontrol traits (i.e., root colonization efficacy and antifungal activity) in Pseudomonas fluorescens CHA0. In this representative plant-beneficial bacterium, the antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN), pyoluteorin (PLT), and hydrogen cyanide (HCN) are required for biocontrol. To monitor host plant effects on the expression of biosynthetic genes for these compounds on roots, we developed fluorescent dual-color reporters suited for flow cytometric analysis using fluorescence-activated cell sorting (FACS). In the dual-label strains, the constitutively expressed red fluorescent protein mCherry served as a cell tag and marker for root colonization, whereas reporter fusions based on the green fluorescent protein allowed simultaneous recording of antifungal gene expression within the same cell. FACS analysis revealed that expression of DAPG and PRN biosynthetic genes was promoted in a cereal rhizosphere, whereas expression of PLT and HCN biosynthetic genes was markedly less sustained. When analyzing the response of the bacterial reporters on roots of a selection of wheat, spelt, and triticale cultivars, we were able to detect subtle species- and cultivar-dependent differences in colonization and DAPG and HCN gene expression levels. The expression of these biocontrol traits was particularly favored on roots of one spelt cultivar, suggesting that a careful choice of pseudomonad-cereal combinations might be beneficial to biocontrol. Our approach may be useful for selective single-cell level analysis of plant effects in other bacteria-root interactions.
Collapse
Affiliation(s)
- Laurène Rochat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Wu XG, Duan HM, Tian T, Yao N, Zhou HY, Zhang LQ. Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24. FEMS Microbiol Lett 2010; 309:16-24. [PMID: 20528945 DOI: 10.1111/j.1574-6968.2010.02009.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is an effective biological control agent of a number of soilborne plant diseases caused by pathogenic microorganisms. Among a range of secondary metabolites produced by strain 2P24, the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) is the major determinant of its disease-suppressive capacity. In this study, we performed random mutagenesis using mini-Tn5 in order to screen for the transcriptional regulators of the phlA gene, a biosynthase gene responsible for 2,4-DAPG production. The mutant PMphlA23 with significantly decreased phlA gene expression was identified from approximately 10,000 insertion colonies. The protein sequence of the interrupted gene has 84% identity to Hfq, a key regulator important for stress resistance and virulence in Pseudomonas aeruginosa. Genetic inactivation of hfq resulted in decreased expression of phlA and reduced production of 2,4-DAPG. Furthermore, the hfq gene was also required for the expression of pcoI, a synthase gene for the LuxI-type quorum-sensing signaling molecule N-acyl-homoserine lactone. Additionally, the hfq mutation drastically reduced biofilm formation and impaired the colonization ability of strain 2P24 on wheat rhizospheres. Based on these results, we propose that Hfq functions as an important regulatory element in the complex network controlling environmental adaption in P. fluorescens 2P24.
Collapse
Affiliation(s)
- Xiao-Gang Wu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 2010; 192:2359-72. [PMID: 20190049 DOI: 10.1128/jb.01445-09] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's high-throughput sequencing technology. The resulting sequences were used to construct genome-wide transcriptional profiles. Novel bioinformatics analyses were developed and used in combination with proteomics data for the qualitative classification of transcriptional activity in defined regions. As expected, most transcriptional activity was consistent with predictions from the genome annotation. Importantly, we identified and confirmed transcriptional activity in areas of the genome inconsistent with the annotation and in unannotated regions. Further analyses revealed potential RpoN-dependent promoter sequences upstream of several noncoding RNAs (ncRNAs), suggesting a role for these ncRNAs in RpoN-dependent phenotypes. We were also able to validate a number of transcriptional start sites, many of which were consistent with predicted promoter motifs. Overall, our approach provides an efficient way to survey global transcriptional activity in bacteria and enables rapid discovery of specific areas in the genome that merit further investigation.
Collapse
|
26
|
Stockwell VO, Hockett K, Loper JE. Role of RpoS in stress tolerance and environmental fitness of the phyllosphere bacterium Pseudomonas fluorescens strain 122. PHYTOPATHOLOGY 2009; 99:689-695. [PMID: 19453227 DOI: 10.1094/phyto-99-6-0689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bacteria living epiphytically on aerial plant surfaces encounter severe and rapidly fluctuating environmental conditions, and their capacity to withstand environmental stress contributes to epiphytic fitness. The stationary phase sigma factor RpoS is a key determinant in stress response of gram-negative bacteria, including Pseudomonas spp. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens strain 122 on aerial plant surfaces. RpoS had a significant role in the response of the phyllosphere bacterium P. fluorescens 122 to stresses imposed by desiccation, UV irradiation, starvation, and an oxidative environment. While significant, the difference in stress response between an rpoS mutant and the parental strain was less for strain 122 than for the rhizosphere bacterium P. fluorescens Pf-5. No consistent influence of RpoS on epiphytic population size of strain 122 on pear or apple flowers or leaves was observed in field trials. These data may indicate that P. fluorescens occupies protected microsites on aerial plant surfaces where the bacteria escape exposure to environmental stress, or that redundant stress-response mechanisms are operating in this bacterium, thereby obscuring the role of RpoS in epiphytic fitness of the bacterium.
Collapse
|
27
|
Hagen MJ, Stockwell VO, Whistler CA, Johnson KB, Loper JE. Stress tolerance and environmental fitness of Pseudomonas fluorescens A506, which has a mutation in RpoS. PHYTOPATHOLOGY 2009; 99:679-688. [PMID: 19453226 DOI: 10.1094/phyto-99-6-0679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Establishment of suppressive populations of bacterial biological control agents on aerial plant surfaces is a critical phase in biologically based management of floral diseases. Periodically, biocontrol agents encounter inhospitable conditions for growth on plants; consequently, tolerance of environmental stresses may contribute to their fitness. In many gram-negative bacteria, including strains of Pseudomonas spp., the capacity to survive environmental stresses is influenced by the stationary phase sigma factor RpoS. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens A506, a well-studied bacterial biological control agent. We detected a frameshift mutation in the rpoS of A506 and demonstrated that the mutation resulted in a truncated, nonfunctional RpoS. Using site-directed mutagenesis, we deleted a nucleotide from rpoS, which then encoded a full-length, functional RpoS. We compared the stress response and epiphytic fitness of A506 with derivative strains having the functional full-length RpoS or a disrupted, nonfunctional RpoS. RpoS had little effect on stress response of A506 and no consistent influence on epiphytic population size of A506 on pear or apple leaves or flowers. Although the capacity of strain A506 to withstand exposure to environmental stresses was similar to that of other fluorescent pseudomonads, this capacity was largely independent of rpoS.
Collapse
Affiliation(s)
- Mary J Hagen
- Department of Botany, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
28
|
Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 2009; 75:4162-74. [PMID: 19376896 DOI: 10.1128/aem.00295-09] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Deltagcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.
Collapse
|
29
|
Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel C. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 2008; 10:2368-86. [PMID: 18484997 DOI: 10.1111/j.1462-2920.2008.01662.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudomonas fluorescens CHA0 and the related strain Pf-5 are well-characterized representatives of rhizosphere bacteria that have the capacity to protect crop plants from fungal root diseases, mainly by releasing a variety of exoproducts that are toxic to plant pathogenic fungi. Here, we report that the two plant-beneficial pseudomonads also exhibit potent insecticidal activity. Anti-insect activity is linked to a novel genomic locus encoding a large protein toxin termed Fit (for P. fluorescensinsecticidal toxin) that is related to the insect toxin Mcf (Makes caterpillars floppy) of the entomopathogen Photorhabdus luminescens, a mutualist of insect-invading nematodes. When injected into the haemocoel, even low doses of P. fluorescens CHA0 or Pf-5 killed larvae of the tobacco hornworm Manduca sexta and the greater wax moth Galleria mellonella. In contrast, mutants of CHA0 or Pf-5 with deletions in the Fit toxin gene were significantly less virulent to the larvae. When expressed from an inducible promoter in a non-toxic Escherichia coli host, the Fit toxin gene was sufficient to render the bacterium toxic to both insect hosts. Our findings establish the Fit gene products of P. fluorescens CHA0 and Pf-5 as potent insect toxins that define previously unappreciated anti-insect properties of these plant-colonizing bacteria.
Collapse
Affiliation(s)
- Maria Péchy-Tarr
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl Environ Microbiol 2007; 74:1339-49. [PMID: 18165366 DOI: 10.1128/aem.02126-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.
Collapse
|
31
|
Jones J, Studholme DJ, Knight CG, Preston GM. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Environ Microbiol 2007; 9:3046-64. [DOI: 10.1111/j.1462-2920.2007.01416.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Mercado-Blanco J, Bakker PAHM. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 2007; 92:367-89. [PMID: 17588129 DOI: 10.1007/s10482-007-9167-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/12/2007] [Indexed: 11/29/2022]
Abstract
Specific strains of fluorescent Pseudomonas spp. inhabit the environment surrounding plant roots and some even the root interior. Introducing such bacterial strains to plant roots can lead to increased plant growth, usually due to suppression of plant pathogenic microorganisms. We review the modes of action and traits of these beneficial Pseudomonas bacteria involved in disease suppression. The complex regulation of biological control traits in relation to the functioning in the root environment is discussed. Understanding the complexity of the interactions is instrumental in the exploitation of beneficial Pseudomonas spp. in controlling plant diseases.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apartado 4084, 14080 Cordoba, Spain.
| | | |
Collapse
|
33
|
Mammino L, Kabanda MM. Model structures for the study of acylated phloroglucinols and computational study of the caespitate molecule. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2006.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Loper JE, Kobayashi DY, Paulsen IT. The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. PHYTOPATHOLOGY 2007; 97:233-8. [PMID: 18944380 DOI: 10.1094/phyto-97-2-0233] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogens.
Collapse
|
35
|
Weller DM. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. PHYTOPATHOLOGY 2007; 97:250-6. [PMID: 18944383 DOI: 10.1094/phyto-97-2-0250] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT Pseudomonas spp. are ubiquitous bacteria in agricultural soils and have many traits that make them well suited as biocontrol agents of soilborne pathogens. Tremendous progress has been made in characterizing the process of root colonization by pseudomonads, the biotic and abiotic factors affecting colonization, bacterial traits and genes contributing to rhizosphere competence, and the mechanisms of pathogen suppression. This review looks back over the last 30 years of Pseudomonas biocontrol research and highlights key studies, strains, and findings that have had significant impact on shaping our current understanding of biological control by bacteria and the direction of future research.
Collapse
|
36
|
Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:4-20. [PMID: 17058178 DOI: 10.1055/s-2006-924473] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have evolved strategies of stimulating and supporting specific groups of antagonistic microorganisms in the rhizosphere as a defense against diseases caused by soilborne plant pathogens owing to a lack of genetic resistance to some of the most common and widespread soilborne pathogens. Some of the best examples of natural microbial defense of plant roots occur in disease suppressive soils. Soil suppressiveness against many different diseases has been described. Take-all is an important root disease of wheat, and soils become suppressive to take-all when wheat or barley is grown continuously in a field following a disease outbreak; this phenomenon is known as take-all decline (TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens to a density of 10 (5) CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici. 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers (designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based (rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of PHLD, and phylogenetic analysis of PHLD, but the number of genotypes is expected to increase. The genotype of an isolate is predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often occur in a single soil and the crop species grown modulates the outcome of the competition among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective biocontrol agents against a variety of plant diseases and ideally suited for serving as vectors for expressing other biocontrol traits in the rhizosphere.
Collapse
Affiliation(s)
- D M Weller
- USDA-ARS Root Disease and Biological Control Research Unit, Washington State University, P.O. Box 646430, 367 Johnson Hall, Pullman, WA 99164-6430, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bottiglieri M, Keel C. Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 2006; 72:418-27. [PMID: 16391073 PMCID: PMC1352262 DOI: 10.1128/aem.72.1.418-427.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.
Collapse
Affiliation(s)
- Mélanie Bottiglieri
- Département de Microbiologie Fondamentale, Bātiment de Biologie, Université de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | | |
Collapse
|
38
|
Baehler E, de Werra P, Wick LY, Péchy-Tarr M, Mathys S, Maurhofer M, Keel C. Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:313-29. [PMID: 16570661 DOI: 10.1094/mpmi-19-0313] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pseudomonas fluorescens CHA0 protects various crop plants against root diseases caused by pathogenic fungi. Among a range of exoproducts excreted by strain CHA0, the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) are particularly relevant to the strain's biocontrol potential. Here, we report on the characterization of MvaT and MvaV as novel regulators of biocontrol activity in strain CHA0. We establish the two proteins as further members of an emerging family of MvaT-like regulators in pseudomonads that are structurally and functionally related to the DNA-binding protein H-NS. In mvaT and mvaV in frame-deletion mutants of strain CHA0, PLT production was enhanced about four- and 1.5-fold, respectively, whereas DAPG production remained at wild-type levels. Remarkably, PLT production was increased up to 20-fold in an mvaT mvaV double mutant. DAPG biosynthesis was almost completely repressed in this mutant. The effects on antibiotic production could be confirmed by following expression of gfp-based reporter fusions to the corresponding biosynthetic genes. MvaT and MvaV also influenced levels of other exoproducts, motility, and physicochemical cell-surface properties to various extents. Compared with the wild type, mvaT and mvaV mutants had an about 20% reduced capacity (in terms of plant fresh weight) to protect cucumber from a root rot caused by Pythium ultimum. Biocontrol activity was nearly completely abolished in the double mutant Our findings indicate that MvaT and MvaV act together as further global regulatory elements in the complex network controlling expression of biocontrol traits in plant-beneficial pseudomonads.
Collapse
Affiliation(s)
- Eric Baehler
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Stockwell VO, Loper JE. The sigma factor RpoS is required for stress tolerance and environmental fitness of Pseudomonas fluorescens Pf-5. Microbiology (Reading) 2005; 151:3001-3009. [PMID: 16151210 DOI: 10.1099/mic.0.28077-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many micro-organisms exist in natural habitats that are subject to severe or dramatically fluctuating environmental conditions. Such is the case for bacteria inhabiting plant surfaces, where they are exposed to UV irradiation, oxygen radicals, and large fluctuations in temperature and moisture. This study focuses on the role of RpoS, a central regulator of stationary-phase gene expression in bacterial cells, in stress response and environmental fitness of Pseudomonas fluorescens Pf-5. Strain Pf-5 is a rhizosphere-inhabiting bacterium that suppresses plant diseases caused by several plant-pathogenic fungi and oomycetes. Previous studies demonstrated that rpoS was required for osmotic and oxidative stress resistance of Pf-5. The results of this study demonstrate a role for rpoS in tolerance of Pf-5 to freezing, starvation, UV irradiation and desiccation stress. In field studies, an rpoS mutant was compromised in rhizosphere colonization of plants in dry soil, whereas similar rhizosphere populations were established by Pf-5 and an rpoS mutant in well-irrigated soils. RpoS is a key determinant in stress response and environmental fitness of the rhizosphere bacterium P. fluorescens Pf-5.
Collapse
Affiliation(s)
- Virginia O Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Joyce E Loper
- United States Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
40
|
Baehler E, Bottiglieri M, Péchy-Tarr M, Maurhofer M, Keel C. Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agentPseudomonas fluorescensCHA0. J Appl Microbiol 2005; 99:24-38. [PMID: 15960662 DOI: 10.1111/j.1365-2672.2005.02597.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.
Collapse
Affiliation(s)
- E Baehler
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|