1
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
2
|
Matveeva T, Otten L. Opine biosynthesis in naturally transgenic plants: Genes and products. PHYTOCHEMISTRY 2021; 189:112813. [PMID: 34192603 DOI: 10.1016/j.phytochem.2021.112813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The plant pathogen Agrobacterium transfers DNA into plant cells by a specific transfer mechanism. Expression of this transferred DNA or T-DNA leads to crown gall tumors or abnormal, hairy roots and the synthesis of specific compounds, called opines. Opines are produced from common plant metabolites like sugars, amino acids and α-keto acids, which are combined into different low molecular weight structures by T-DNA-encoded opine synthase enzymes. Opines can be converted back by Agrobacterium into the original metabolites and used for agrobacterial growth. Recently it has been discovered that about 7% of Angiosperms carry T-DNA-like sequences. These result from ancient Agrobacterium transformation events, followed by spontaneous regeneration of transformed cells into natural genetically transformed organisms (nGMOs). Nearly all nGMOs identified up to date carry opine synthesis genes, several of these are intact and potentially encode opine synthesis. So far, only tobacco and cuscuta have been demonstrated to contain opines. Whereas opines from crown gall and hairy root tissues have been studied for over 60 years, those from the nGMOs remain to be explored.
Collapse
Affiliation(s)
- Tatiana Matveeva
- St. Petersburg State University, University Emb., 7/9, Saint Petersburg, Russia.
| | - Léon Otten
- Institute of Plant Molecular Biology, C.N.R.S, 67084, Strasbourg, France.
| |
Collapse
|
3
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
4
|
Chandrasekaran M, Lee JM, Ye BM, Jung SM, Kim J, Kim JW, Chun SC. Isolation and Characterization of Avirulent and Virulent Strains of Agrobacterium tumefaciens from Rose Crown Gall in Selected Regions of South Korea. PLANTS (BASEL, SWITZERLAND) 2019; 8:E452. [PMID: 31731525 PMCID: PMC6918265 DOI: 10.3390/plants8110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 01/22/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease in various hosts across kingdoms. In the present study, five regions (Wonju, Jincheon, Taean, Suncheon, and Kimhae) of South Korea were chosen to isolate A. tumefaciens strains on roses and assess their opine metabolism (agrocinopine, nopaline, and octopine) genes based on PCR amplification. These isolated strains were confirmed as Agrobacterium using morphological, biochemical, and 16S rDNA analyses; and pathogenicity tests, including the growth characteristics of the white colony appearance on ammonium sulfate glucose minimal media, enzyme activities, 16S rDNA sequence alignment, and pathogenicity on tomato (Solanum lycopersicum). Carbon utilization, biofilm formation, tumorigenicity, and motility assays were performed to demarcate opine metabolism genes. Of 87 isolates, 18 pathogenic isolates were affirmative for having opine plasmid genes. Most of these isolates showed the presence of an agrocinopine type of carbon utilization. Two isolates showed nopaline types. However, none of these isolates showed octopine metabolic genes. The objectives of the present study were to isolate and confirm virulent strains from rose crown galls grown in the different regions of Korea and characterize their physiology and opine types. This is the first report to describe the absence of the octopine type inciting the crown gall disease of rose in South Korea.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea;
| | - Jong Moon Lee
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - Bee-Moon Ye
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - So Mang Jung
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - Jinwoo Kim
- Institute of Agriculture & Life Science and Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jin-Won Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea;
| | - Se Chul Chun
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| |
Collapse
|
5
|
Wang YC, Yu M, Shih PY, Wu HY, Lai EM. Stable pH Suppresses Defense Signaling and is the Key to Enhance Agrobacterium-Mediated Transient Expression in Arabidopsis Seedlings. Sci Rep 2018; 8:17071. [PMID: 30459348 PMCID: PMC6244089 DOI: 10.1038/s41598-018-34949-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
Agrobacterium-mediated transient expression is a powerful analysis platform for diverse plant gene functional studies, but the mechanisms regulating the expression or transformation levels are poorly studied. Previously, we developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST, for Arabidopsis seedlings. In this study, we found that AGROBEST could promote the growth of agrobacteria as well as inhibit the host immunity response. When the factor of agrobacterial growth is minimized, maintaining pH at 5.5 with MES buffer was the key to achieving optimal transient expression efficiency. The expression of plant immunity marker genes, FRK1 and NHL10, was suppressed in the pH-buffered medium as compared with non-buffered conditions in Col-0 and an efr-1 mutant lacking the immunity receptor EFR recognizing EF-Tu, a potent pathogen- or microbe-associated molecular pattern (PAMP or MAMP) of A. tumefaciens. Notably, such immune suppression could also occur in Arabidopsis seedlings without Agrobacterium infection. Furthermore, the PAMP-triggered influx of calcium ions was compromised in the pH-buffered medium. We propose that the enhanced transient expression efficiency by stable pH was due to inhibiting calcium ion uptake and subsequently led to suppressing immunity against Agrobacterium.
Collapse
Affiliation(s)
- Yi-Chieh Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Yuan Shih
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Hung-Yi Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan.
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
6
|
Shao S, Zhang X, van Heusden GPH, Hooykaas PJJ. Complete sequence of the tumor-inducing plasmid pTiChry5 from the hypervirulent Agrobacterium tumefaciens strain Chry5. Plasmid 2018; 96-97:1-6. [PMID: 29427647 DOI: 10.1016/j.plasmid.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/16/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Agrobacterium tumefaciens strain Chry5 is hypervirulent on many plants including soybean that are poorly transformed by other A. tumefaciens strains. Therefore, it is considered as a preferred vector for genetic transformation of plants. Here we report the complete nucleotide sequence of its chrysopine-type Ti-plasmid pTiChry5. It is comprised of 197,268 bp with an overall GC content of 54.5%. Two T-DNA regions are present and 219 putative protein-coding sequences could be identified in pTiChry5. Roughly one half of the plasmid is highly similar to the agropine-type Ti plasmid pTiBo542, including the virulence genes with an identical virG gene, which is responsible for the supervirulence caused by pTiBo542. The remaining part of pTiChry5 is less related to that of pTiBo542 and embraces the trb operon of conjugation genes, genes involved in the catabolism of Amadori opines and the gene for chrysopine synthase, which replaces the gene for agropine synthase in pTiBo542. With the exception of an insertion of IS869, these Ti plasmids differ completely in the set of transposable elements present, reflecting a different evolutionary history from a common ancestor.
Collapse
Affiliation(s)
- Shuai Shao
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, Netherlands
| | - Xiaorong Zhang
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, Netherlands
| | - G Paul H van Heusden
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, Netherlands
| | - Paul J J Hooykaas
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, Netherlands.
| |
Collapse
|
7
|
Sardesai N, Subramanyam S. Agrobacterium: A Genome-Editing Tool-Delivery System. Curr Top Microbiol Immunol 2018; 418:463-488. [PMID: 30043343 DOI: 10.1007/82_2018_101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the rapidly increasing global population, it will be extremely challenging to provide food to the world without increasing food production by at least 70% over the next 30 years. As we reach the limits of expanding arable land, the responsibility of meeting this production goal will rely on increasing yields. Traditional plant breeding practices will not be able to realistically meet these expectations, thrusting plant biotechnology into the limelight to fulfill these needs. Better varieties will need to be developed faster and with the least amount of regulatory hurdles. With the need to add, delete, and substitute genes into existing genomes, the field of genome editing and gene targeting is now rapidly developing with numerous new technologies coming to the forefront. Agrobacterium-mediated crop transformation has been the most utilized method to generate transgenic varieties that are better yielding, have new traits, and are disease and pathogen resistant. Genome-editing technologies rely on the creation of double-strand breaks (DSBs) in the genomic DNA of target species to facilitate gene disruption, addition, or replacement through either non-homologous end joining or homology-dependent repair mechanisms. DSBs can be introduced through the use of zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or clustered regularly interspersed short palindromic repeats (CRISPR)/Cas nucleases, among others. Agrobacterium strains have been employed to deliver the reagents for genome editing to the specific target cells. Understanding the biology of transformation from the perspective not only of Agrobacterium, but also of the host, from processing of T-DNA to its integration in the host genome, has resulted in a wealth of information that has been used to engineer Agrobacterium strains having increased virulence. As more technologies are being developed, that will help overcome issues of Agrobacterium host range and random integration of DNA, combined with highly sequence-specific nucleases, a robust crop genome-editing toolkit finally seems attainable.
Collapse
Affiliation(s)
- Nagesh Sardesai
- Corteva Agriscience™, Agriculture Division of DowDuPont, 8305 NW 62nd Avenue, Johnston, IA, USA.
| | - Subhashree Subramanyam
- Department of Agronomy, Purdue University, 915 W State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
9
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
10
|
Chen K, de Borne FD, Julio E, Obszynski J, Pale P, Otten L. Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:258-69. [PMID: 27125327 DOI: 10.1111/tpj.13196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 05/21/2023]
Abstract
Previous studies have shown that Nicotiana tabacum contains three Agrobacterium-derived T-DNA sequences inherited from its paternal ancestor Nicotiana tomentosiformis. Among these, the TB locus carries an intact mannopine synthase 2' gene (TB-mas2'). This gene is similar to the Agrobacterium rhizogenes A4-mas2' gene that encodes the synthesis of the Amadori compound deoxyfructosyl-glutamine (DFG or santhopine). In this study we show that TB-mas2' is expressed at very low levels in N. tomentosiformis and in most N. tabacum cultivars; however, some cultivars show high TB-mas2' expression levels. The TB-mas2' promoter sequences of low- and high-expressing cultivars are identical. The low/high level of expression segregates as a single Mendelian factor in a cross between a low- and a high-expression cultivar. pTB-mas2'-GUS and pA4-mas2'-GUS reporter genes were stably introduced in N. benthamiana. Both were mainly expressed in the root expansion zone and leaf vasculature. Roots of tobacco cultivars with high TB-mas2' expression contain detectable levels of DFG.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, Strasbourg, 67084, France
| | | | - Emilie Julio
- Imperial Tobacco Bergerac, La Tour, Bergerac, 24100, France
| | - Julie Obszynski
- Laboratoire de synthèse, réactivité organiques et catalyse, Institut de Chimie, UMR 7177, Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg, 67070, France
| | - Patrick Pale
- Laboratoire de synthèse, réactivité organiques et catalyse, Institut de Chimie, UMR 7177, Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg, 67070, France
| | - Léon Otten
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, Strasbourg, 67084, France.
| |
Collapse
|
11
|
Scully ED, Gries T, Sarath G, Palmer NA, Baird L, Serapiglia MJ, Dien BS, Boateng AA, Ge Z, Funnell-Harris DL, Twigg P, Clemente TE, Sattler SE. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:378-95. [PMID: 26712107 DOI: 10.1111/tpj.13112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 05/05/2023]
Abstract
The phenylpropanoid biosynthetic pathway that generates lignin subunits represents a significant target for altering the abundance and composition of lignin. The global regulators of phenylpropanoid metabolism may include MYB transcription factors, whose expression levels have been correlated with changes in secondary cell wall composition and the levels of several other aromatic compounds, including anthocyanins and flavonoids. While transcription factors correlated with downregulation of the phenylpropanoid biosynthesis pathway have been identified in several grass species, few transcription factors linked to activation of this pathway have been identified in C4 grasses, some of which are being developed as dedicated bioenergy feedstocks. In this study we investigated the role of SbMyb60 in lignin biosynthesis in sorghum (Sorghum bicolor), which is a drought-tolerant, high-yielding biomass crop. Ectopic expression of this transcription factor in sorghum was associated with higher expression levels of genes involved in monolignol biosynthesis, and led to higher abundances of syringyl lignin, significant compositional changes to the lignin polymer and increased lignin concentration in biomass. Moreover, transgenic plants constitutively overexpressing SbMyb60 also displayed ectopic lignification in leaf midribs and elevated concentrations of soluble phenolic compounds in biomass. Results indicate that overexpression of SbMyb60 is associated with activation of monolignol biosynthesis in sorghum. SbMyb60 represents a target for modification of plant cell wall composition, with the potential to improve biomass for renewable uses.
Collapse
Affiliation(s)
- Erin D Scully
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Tammy Gries
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Gautam Sarath
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Nathan A Palmer
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Lisa Baird
- Department of Biology, Shiley Center for Science and Technology, University of San Diego, San Diego, CA, 92110, USA
| | - Michelle J Serapiglia
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Bruce S Dien
- National Center for Agricultural Utilization Research, USDA-ARS, 1815 North University Street, Peoria, IL, 61604, USA
| | - Akwasi A Boateng
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Deanna L Funnell-Harris
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Thomas E Clemente
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Scott E Sattler
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
12
|
Vladimirov IA, Matveeva TV, Lutova LA. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415020167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Guo X, Ge Z, Sato SJ, Clemente TE. Sorghum (Sorghum bicolor). Methods Mol Biol 2015; 1223:181-188. [PMID: 25300840 DOI: 10.1007/978-1-4939-1695-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Agrobacterium-mediated transformation of sorghum (Sorghum bicolor L. Moench) targeting immature embryo explants is a route to introduce transgenic alleles into the crop. The protocol requires maintenance of quality stock plants under greenhouse conditions for a constant supply of immature embryo explants. This is typically carried out by a regular sowing of seeds, minimal use of pesticides, and monitoring of plants to document pollen dispersal and bagging of heads. The time frame from explant inoculation to establishment of a primary transgenic event in the greenhouse typically ranges from 4 to 6 months. Seed set in the primary transformants is comparable to greenhouse-grown stock plants, with the majority of the transgenic alleles being inherited as a single functional locus.
Collapse
Affiliation(s)
- Xiaomei Guo
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, George W. Beadle Center, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE, 68588-0665, USA
| | | | | | | |
Collapse
|
14
|
Urriola J, Rathore KS. Overexpression of a glutamine synthetase gene affects growth and development in sorghum. Transgenic Res 2014; 24:397-407. [PMID: 25417185 DOI: 10.1007/s11248-014-9852-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/16/2014] [Indexed: 01/28/2023]
Abstract
Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.
Collapse
Affiliation(s)
- Jazmina Urriola
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843-2123, USA
| | | |
Collapse
|
15
|
Dwivedi KK, Roche DJ, Clemente TE, Ge Z, Carman JG. The OCL3 promoter from Sorghum bicolor directs gene expression to abscission and nutrient-transfer zones at the bases of floral organs. ANNALS OF BOTANY 2014; 114:489-98. [PMID: 25081518 PMCID: PMC4204675 DOI: 10.1093/aob/mcu148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/11/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS During seed fill in cereals, nutrients are symplasmically unloaded to vascular parenchyma in ovules, but thereafter nutrient transport is less certain. In Zea mays, two mechanisms of nutrient passage through the chalaza and nucellus have been hypothesized, apoplasmic and symplasmic. In a recent study, nutrients first passed non-selectively to the chalazal apoplasm and were then selectively absorbed by the nucellus before being released to the endosperm apoplasm. This study reports that the promoter of OUTER CELL LAYER3 (PSbOCL3) from Sorghum bicolor (sorghum) directs gene expression to chalazal cells where the apoplasmic barrier is thought to form. The aims were to elucidate PSbOCL3 expression patterns in sorghum and relate them to processes of nutrient pathway development in kernels and to recognized functions of the homeodomain-leucine zipper (HD-Zip) IV transcription factor family to which the promoter belongs. METHODS PSbOCL3 was cloned and transformed into sorghum as a promoter-GUS (β-glucuronidase) construct. Plant tissues from control and transformed plants were then stained for GUS, and kernels were cleared and characterized using differential interference contrast microscopy. KEY RESULTS A symplasmic disconnect between the chalaza and nucellus during seed fill is inferred by the combination of two phenomena: differentiation of a distinct nucellar epidermis adjacent to the chalaza, and lysis of GUS-stained chalazal cells immediately proximal to the nucellar epidermis. Compression of the GUS-stained chalazal cells during kernel maturation produced the kernel abscission zone (closing layer). CONCLUSIONS The results suggest that the HD-Zip IV transcription factor SbOCL3 regulates kernel nutrition and abscission. The latter is consistent with evidence that members of this transcription factor group regulate silique abscission and dehiscence in Arabidopsis thaliana. Collectively, the findings suggest that processes of floral organ abscission are conserved among angiosperms and may in some respects differ from processes of leaf abscission.
Collapse
Affiliation(s)
- Krishna K Dwivedi
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi (UP) 284003, India Plants, Soils and Climate Department, Utah State University, Logan, UT 84322-4820, USA
| | - Dominique J Roche
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA PhytoGen Seed Co. LLC, Western Research Station, 850 Plymouth Avenue, Corcoran, CA 93212, USA
| | - Tom E Clemente
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - John G Carman
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA Plants, Soils and Climate Department, Utah State University, Logan, UT 84322-4820, USA
| |
Collapse
|
16
|
Quorum-dependent mannopine-inducible conjugative transfer of an Agrobacterium opine-catabolic plasmid. J Bacteriol 2013; 196:1031-44. [PMID: 24363349 DOI: 10.1128/jb.01365-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ti plasmid in Agrobacterium tumefaciens strain 15955 carries two alleles of traR that regulate conjugative transfer. The first is a functional allele, called traR, that is transcriptionally induced by the opine octopine. The second, trlR, is a nonfunctional, dominant-negative mutant located in an operon that is inducible by the opine mannopine (MOP). Based on these findings, we predicted that there exist wild-type agrobacterial strains harboring plasmids in which MOP induces a functional traR and, hence, conjugation. We analyzed 11 MOP-utilizing field isolates and found five where MOP induced transfer of the MOP-catabolic element and increased production of the acyl-homoserine lactone (acyl-HSL) quormone. The transmissible elements in these five strains represent a set of highly related plasmids. Sequence analysis of one such plasmid, pAoF64/95, revealed that the 176-kb element is not a Ti plasmid but carries genes for catabolism of MOP, mannopinic acid (MOA), agropinic acid (AGA), and the agrocinopines. The plasmid additionally carries all of the genes required for conjugative transfer, including the regulatory genes traR, traI, and traM. The traR gene, however, is not located in the MOP catabolism region. The gene, instead, is monocistronic and located within the tra-trb-rep gene cluster. A traR mutant failed to transfer the plasmid and produced little to no quormone even when grown with MOP, indicating that TraRpAoF64/95 is the activator of the tra regulon. A traM mutant was constitutive for transfer and acyl-HSL production, indicating that the anti-activator function of TraM is conserved.
Collapse
|
17
|
Han ZF, Hunter DM, Sibbald S, Zhang JS, Tian L. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1359-65. [PMID: 24088018 DOI: 10.1094/mpmi-04-13-0106-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Agrobacterium tumefaciens has been widely used in plant genetic transformation. Hormone-encoding genes residing in the T-DNA region have been removed, resulting in disarmed Agrobacterium strains that are used in various transformation experiments. Nopaline Agrobacterium strains, however, carry another hormone gene, trans-zeatin synthesizing (tzs), that codes for trans-zeatin in the virulence region of the tumor-inducing plasmids. We investigated the activity and function of the tzs gene of a nopaline Agrobacterium sp. strain GV3101 in plant in vitro regeneration. Leaf explants of tobacco and Nicotiana benthamiana co-cultured with strain GV3101 exhibited active shoot regeneration in media without added plant growth regulators. On medium without plant growth regulators, transgenic shoots were also induced from explants co-cultured with GV3101 containing a binary vector. Enzyme-linked immunosorbent assay showed that cell-free extracts of Agrobacterium sp. strain GV3101 culture contained the trans-zeatin at 860 ng/liter. Polymerase chain reaction using tzs-specific primers showed that the tzs gene was present in strain GV3101 but not in other Agrobacterium strains. The study showed that the tzs gene in GV3101 was actively expressed, and that trans-zeatin produced in the Agrobacterium strain can promote plant shoot regeneration.
Collapse
|
18
|
Sakaguchi-Mikami A, Ferri S, Katayama S, Tsugawa W, Sode K. Identification and functional analysis of fructosyl amino acid-binding protein from Gram-positive bacterium Arthrobacter
sp. J Appl Microbiol 2013; 114:1449-56. [DOI: 10.1111/jam.12152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/26/2012] [Accepted: 01/20/2013] [Indexed: 01/16/2023]
Affiliation(s)
- A. Sakaguchi-Mikami
- Graduate School of Bionics; Computer and Media Sciences; Tokyo University of Technology; Hachioji Japan
| | - S. Ferri
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - S. Katayama
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - W. Tsugawa
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - K. Sode
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| |
Collapse
|
19
|
Bihmidine S, Lin J, Stone JM, Awada T, Specht JE, Clemente TE. Activity of the Arabidopsis RD29A and RD29B promoter elements in soybean under water stress. PLANTA 2013; 237:55-64. [PMID: 22983672 DOI: 10.1007/s00425-012-1740-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/05/2012] [Indexed: 05/26/2023]
Abstract
The constitutive and drought-induced activities of the Arabidopsis thaliana RD29A and RD29B promoters were monitored in soybean (Glycine max (L.) Merr.] via fusions with the visual marker gene β-glucuronidase (GUS). Physiological responses of soybean plants were monitored over 9 days of water deprivation under greenhouse conditions. Data were used to select appropriate time points to monitor the activities of the respective promoter elements. Qualitative and quantitative assays for GUS expression were conducted in root and leaf tissues, from plants under well-watered and dry-down conditions. Both RD29A and RD29B promoters were significantly activated in soybean plants subjected to dry-down conditions. However, a low level of constitutive promoter activity was also observed in both root and leaves of plants under well-watered conditions. GUS expression was notably higher in roots than in leaves. These observations suggest that the respective drought-responsive regulatory elements present in the RD29X promoters may be useful in controlling targeted transgenes to mitigate abiotic stress in soybean, provided the transgene under control of these promoters does not invoke agronomic penalties with leaky expression when no abiotic stress is imposed.
Collapse
Affiliation(s)
- Saadia Bihmidine
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kumar T, Dweikat I, Sato S, Ge Z, Nersesian N, Chen H, Elthon T, Bean S, Ioerger BP, Tilley M, Clemente T. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). PLANT BIOTECHNOLOGY JOURNAL 2012; 10:533-544. [PMID: 22353344 DOI: 10.1111/j.1467-7652.2012.00685.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sorghum prolamins, termed kafirins, are categorized into subgroups α, β, and γ. The kafirins are co-translationally translocated to the endoplasmic reticulum (ER) where they are assembled into discrete protein bodies that tend to be poorly digestible with low functionality in food and feed applications. As a means to address the issues surrounding functionality and digestibility in sorghum, we employed a biotechnology approach that is designed to alter protein body structure, with the concomitant synthesis of a co-protein in the endosperm fraction of the grain. Wherein perturbation of protein body architecture may provide a route to impact digestibility by reducing disulphide bonds about the periphery of the body, while synthesis of a co-protein, with known functionality attributes, theoretically could impact structure of the protein body through direct association and/or augment end-use applications of sorghum flour by stabilizing ß-sheet formation of the kafirins in sorghum dough preparations. This in turn may improve viscoelasticity of sorghum dough. To this end, we report here on the molecular and phenotypic characterizations of transgenic sorghum events that are down-regulated in γ- and the 29-kDa α-kafirins and the expression of a wheat Dy10/Dx 5 hybrid high-molecular weight glutenin protein. The results demonstrate that down-regulation of γ-kafirin alone does not alter protein body formation or impacts protein digestibility of cooked flour samples. However, reduction in accumulation of a predicted 29-kDa α-kafirin alters the morphology of protein body and enhances protein digestibility in both raw and cooked samples.
Collapse
Affiliation(s)
- Tejinder Kumar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lebedev VG, Schestibratov KA, Shadrina TE, Bulatova IV, Abramochkin DG, Miroshnikov AI. Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410110025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Construction of disarmed Ti plasmids transferable between Escherichia coli and Agrobacterium species. Appl Environ Microbiol 2009; 75:1845-51. [PMID: 19181833 DOI: 10.1128/aem.01856-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium-mediated plant transformation has been used widely, but there are plants that are recalcitrant to this type of transformation. This transformation method uses bacterial strains harboring a modified tumor-inducing (Ti) plasmid that lacks the transfer DNA (T-DNA) region (disarmed Ti plasmid). It is desirable to develop strains that can broaden the host range. A large number of Agrobacterium strains have not been tested yet to determine whether they can be used in transformation. In order to improve the disarming method and to obtain strains disarmed and ready for the plant transformation test, we developed a simple scheme to make certain Ti plasmids disarmed and simultaneously maintainable in Escherichia coli and mobilizable between E. coli and Agrobacterium. To establish the scheme in nopaline-type Ti plasmids, a neighboring segment to the left of the left border sequence, a neighboring segment to the right of the right border sequence of pTi-SAKURA, a cassette harboring the pSC101 replication gene between these two segments, the broad-host-range IncP-type oriT, and the gentamicin resistance gene were inserted into a suicide-type sacB-containing vector. Replacement of T-DNA with the cassette in pTiC58 and pTi-SAKURA occurred at a high frequency and with high accuracy when the tool plasmid was used. We confirmed that there was stable maintenance of the modified Ti plasmids in E. coli strain S17-1lambdapir and conjugal transfer from E. coli to Ti-less Agrobacterium strains and that the reconstituted Agrobacterium strains were competent to transfer DNA into plant cells. As the modified plasmid delivery system was simple and efficient, conversion of strains to the disarmed type was easy and should be applicable in studies to screen for useful strains.
Collapse
|
23
|
Veena. Engineering plants for future: tools and options. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:131-5. [PMID: 23572880 PMCID: PMC3550667 DOI: 10.1007/s12298-008-0012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The availability of efficient techniques for genetic engineering of plants across taxonomic boundaries is a must to address the challenges posed by the global growth of the human population. This will shorten the time and accelerate the entire process needed for inclusion of novel traits in plants with potential to increase agricultural productivity, improved nutritional quality as well as processing characteristics. This mini-review summarizes current understanding, latest advancements and comparisons of various methods used to date to generate transgenic plants with a special focus on the biological model of gene delivery into plants.
Collapse
Affiliation(s)
- Veena
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO USA
| |
Collapse
|
24
|
Abstract
The histidine phosphatase superfamily is a large functionally diverse group of proteins. They share a conserved catalytic core centred on a histidine which becomes phosphorylated during the course of the reaction. Although the superfamily is overwhelmingly composed of phosphatases, the earliest known and arguably best-studied member is dPGM (cofactor-dependent phosphoglycerate mutase). The superfamily contains two branches sharing very limited sequence similarity: the first containing dPGM, fructose-2,6-bisphosphatase, PhoE, SixA, TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator], Sts-1 and many other activities, and the second, smaller, branch composed mainly of acid phosphatases and phytases. Human representatives of both branches are of considerable medical interest, and various parasites contain superfamily members whose inhibition might have therapeutic value. Additionally, several phosphatases, notably the phytases, have current or potential applications in agriculture. The present review aims to draw together what is known about structure and function in the superfamily. With the benefit of an expanding set of histidine phosphatase superfamily structures, a clearer picture of the conserved elements is obtained, along with, conversely, a view of the sometimes surprising variation in substrate-binding and proton donor residues across the superfamily. This analysis should contribute to correcting a history of over- and mis-annotation in the superfamily, but also suggests that structural knowledge, from models or experimental structures, in conjunction with experimental assays, will prove vital for the future description of function in the superfamily.
Collapse
|
25
|
Lee LY, Gelvin SB. T-DNA binary vectors and systems. PLANT PHYSIOLOGY 2008; 146:325-32. [PMID: 18250230 PMCID: PMC2245830 DOI: 10.1104/pp.107.113001] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/25/2007] [Indexed: 05/22/2023]
Affiliation(s)
- Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
26
|
Howe A, Sato S, Dweikat I, Fromm M, Clemente T. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. PLANT CELL REPORTS 2006; 25:784-91. [PMID: 16528567 DOI: 10.1007/s00299-005-0081-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/06/2005] [Accepted: 09/26/2005] [Indexed: 05/07/2023]
Abstract
A rapid and reproducible Agrobacterium-mediated transformation protocol for sorghum has been developed. The protocol uses the nptII selectable marker gene with either of the aminoglycosides geneticin or paromomycin. A screen of various A. tumefaciens strains revealed that a novel C58 nopaline chromosomal background carrying the chrysanthopine disarmed Ti plasmid pTiKPSF(2), designated NTL(4)/Chry5, was most efficient for gene transfer to sorghum immature embryos. A NTL(4)/Chry5 transconjugant harboring the pPTN290 binary plasmid, which carries nptII and GUSPlus expression cassettes, was used in a series of stable transformation experiments with Tx430 and C2-97 sorghum genotypes and approximately 80% of these transformation experiments resulted in the recovery of at least one transgenic event. The transformation frequencies among the successful experiments ranged from 0.3 to 4.5%, with the average transformation frequency being approximately 1% for both genotypes. Over 97% of the transgenic events were successfully established in the greenhouse and were fully fertile. Co-expression of GUSPlus occurred in 89% of the transgenic T(0) events. Seed set for the primary transgenic plants ranged from 145 to 1400 seed/plant. Analysis of T(1) progeny demonstrated transmission of the transgenes in a simple Mendelian fashion in the majority of events.
Collapse
Affiliation(s)
- Arlene Howe
- Center for Biotechnology, University of Nebraska, N300 Beadle Center, Lincoln, NE, 68588, USA
| | | | | | | | | |
Collapse
|
27
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 651] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
28
|
Dinkins RD, Reddy MSS, Meurer CA, Redmond CT, Collins GB. Recent Advances in Soybean Transformation. FOCUS ON BIOTECHNOLOGY 2003. [DOI: 10.1007/978-94-017-0139-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
29
|
Oger P, Farrand SK. Co-evolution of the agrocinopine opines and the agrocinopine-mediated control of TraR, the quorum-sensing activator of the Ti plasmid conjugation system. Mol Microbiol 2001; 41:1173-85. [PMID: 11555296 DOI: 10.1046/j.1365-2958.2001.02584.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is controlled by a hierarchical system in which opines, substrates produced by crown gall tumours, induce a quorum-sensing system. The cascade results from the control of expression of traR, the quorum-sensing activator, by a regulator responsive to the opine. In the two cases studied to date, the gene arrangements responsible for the cascade differ remarkably, suggesting that considerable diversity exists among the many Ti-like plasmids in the agrobacteria. In this study, we demonstrated that the novel Ti plasmid pTiChry5 is induced to transfer at high frequency by extracts from tumours initiated by strain Chry5. The purified inducer had the chemical and biological properties of agrocinopines C and D, a set of sugar phosphodiester opines known to induce transfer of another Ti plasmid, pTiBo542. The T-region of pTiChry5 contained a gene whose product, called Acs(Chry5), is virtually identical to the agrocinopine C+D synthase from the T-region of pTiBo542. The two genes are less closely related to acs of pTiC58, which is responsible for the production of agrocinopines A+B, a similar but not identical set of phosphodiester opines by tumours induced by strain C58. Agrocinopines A+B induce transfer of pTiC58 but did not induce transfer of pTi(Chry5). A single copy of traR was identified at the 11 o'clock region of pTi(Chry5), where it is part of a two-gene operon called arc(Chry5). Although altered by deletions, arc(Chry5) is related to the five-gene arc operon that controls the expression of traR on pTiC58. Expression of traR(Chry5) was induced by agrocinopines C+D and the opines isolated from Chry5 tumours but not by agrocinopines A+B. A mutation in traR(Chry5) abolished transfer, and transfer was restored by complementation in trans. We conclude that the agrocinopine opines and the corresponding opine-meditated conjugal regulatory regions of pTiChry5 and pTiC58 share a common origin, but that the opine signals for the two Ti plasmids have evolved divergently through changes in the opine synthase enzymes. The alterations in the opines, in turn, necessitated a co-evolutionary change in the opine recognition systems responsible for controlling expression of the traR genes on these two types of Ti plasmids.
Collapse
Affiliation(s)
- P Oger
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
30
|
Luo ZQ, Farrand SK. The Agrobacterium tumefaciens rnd homolog is required for TraR-mediated quorum-dependent activation of Ti plasmid tra gene expression. J Bacteriol 2001; 183:3919-30. [PMID: 11395455 PMCID: PMC95274 DOI: 10.1128/jb.183.13.3919-3930.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Accepted: 04/09/2001] [Indexed: 11/20/2022] Open
Abstract
Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is regulated by quorum sensing via TraR and its cognate autoinducer, N-(3-oxo-octanoyl)-L-homoserine lactone. We isolated four Tn5-induced mutants of A. tumefaciens C58 deficient in TraR-mediated activation of tra genes on pTiC58DeltaaccR. These mutations also affected the growth of the bacterium but had no detectable influence on the expression of two tester gene systems that are not regulated by quorum sensing. In all four mutants Tn5 was inserted in a chromosomal open reading frame (ORF) coding for a product showing high similarity to RNase D, coded for by rnd of Escherichia coli, an RNase known to be involved in tRNA processing. The wild-type allele of the rnd homolog cloned from C58 restored the two phenotypes to each mutant. Several ORFs, including a homolog of cya2, surround A. tumefaciens rnd, but none of these genes exerted a detectable effect on the expression of the tra reporter. In the mutant, traR was expressed from the Ti plasmid at a level about twofold lower than that in NT1. The expression of tra, but not the growth rate, was partially restored by increasing the copy number of traR or by disrupting traM, a Ti plasmid gene coding for an antiactivator specific for TraR. The mutation in rnd also slightly reduced expression of two tested vir genes but had no detectable effect on tumor induction by this mutant. Our data suggest that the defect in tra gene induction in the mutants results from lowered levels of TraR. In turn, production of sufficient amounts of TraR apparently is sensitive to a cellular function requiring RNase D.
Collapse
Affiliation(s)
- Z Q Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|