1
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|
2
|
Johnson Pokorná M, Reifová R. Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players. Front Genet 2021; 12:727570. [PMID: 34956308 PMCID: PMC8695967 DOI: 10.3389/fgene.2021.727570] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
B chromosomes represent additional chromosomes found in many eukaryotic organisms. Their origin is not completely understood but recent genomic studies suggest that they mostly arise through rearrangements and duplications from standard chromosomes. They can occur in single or multiple copies in a cell and are usually present only in a subset of individuals in the population. Because B chromosomes frequently show unstable inheritance, their maintenance in a population is often associated with meiotic drive or other mechanisms that increase the probability of their transmission to the next generation. For all these reasons, B chromosomes have been commonly considered to be nonessential, selfish, parasitic elements. Although it was originally believed that B chromosomes had little or no effect on an organism's biology and fitness, a growing number of studies have shown that B chromosomes can play a significant role in processes such as sex determination, pathogenicity and resistance to pathogens. In some cases, B chromosomes became an essential part of the genome, turning into new sex chromosomes or germline-restricted chromosomes with important roles in the organism's fertility. Here, we review such cases of "cellular domestication" of B chromosomes and show that B chromosomes can be important genomic players with significant evolutionary impact.
Collapse
Affiliation(s)
- Martina Johnson Pokorná
- Department of Zoology, Charles University, Prague, Czech Republic.,Department of Ecology, Charles University, Prague, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Eschenbrenner CJ, Feurtey A, Stukenbrock EH. Population Genomics of Fungal Plant Pathogens and the Analyses of Rapidly Evolving Genome Compartments. Methods Mol Biol 2021; 2090:337-355. [PMID: 31975174 DOI: 10.1007/978-1-0716-0199-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genome sequencing of fungal pathogens have documented extensive variation in genome structure and composition between species and in many cases between individuals of the same species. This type of genomic variation can be adaptive for pathogens to rapidly evolve new virulence phenotypes. Analyses of genome-wide variation in fungal pathogen genomes rely on high quality assemblies and methods to detect and quantify structural variation. Population genomic studies in fungi have addressed the underlying mechanisms whereby structural variation can be rapidly generated. Transposable elements, high mutation and recombination rates as well as incorrect chromosome segregation during mitosis and meiosis contribute to extensive variation observed in many species. We here summarize key findings in the field of fungal pathogen genomics and we discuss methods to detect and characterize structural variants including an alignment-based pipeline to study variation in population genomic data.
Collapse
Affiliation(s)
- Christoph J Eschenbrenner
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alice Feurtey
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
4
|
Nostadt R, Hilbert M, Nizam S, Rovenich H, Wawra S, Martin J, Küpper H, Mijovilovich A, Ursinus A, Langen G, Hartmann MD, Lupas AN, Zuccaro A. A secreted fungal histidine- and alanine-rich protein regulates metal ion homeostasis and oxidative stress. THE NEW PHYTOLOGIST 2020; 227:1174-1188. [PMID: 32285459 DOI: 10.1111/nph.16606] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 05/22/2023]
Abstract
Like pathogens, beneficial endophytic fungi secrete effector proteins to promote plant colonization, for example, through perturbation of host immunity. The genome of the root endophyte Serendipita indica encodes a novel family of highly similar, small alanine- and histidine-rich proteins, whose functions remain unknown. Members of this protein family carry an N-terminal signal peptide and a conserved C-terminal DELD motif. Here we report on the functional characterization of the plant-responsive DELD family protein Dld1 using a combination of structural, biochemical, biophysical and cytological analyses. The crystal structure of Dld1 shows an unusual, monomeric histidine zipper consisting of two antiparallel coiled-coil helices. Similar to other histidine-rich proteins, Dld1 displays varying affinity to different transition metal ions and undergoes metal ion- and pH-dependent unfolding. Transient expression of mCherry-tagged Dld1 in barley leaf and root tissue suggests that Dld1 localizes to the plant cell wall and accumulates at cell wall appositions during fungal penetration. Moreover, recombinant Dld1 enhances barley root colonization by S. indica, and inhibits H2 O2 -mediated radical polymerization of 3,3'-diaminobenzidine. Our data suggest that Dld1 has the potential to enhance micronutrient accessibility for the fungus and to interfere with oxidative stress and reactive oxygen species homeostasis to facilitate host colonization.
Collapse
Affiliation(s)
- Robin Nostadt
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Magdalena Hilbert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Shadab Nizam
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Hanna Rovenich
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Jörg Martin
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Hendrik Küpper
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Astrid Ursinus
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Gregor Langen
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
5
|
Hilbert M, Novero M, Rovenich H, Mari S, Grimm C, Bonfante P, Zuccaro A. MLO Differentially Regulates Barley Root Colonization by Beneficial Endophytic and Mycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2019; 10:1678. [PMID: 32010163 PMCID: PMC6976535 DOI: 10.3389/fpls.2019.01678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 05/05/2023]
Abstract
Loss-of-function alleles of MLO (Mildew Resistance Locus O) confer broad-spectrum resistance to foliar infections by powdery mildew pathogens. Like pathogens, microbes that establish mutually beneficial relationships with their plant hosts, trigger the induction of some defense responses. Initially, barley colonization by the root endophyte Serendipita indica (syn. Piriformospora indica) is associated with enhanced defense gene expression and the formation of papillae at sites of hyphal penetration attempts. This phenotype is reminiscent of mlo-conditioned immunity in barley leaf tissue and raises the question whether MLO plays a regulatory role in the establishment of beneficial interactions. Here we show that S. indica colonization was significantly reduced in plants carrying mlo mutations compared to wild type controls. The reduction in fungal biomass was associated with the enhanced formation of papillae. Moreover, epidermal cells of S. indica-treated mlo plants displayed an early accumulation of iron in the epidermal layer suggesting increased basal defense activation in the barley mutant background. Correspondingly, the induction of host cell death during later colonization stages was impaired in mlo colonized plants, highlighting the importance of the early biotrophic growth phase for S. indica root colonization. In contrast, the arbuscular mycorrhizal fungus Funneliformis mosseae displayed a similar colonization morphology on mutant and wild type plants. However, the frequency of mycorrhization and number of arbuscules was higher in mlo-5 mutants. These findings suggest that MLO differentially regulates root colonization by endophytic and AM fungi.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Hanna Rovenich
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stéphane Mari
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Carolin Grimm
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- *Correspondence: Alga Zuccaro,
| |
Collapse
|
6
|
Soyer JL, Balesdent MH, Rouxel T, Dean RA. To B or not to B: a tale of unorthodox chromosomes. Curr Opin Microbiol 2018; 46:50-57. [PMID: 29579575 DOI: 10.1016/j.mib.2018.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Jessica L Soyer
- UMR BIOGER, INRA, AgroParisTech, Paris-Saclay University, Thiverval-Grignon, France
| | | | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Paris-Saclay University, Thiverval-Grignon, France
| | - Ralph A Dean
- Center for Integrated Fungal Research, North Carolina State University & Department of Entomology and Plant Pathology, North Carolina State University, United States.
| |
Collapse
|
7
|
Williams AH, Sharma M, Thatcher LF, Azam S, Hane JK, Sperschneider J, Kidd BN, Anderson JP, Ghosh R, Garg G, Lichtenzveig J, Kistler HC, Shea T, Young S, Buck SAG, Kamphuis LG, Saxena R, Pande S, Ma LJ, Varshney RK, Singh KB. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 2016; 17:191. [PMID: 26945779 PMCID: PMC4779268 DOI: 10.1186/s12864-016-2486-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. RESULTS Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. CONCLUSIONS We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.
Collapse
Affiliation(s)
- Angela H Williams
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Louise F Thatcher
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Sarwar Azam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - James K Hane
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
- Department of Environment and Agriculture, Curtin Institute for Computation, and CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Perth, WA, 6102, Australia.
| | - Jana Sperschneider
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Brendan N Kidd
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Jonathan P Anderson
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Raju Ghosh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Gagan Garg
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Judith Lichtenzveig
- Department of Environment and Agriculture, Pulse Pathology and Genetics, Centre for Crop and Disease Management and Curtin Institute for Computation, Curtin University, Perth, WA, 6102, Australia.
| | - H Corby Kistler
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St Paul, MN, 55108, USA.
| | | | - Sarah Young
- The Broad Institute, Cambridge, MA, 02141, USA.
| | - Sally-Anne G Buck
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Lars G Kamphuis
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Rachit Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Suresh Pande
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Rajeev K Varshney
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Karam B Singh
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| |
Collapse
|
8
|
Coleman JJ. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. MOLECULAR PLANT PATHOLOGY 2016; 17:146-58. [PMID: 26531837 PMCID: PMC6638333 DOI: 10.1111/mpp.12289] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Members of the Fusarium solani species complex (FSSC) are capable of causing disease in many agriculturally important crops. The genomes of some of these fungi include supernumerary chromosomes that are dispensable and encode host-specific virulence factors. In addition to genomics, this review summarizes the known molecular mechanisms utilized by members of the FSSC in establishing disease. TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; Genus Fusarium. HOST RANGE Members of the FSSC collectively have a very broad host range, and have been subdivided previously into formae speciales. Recent phylogenetic analysis has revealed that formae speciales correspond to biologically and phylogenetically distinct species. DISEASE SYMPTOMS Typically, FSSC causes foot and/or root rot of the infected host plant, and the degree of necrosis correlates with the severity of the disease. Symptoms on above-ground portions of the plant can vary greatly depending on the specific FSSC pathogen and host plant, and the disease may manifest as wilting, stunting and chlorosis or lesions on the stem and/or leaves. CONTROL Implementation of agricultural management practices, such as crop rotation and timing of planting, can reduce the risk of crop loss caused by FSSC. If available, the use of resistant varieties is another means to control disease in the field. USEFUL WEBSITES http://genome.jgi-psf.org/Necha2/Necha2.home.html.
Collapse
Affiliation(s)
- Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
9
|
Kour G, Kaul S, Dhar MK. Molecular characterization of repetitive DNA sequences from B chromosome in Plantago lagopus L. Cytogenet Genome Res 2013; 142:121-8. [PMID: 24296743 DOI: 10.1159/000356472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
In Plantagolagopus the B chromosome has been reported by our laboratory to be the result of massive amplification of ribosomal DNA sequences. However, the presence of transposable elements and other repetitive DNA sequences together with rDNA could not be ruled out. The present study clearly demonstrated the presence of transposable elements in the B chromosomes. These transposable elements were characterized and their nature assessed. Physical mapping using double fluorescent in situ hybridization was performed using DNA probes for 5S and copia elements. The results clearly proved that the B chromosome is a mix of 5S, 45S rDNA and transposable elements. Based on the FISH and Fiber-FISH patterns, it can be concluded that while 45S rDNA sequences are restricted to the subtelomeric regions, the 5S rDNA sequences are interspersed with transposons in the body of the B chromosome. These results have further enhanced our understanding of the organization and evolution of B chromosomes.
Collapse
Affiliation(s)
- G Kour
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | | | | |
Collapse
|
10
|
Amyotte SG, Tan X, Pennerman K, Jimenez-Gasco MDM, Klosterman SJ, Ma LJ, Dobinson KF, Veronese P. Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genomics 2012; 13:314. [PMID: 22800085 PMCID: PMC3441728 DOI: 10.1186/1471-2164-13-314] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions of transposable elements (TEs) have contributed to the generation of four lineage-specific (LS) regions in VdLs.17. Results We present here a detailed analysis of Class I retrotransposons and Class II “cut-and-paste” DNA elements detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the “cut-and-paste” superfamilies Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies, Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of repeat-induced point mutation (RIP) only in some of the Gypsy retroelements. While Copia-, Gypsy- and Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective “cut-and-paste” TEs were found in VaMs.102. Conclusions Copia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens V. dahliae and V. albo-atrum. In VdLs.17, we identified several retroelements and “cut-and-paste” transposons still potentially active. Some of these elements have undergone diversification and subsequent selective amplification after introgression into the fungal genome. Others, such as the ripped Copias, have been potentially acquired by horizontal transfer. The observed biased TE insertion in gene-rich regions within an individual genome (VdLs.17) and the “patchy” distribution among different strains point to the mobile elements as major generators of Verticillium intra- and inter-specific genomic variation.
Collapse
|
11
|
Genome-wide comparative analysis of pogo-like transposable elements in different Fusarium species. J Mol Evol 2011; 73:230-43. [PMID: 22094890 DOI: 10.1007/s00239-011-9472-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
Abstract
The recent availability of genome sequences of four different Fusarium species offers the opportunity to perform extensive comparative analyses, in particular of repeated sequences. In a recent work, the overall content of such sequences in the genomes of three phylogenetically related Fusarium species, F. graminearum, F. verticillioides, and F. oxysporum f. sp. lycopersici has been estimated. In this study, we present an exhaustive characterization of pogo-like elements, named Fots, in four Fusarium genomes. Overall 10 Fot and two Fot-related miniature inverted-repeat transposable element families were identified, revealing a diversification of multiple lineages of pogo-like elements, some of which accompanied by a gain of introns. This analysis also showed that such elements are present in an unusual high proportion in the genomes of F. oxysporum f. sp. lycopersici and Nectria haematococca (anamorph F. solani f. sp. pisi) in contrast with most other fungal genomes in which retroelements are the most represented. Interestingly, our analysis showed that the most numerous Fot families all contain potentially active or mobilisable copies, thus conferring a mutagenic potential of these transposable elements and consequently a role in strain adaptation and genome evolution. This role is strongly reinforced when examining their genomic distribution which is clearly biased with a high proportion (more than 80%) located on strain- or species-specific regions enriched in genes involved in pathogenicity and/or adaptation. Finally, the different reproductive characteristics of the four Fusarium species allowed us to investigate the impact of the process of repeat-induced point mutations on the expansion and diversification of Fot elements.
Collapse
|
12
|
Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. EUKARYOTIC CELL 2009; 8:1732-8. [PMID: 19749175 DOI: 10.1128/ec.00135-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tomato pathotype of Alternaria alternata produces host-specific AAL toxin and causes Alternaria stem canker on tomato. A polyketide synthetase (PKS) gene, ALT1, which is involved in AAL toxin biosynthesis, resides on a 1.0-Mb conditionally dispensable chromosome (CDC) found only in the pathogenic and AAL toxin-producing strains. Genomic sequences of ALT1 and another PKS gene, both of which reside on the CDC in the tomato pathotype strains, were compared to those of tomato pathotype strains collected worldwide. This revealed that the sequences of both CDC genes were identical among five A. alternata tomato pathotype strains having different geographical origins. On the other hand, the sequences of other genes located on chromosomes other than the CDC are not identical in each strain, indicating that the origin of the CDC might be different from that of other chromosomes in the tomato pathotype. Telomere fingerprinting and restriction fragment length polymorphism analyses of the A. alternata strains also indicated that the CDCs in the tomato pathotype strains were identical, although the genetic backgrounds of the strains differed. A hybrid strain between two different pathotypes was shown to harbor the CDCs derived from both parental strains with an expanded range of pathogenicity, indicating that CDCs can be transmitted from one strain to another and stably maintained in the new genome. We propose a hypothesis whereby the ability to produce AAL toxin and to infect a plant could potentially be distributed among A. alternata strains by horizontal transfer of an entire pathogenicity chromosome. This could provide a possible mechanism by which new pathogens arise in nature.
Collapse
|
13
|
Wang Y, Dou D, Wang X, Li A, Sheng Y, Hua C, Cheng B, Chen X, Zheng X, Wang Y. The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microb Pathog 2009; 47:78-86. [PMID: 19447167 DOI: 10.1016/j.micpath.2009.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 04/09/2009] [Accepted: 04/29/2009] [Indexed: 01/01/2023]
Abstract
The C(2)H(2) zinc finger proteins form one of the largest families of transcriptional regulators in eukaryotes. We identified a Phytophthora sojae C(2)H(2) zinc finger (PsCZF1), that is highly conserved in sequenced oomycete pathogens. In transformants of P. sojae containing the PsCZF1 promoter fused to the beta-glucuronidase (GUS) reporter gene, GUS activity was highly induced in the P. sojae oospore stage and upregulated after infection. To elucidate the function of PsCZF1, its expression was silenced by introducing anti-sense constructs into P sojae. PsCZF1-silenced transformants did not exhibit altered cell size or morphology of sporangia and hyphae; however, hyphal growth rate was reduced by around 50% in the mutants. PsCZF1-deficient mutants were also impaired in production of oospores, swimming zoospores and germinating cysts, indicating that the gene is involved in various stages of the life cycle. Furthermore, we found that PsCZF1-deficient mutants lost virulence on host soybean cultivars. Our results suggest that this oomycete-specific C(2)H(2)-type zinc finger protein plays an important role in growth, development, and pathogenesis; therefore, PsCZF1 might be an attractive oomycete-specific target for chemical fungicide screening.
Collapse
Affiliation(s)
- Yonglin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ogasawara H, Obata H, Hata Y, Takahashi S, Gomi K. Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genet Biol 2009; 46:441-9. [DOI: 10.1016/j.fgb.2009.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
15
|
Harimoto Y, Hatta R, Kodama M, Yamamoto M, Otani H, Tsuge T. Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the apple pathotype of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1463-1476. [PMID: 17990954 DOI: 10.1094/mpmi-20-12-1463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The apple pathotype of Alternaria alternata produces host-specific AM-toxin and causes Alternaria blotch of apple. Previously, we cloned two genes, AMT1 and AMT2, required for AM-toxin biosynthesis and found that these genes are encoded by small, supernumerary chromosomes of <1.8 Mb in the apple pathotype strains. Here, we performed expressed sequence tag analysis of the 1.4-Mb chromosome encoding AMT genes in strain IFO8984. A cDNA library was constructed using RNA from AM-toxin-producing cultures. A total of 40,980 clones were screened with the 1.4-Mb chromosome probe, and 196 clones encoded by the chromosome were isolated. Sequence analyses of these clones identified 80 unigenes, including AMT1 and AMT2, and revealed that the functions of 43 (54%) genes are unknown. The expression levels of the 80 genes in AM-toxin-producing and nonproducing cultures were analyzed by real-time quantitative polymerase chain reaction (PCR). Most of the genes were found to be expressed in both cultures at markedly lower levels than the translation elongation factor 1-alpha gene used as an internal control. Comparison of the expression levels of these genes between two cultures showed that 21 genes, including AMT1 and AMT2, were upregulated (>10-fold) in AM-toxin-producing cultures. Two of the upregulated genes were newly identified to be involved in AM-toxin biosynthesis by the gene disruption experiments and were named AMT3 and AMT4. Thus, the genes upregulated in AM-toxin-producing cultures contain ideal candidates for novel AM-toxin biosynthetic genes.
Collapse
Affiliation(s)
- Yoshiaki Harimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Fávaro LCDL, Araújo WLD, Azevedo JLD, Paccola-Meirelles LD. The biology and potential for genetic research of transposable elements in filamentous fungi. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000500024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Ito K, Tanaka T, Hatta R, Yamamoto M, Akimitsu K, Tsuge T. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Mol Microbiol 2004; 52:399-411. [PMID: 15066029 DOI: 10.1111/j.1365-2958.2004.04004.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce different host-specific toxins and cause diseases on different plants. The strawberry pathotype produces host-specific AF-toxin and causes Alternaria black spot of strawberry. This pathotype is also pathogenic to Japanese pear cultivars susceptible to the Japanese pear pathotype that produces AK-toxin. The strawberry pathotype produces two related molecular species, AF-toxins I and II: toxin I is toxic to both strawberry and pear, and toxin II is toxic only to pear. Previously, we isolated a cosmid clone pcAFT-1 from the strawberry pathotype that contains three genes involved in AF-toxin biosynthesis. Here, we have identified a new gene, designated AFTS1, from pcAFT-1. AFTS1 encodes a protein with similarity to enzymes of the aldo-ketoreductase superfamily. Targeted mutation of AFTS1 diminished the host range of the strawberry pathotype: Delta aftS1 mutants were pathogenic to pear, but not to strawberry, as is the Japanese pear pathotype. These mutants were found to produce AF-toxin II, but not AF-toxin I. These data represent a novel example of how the host range of a plant pathogenic fungus can be restricted by modification of secondary metabolism.
Collapse
Affiliation(s)
- Kaoru Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The past 10 years have been productive in the characterization of fungal transposable elements (TEs). All eukaryotic TEs described are found including an extraordinary prevalence of active members of the pogo family. The role of TEs in mutation and genome organization is well documented, leading to significant advances in our perception of the mechanisms underlying genetic changes in these organisms. TE-mediated changes, associated with transposition and recombination, provide a broad range of genetic variation, which is useful for natural populations in their adaptation to environmental constraints, especially for those lacking the sexual stage. Interestingly, some fungal species have evolved distinct silencing mechanisms that are regarded as host defense systems against TEs. The examination of forces acting on the evolutionary dynamics of TEs should provide important insights into the interactions between TEs and the fungal genome. Another issue of major significance is the practical applications of TEs in gene tagging and population analysis, which will undoubtedly facilitate research in systematic biology and functional genomics.
Collapse
Affiliation(s)
- Marie-Josée Daboussi
- Institut de Génétique et Microbiologie, Université Paris-Sud, F-91405 Orsay cedex, France.
| | | |
Collapse
|
19
|
Liu X, Inlow M, VanEtten HD. Expression profiles of pea pathogenicity ( PEP) genes in vivo and in vitro, characterization of the flanking regions of the PEP cluster and evidence that the PEP cluster region resulted from horizontal gene transfer in the fungal pathogen Nectria haematococca. Curr Genet 2003; 44:95-103. [PMID: 12925899 DOI: 10.1007/s00294-003-0428-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Revised: 06/30/2003] [Accepted: 07/05/2003] [Indexed: 11/25/2022]
Abstract
A cluster of pathogenicity genes ( PEP1, PEP2, PDA1, PEP5), termed the pea pathogenicity ( PEP) cluster and located on a 1.6-Mb conditionally dispensable (CD) chromosome, was identified in the fungal pathogen Nectria haematococca. Studies determined that the expression of PDA1 is induced in both infected pea tissues and in vitro by the phytoalexin pisatin. The present study reports the use of real-time quantitative RT-PCR to monitor the expression of each PEP gene and PDA1. In mycelia actively growing in culture, the mRNA levels of PEP1, PEP5 and PDA1 were very low and the PEP2 transcript was undetectable. In planta, PDA1 and PEP2 were strongly induced, while PEP1 and PEP5 were moderately induced. Starvation slightly enhanced the expression of PEP1, PDA1 and PEP5, while the expression of PEP2 remained undetectable. Exposure to pisatin in culture stimulated the expression of PDA1 and each PEP gene to a similar level as occurred in planta. In addition, all four pathogenicity genes displayed similar temporal patterns of expression in planta and in vitro, consistent with a coordinated regulation of these genes by pisatin during pea pathogenesis. In the flanking regions of the PEP cluster, six open reading frames (ORFs) were identified and all were expressed during infection of pea. Comparison of the codon preferences of these ORFs and seven additional genes from CD chromosomes with the codon preferences of 21 genes from other chromosomes revealed there is a codon bias that correlates with the source of the genes. This difference in codon bias is consistent with the hypothesis that genes on the CD chromosome have a different origin from genes of normal chromosomes, suggesting that horizontal gene transfer may have played a role in the evolution of pathogenesis in N. haematococca.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Plant Pathology, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
20
|
Chuma I, Tosa Y, Taga M, Nakayashiki H, Mayama S. Meiotic behavior of a supernumerary chromosome in Magnaporthe oryzae. Curr Genet 2003; 43:191-8. [PMID: 12764669 DOI: 10.1007/s00294-003-0390-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Revised: 01/23/2003] [Accepted: 02/25/2003] [Indexed: 11/24/2022]
Abstract
A 1.2-Mb DNA band from an isolate of Magnaporthe oryzae was detected in a pulsed-field gel. A chromosomal entity corresponding to this band was observed at the mitotic metaphase stage. This minichromosome, carrying many transposable elements and two telomeres, was transmitted to ascosporic F(1) cultures in a non-Mendelian manner with frequent changes in its size and number. Segregation analysis with RFLP markers indicated that the minichromosome underwent structural rearrangements, such as deletion and duplication, not only during meiosis but also after meiosis. An ectopic sister chromatid recombination may cause the size variation of the minichromosomes.
Collapse
Affiliation(s)
- I Chuma
- Faculty of Agriculture, Kobe University, 657-8501 Kobe, Japan
| | | | | | | | | |
Collapse
|
21
|
Kito H, Takahashi Y, Sato J, Fukiya S, Sone T, Tomita F. Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. Curr Genet 2003; 42:322-31. [PMID: 12612805 DOI: 10.1007/s00294-002-0365-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Revised: 11/29/2002] [Accepted: 12/04/2002] [Indexed: 10/26/2022]
Abstract
We investigated a DNA fragment and its flanking region deleted in the spontaneous Pi-a virulent mutant of Magnaporthe grisea Ina168. A new transposon-like sequence was identified from a region adjacent to the deleted fragment and was named Occan. Occan contained a 2,259-bp ORF interrupted by one 63-bp intron and had both a TA dinucleotide and 77 bp of perfect inverted repeats at both termini, without direct repeats. These features indicated that Occan is a member of the Fot1 family. RT-PCR analysis confirmed the expression of the putative transposase and the presence of an intron. Southern analysis of pulse-field gel electrophoresis-separated chromosomes indicated that Occan was dispersed in all chromosomes of the rice pathogen, Ina168. Copy numbers of Occan were also preserved in a host-specific manner amongst M. grisea isolates. In particular, rice pathogens contained a large number of the element inserted into their genome. Phylogenetic analysis with other known members of the Fot1 family revealed that Occan was dissimilar to any other known elements and it is thus proposed that Occan be separated to a new subfamily.
Collapse
Affiliation(s)
- Hideki Kito
- Laboratory of Applied Microbiology, Department of Molecular Bioscience, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, 060-8589, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 2002; 161:59-70. [PMID: 12019223 PMCID: PMC1462115 DOI: 10.1093/genetics/161.1.59] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce host-specific toxins and cause diseases on different plants. Previously, the gene cluster involved in host-specific AK-toxin biosynthesis of the Japanese pear pathotype was isolated, and four genes, named AKT genes, were identified. The AKT homologs were also found in the strawberry and tangerine pathotypes, which produce AF-toxin and ACT-toxin, respectively. This result is consistent with the fact that the toxins of these pathotypes share a common 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid structural moiety. In this study, three of the AKT homologs (AFT1-1, AFTR-1, and AFT3-1) were isolated on a single cosmid clone from strain NAF8 of the strawberry pathotype. In NAF8, all of the AKT homologs were present in multiple copies on a 1.05-Mb chromosome. Transformation-mediated targeting of AFT1-1 and AFT3-1 in NAF8 produced AF-toxin-minus, nonpathogenic mutants. All of the mutants lacked the 1.05-Mb chromosome encoding the AFT genes. This chromosome was not essential for saprophytic growth of this pathogen. Thus, we propose that a conditionally dispensable chromosome controls host-specific pathogenicity of this pathogen.
Collapse
Affiliation(s)
- Rieko Hatta
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kelkar HS, Griffith J, Case ME, Covert SF, Hall RD, Keith CH, Oliver JS, Orbach MJ, Sachs MS, Wagner JR, Weise MJ, Wunderlich JK, Arnold J. The Neurospora crassa genome: cosmid libraries sorted by chromosome. Genetics 2001; 157:979-90. [PMID: 11238388 PMCID: PMC1461552 DOI: 10.1093/genetics/157.3.979] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A Neurospora crassa cosmid library of 12,000 clones (at least nine genome equivalents) has been created using an improved cosmid vector pLorist6Xh, which contains a bacteriophage lambda origin of replication for low-copy-number replication in bacteria and the hygromycin phosphotransferase marker for direct selection in fungi. The electrophoretic karyotype of the seven chromosomes comprising the 42.9-Mb N. crassa genome was resolved using two translocation strains. Using gel-purified chromosomal DNAs as probes against the new cosmid library and the commonly used medium-copy-number pMOcosX N. crassa cosmid library in two independent screenings, the cosmids were assigned to chromosomes. Assignments of cosmids to linkage groups on the basis of the genetic map vs. the electrophoretic karyotype are 93 +/- 3% concordant. The size of each chromosome-specific subcollection of cosmids was found to be linearly proportional to the size of the particular chromosome. Sequencing of an entire cosmid containing the qa gene cluster indicated a gene density of 1 gene per 4 kbp; by extrapolation, 11,000 genes would be expected to be present in the N. crassa genome. By hybridizing 79 nonoverlapping cosmids with an average insert size of 34 kbp against cDNA arrays, the density of previously characterized expressed sequence tags (ESTs) was found to be slightly <1 per cosmid (i.e., 1 per 40 kbp), and most cosmids, on average, contained an identified N. crassa gene sequence as a starting point for gene identification.
Collapse
Affiliation(s)
- H S Kelkar
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Han Y, Liu X, Benny U, Kistler HC, VanEtten HD. Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:305-14. [PMID: 11208022 DOI: 10.1046/j.1365-313x.2001.00969.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three genes that contribute to the ability of the fungus Nectria haematococca to cause disease on pea plants have been identified. These pea pathogenicity (PEP) genes are within 25 kb of each other and are located on a supernumerary chromosome. Altogether, the PEP gene cluster contains six transcriptional units that are expressed during infection of pea tissue. The biochemical function of only one of the genes is known with certainty. This gene, PDA1, encodes a specific cytochrome P450 that confers resistance to pisatin, an antibiotic produced by pea plants. The three new PEP genes, in addition to PDA1, can independently increase the ability of the fungus to cause lesions on pea when added to an isolate lacking the supernumerary chromosome. Based on predicted amino acid sequences, functions for two of these three genes are hypothesized. The deduced amino acid sequence of another transcribed portion of the PEP cluster, as well as four other open reading frames in the cluster, have a high degree of similarity to known fungal transposases. Several of the features of the PEP cluster -- a cluster of pathogenicity genes, the presence of transposable elements, and differences in codon usage and GC content from other portions of the genome -- are shared by pathogenicity islands in pathogenic bacteria of plants and animals.
Collapse
Affiliation(s)
- Y Han
- Graduate Program in Plant Molecular and Cellular Biology, Plant Pathology Department, University of Florida, Gainesville, FL 32611-0680, USA
| | | | | | | | | |
Collapse
|
25
|
Rosewich UL, Kistler HC. Role of Horizontal Gene Transfer in the Evolution of Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:325-363. [PMID: 11701846 DOI: 10.1146/annurev.phyto.38.1.325] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although evidence for horizontal gene transfer (HGT) in eukaryotes remains largely anecdotal, literature on HGT in fungi suggests that it may have been more important in the evolution of fungi than in other eukaryotes. Still, HGT in fungi has not been widely accepted because the mechanisms by which it may occur are unknown, because it is usually not directly observed but rather implied as an outcome, and because there are often equally plausible alternative explanations. Despite these reservations, HGT has been justifiably invoked for a variety of sequences including plasmids, introns, transposons, genes, gene clusters, and even whole chromosomes. In some instances HGT has also been confirmed under experimental conditions. It is this ability to address the phenomenon in an experimental setting that makes fungi well suited as model systems in which to study the mechanisms and consequences of HGT in eukaryotic organisms.
Collapse
Affiliation(s)
- U Liane Rosewich
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| |
Collapse
|
26
|
Enkerli J, Reed H, Briley A, Bhatt G, Covert SF. Physical map of a conditionally dispensable chromosome in Nectria haematococca mating population VI and location of chromosome breakpoints. Genetics 2000; 155:1083-94. [PMID: 10880471 PMCID: PMC1461165 DOI: 10.1093/genetics/155.3.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Certain isolates of the plant pathogenic fungus Nectria haematococca mating population (MP) VI contain a 1.6-Mb conditionally dispensable (CD) chromosome carrying the phytoalexin detoxification genes MAK1 and PDA6-1. This chromosome is structurally unstable during sexual reproduction. As a first step in our analysis of the mechanisms underlying this chromosomal instability, hybridization between overlapping cosmid clones was used to construct a map of the MAK1 PDA6-1 chromosome. The map consists of 33 probes that are linked by 199 cosmid clones. The polymerase chain reaction and Southern analysis of N. haematococca MP VI DNA digested with infrequently cutting restriction enzymes were used to close gaps and order the hybridization-derived contigs. Hybridization to a probe extended from telomeric repeats was used to anchor the ends of the map to the actual chromosome ends. The resulting map is estimated to cover 95% of the MAK1 PDA6-1 chromosome and is composed of two ordered contigs. Thirty-eight percent of the clones in the minimal map are known to contain repeated DNA sequences. Three dispersed repeats were cloned during map construction; each is present in five to seven copies on the chromosome. The cosmid clones representing the map were probed with deleted forms of the CD chromosome and the results were integrated into the map. This allowed the identification of chromosome breakpoints and deletions.
Collapse
Affiliation(s)
- J Enkerli
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
27
|
Dioh W, Tharreau D, Notteghem JL, Orbach M, Lebrun MH. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:217-227. [PMID: 10659712 DOI: 10.1094/mpmi.2000.13.2.217] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.
Collapse
Affiliation(s)
- W Dioh
- Génétique Moléculaire des Champignons Phytopathogènes, Institut de Génétique et Microbiologie, CNRS-URA 2255, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
28
|
Taga M, Murata M, VanEtten HD. Visualization of a conditionally dispensable chromosome in the filamentous ascomycete Nectria haematococca by fluorescence in situ hybridization. Fungal Genet Biol 1999; 26:169-77. [PMID: 10361031 DOI: 10.1006/fgbi.1999.1123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supernumerary chromosomes, termed "conditionally dispensable" (CD) chromosomes, are known in Nectria haematococca. Because these CD chromosomes had been revealed solely by pulsed-field gel electrophoresis, their morphological properties were unknown. In this study, we visualized a 1.6-Mb CD chromosome of this fungus by three different types of fluorescence in situ hybridization. The CD chromosome at mitotic metaphase was similar in its appearance to the other chromosomes in the genome. Heterochromatic condensation was not distinct in the CD chromosome, suggesting that it is primarily euchromatic. It was also evident that the CD chromosome is unique and not a duplicate of other chromosomes in the genome. At interphase and prophase, the CD chromosome was not dispersed throughout the nucleus, but occupied a limited domain. Occasionally, occurrence of two distinct unattached copies of the CD chromosome were observed during interphase and metaphase.
Collapse
Affiliation(s)
- M Taga
- Faculty of Science, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan.
| | | | | |
Collapse
|
29
|
Abstract
Transposons are ubiquitous genetic elements discovered so far in all investigated prokaryotes and eukaryotes. In remarkable contrast to all other genes, transposable elements are able to move to new locations within their host genomes. Transposition of transposons into coding sequences and their initiation of chromosome rearrangements have tremendous impact on gene expression and genome evolution. While transposons have long been known in bacteria, plants, and animals, only in recent years has there been a significant increase in the number of transposable elements discovered in filamentous fungi. Like those of other eukaryotes, each fungal transposable element is either of class or of class II. While class I elements transpose by a RNA intermediate and employ reverse transcriptases, class II elements transpose directly at the DNA level. We present structural and functional features for such transposons that have been identified so far in filamentous fungi. Emphasis is given to specific advantages or unique features when fungal systems are used to study transposable elements, e.g., the evolutionary impact of transposons in coenocytic organisms and possible experimental approaches toward horizontal gene transfer. Finally, we focus on the potential of transposons for tagging and identifying fungal genes.
Collapse
Affiliation(s)
- F Kempken
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
30
|
Margolin BS, Garrett-Engele PW, Stevens JN, Fritz DY, Garrett-Engele C, Metzenberg RL, Selker EU. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation. Genetics 1998; 149:1787-97. [PMID: 9691037 PMCID: PMC1460257 DOI: 10.1093/genetics/149.4.1787] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In an analysis of 22 of the roughly 100 dispersed 5S rRNA genes in Neurospora crassa, a methylated 5S rRNA pseudogene, Psi63, was identified. We characterized the Psi63 region to better understand the control and function of DNA methylation. The 120-bp 5S rRNA-like region of Psi63 is interrupted by a 1.9-kb insertion that has characteristics of sequences that have been modified by repeat-induced point mutation (RIP). We found sequences related to this insertion in wild-type strains of N. crassa and other Neurospora species. Most showed evidence of RIP; but one, isolated from the N. crassa host of Psi63, showed no evidence of RIP. A deletion from near the center of this sequence apparently rendered it incapable of participating in RIP with the related full-length copies. The Psi63 insertion and the related sequences have features of transposons and are related to the Fot1 class of fungal transposable elements. Apparently Psi63 was generated by insertion of a previously unrecognized Neurospora transposable element into a 5S rRNA gene, followed by RIP. We name the resulting inactivated Neurospora transposon PuntRIP1 and the related sequence showing no evidence of RIP, but harboring a deletion that presumably rendered it defective for transposition, dPunt.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA Primers/genetics
- DNA Transposable Elements
- DNA, Fungal/genetics
- Genes, Fungal
- Methylation
- Molecular Sequence Data
- Neurospora crassa/chemistry
- Neurospora crassa/genetics
- Point Mutation
- Pseudogenes
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- B S Margolin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | | | | | |
Collapse
|