1
|
Valent B. Dynamic Gene-for-Gene Interactions Undermine Durable Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:104-117. [PMID: 40272515 DOI: 10.1094/mpmi-02-25-0022-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Harold Flor's gene-for-gene model explained boom-bust cycles in which resistance (R) genes are deployed in farmers' fields, only to have pathogens overcome resistance by modifying or losing corresponding active avirulence (AVR) genes. Flor understood that host R genes with corresponding low rates of virulence mutation in the pathogen should maintain resistance for longer periods of time. This review focuses on AVR gene dynamics of the haploid Ascomycete fungus Pyricularia oryzae, which causes rice blast disease, a gene-for-gene system with a complex race structure and a very rapid boom-bust cycle due to high rates of AVR gene mutation. Highly mutable blast AVR genes are often characterized by deletion and by movement to new chromosomal locations, implying a loss/regain mechanism in response to R gene deployment. Beyond rice blast, the recent emergence of two serious new blast diseases on wheat and Lolium ryegrasses highlighted the role of AVR genes that act at the host genus level and serve as infection barriers that separate host genus-specialized P. oryzae subpopulations. Wheat and ryegrass blast diseases apparently evolved through sexual crosses involving fungal individuals from five host-adapted subpopulations, with the host jump enabled by the introduction of virulence alleles of key host-specificity AVR genes. Despite identification of wheat AVR/R gene interactions operating at the host genus specificity level, the paucity of effective R genes identified thus far limits control of wheat blast disease. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, U.S.A
| |
Collapse
|
2
|
Dong B, Liu W, Zhao Y, Quan W, Hao L, Wang D, Zhou H, Zhao M, Hao J. Genome Sequencing and Comparative Genomic Analysis of Attenuated Strain Gibellulopsis nigrescens GnVn.1 Causing Mild Wilt in Sunflower. J Fungi (Basel) 2024; 10:838. [PMID: 39728334 DOI: 10.3390/jof10120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Gibellulopsis nigrescens, previously classified in the Verticillium genus until 2007, is an attenuated pathogen known to provide cross-protection against Verticillium wilt in various crops. To investigate the potential mechanisms underlying its reduced virulence, we conducted genome sequencing, annotation, and a comparative genome analysis of G. nigrescens GnVn.1 (GnVn.1), an attenuated strain isolated from sunflower. The genome sequencing and annotation results revealed that the GnVn.1 genome consists of 22 contigs, with a total size of 31.79 Mb. We predicted 10,876 genes, resulting in a gene density of 342 genes per Mb. The pathogenicity gene prediction results indicated 1733 high-confidence pathogenicity factors (HCPFs), 895 carbohydrate-active enzymes (CAZys), and 359 effectors. Moreover, we predicted 40 secondary metabolite clusters (SMCs). The comparative genome analysis indicated that GnVn.1 contains more CAZys, SMCs, predicted effectors, and HCPF genes than Verticillium dahliae (VdLs.17) and Verticillium alfalfae (VaMas.102). The core-pan analysis results showed that GnVn.1 had more specific HCPFs, effectors, CAZys, and secreted protein (SP) genes, and lost many critical pathogenic genes compared to VdLs.17 and VaMs.102. Our results indicate that the GnVn.1 genome harbors more pathogenicity-related genes than the VdLs.17 and VaMs.102 genomes. These abundant genes may play critical roles in regulating virulence. The loss of critical pathogenic genes causes weak virulence and confers biocontrol strategies to GnVn.1.
Collapse
Affiliation(s)
- Baozhu Dong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Wanyou Liu
- Grassland Research Center, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingjie Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Wei Quan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Lijun Hao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Jianxiu Hao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| |
Collapse
|
3
|
Pei M, Abubakar YS, Ali H, Lin L, Dou X, Lu G, Wang Z, Olsson S, Li Y. Whole genome regulatory effect of MoISW2 and consequences for the evolution of the rice plant pathogenic fungus Magnaporthe oryzae. mBio 2024; 15:e0159024. [PMID: 39292005 PMCID: PMC11481914 DOI: 10.1128/mbio.01590-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 09/19/2024] Open
Abstract
Isw2 proteins, ubiquitous across eukaryotes, exhibit a propensity for DNA binding and exert dynamic influences on local chromosome condensation in an ATP-dependent fashion, thereby modulating the accessibility of neighboring genes to transcriptional machinery. Here, we report the deletion of a putative MoISW2 gene, yielding substantial ramifications on plant pathogenicity. Subsequent gene complementation and chromatin immunoprecipitation sequencing (ChIP-seq) analyses were conducted to delineate binding sites. RNA sequencing (RNA-seq) assays revealed discernible impacts on global gene regulation along chromosomes in both mutant and wild-type strains, with comparative analyses against 55 external RNA-seq data sets corroborating these findings. Notably, MoIsw2-mediated binding and activities delineate genomic loci characterized by pronounced gene expression variability proximal to MoIsw2 binding sites, juxtaposed with comparatively stable expression in surrounding regions. The contingent genes influenced by MoIsw2 activity predominantly encompass niche-determinant genes, including those encoding secreted proteins, secondary metabolites, and stress-responsive elements, alongside avirulence genes. Furthermore, our investigations unveil a spatial correlation between MoIsw2 binding motifs and known transposable elements (TEs), suggesting a potential interplay wherein TE transposition at these loci could modulate the transcriptional landscape of Magnaporthe oryzae in a strain-specific manner. Collectively, these findings position MoIsw2 as a plausible master regulator orchestrating the delicate equilibrium between genes vital for biomass proliferation, akin to housekeeping genes, and niche-specific determinants crucial for ecological adaptability. Stress-induced TE transposition, in conjunction with MoIsw2 activity, emerges as a putative mechanism fostering enhanced mutagenesis and accelerated evolution of niche-determinant genes relative to housekeeping counterparts.IMPORTANCEIsw2 proteins are conserved in plants, fungi, animals, and other eukaryotes. We show that a fungal Isw2 protein in the rice pathogen Magnaporthe oryzae binds to retrotransposon (RT) DNA motifs and affects the epigenetic gene expression landscape of the fungal genome. Mainly ecological niche determinant genes close to the binding motifs are affected. RT elements occur frequently in DNA between genes in most organisms. They move place and multiply in the genome, especially under physiological stress. We further discuss the Isw2 and RT combined activities as a possible sought-after mechanism that can cause biased mutation rates and faster evolution of genes necessary for reacting to abiotic and biotic challenges. The most important biotic challenges for plant pathogens are the ones from the host plants' innate immunity. The overall result of these combined activities will be an adaptation-directed evolution of niche-determinant genes.
Collapse
Affiliation(s)
- Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Hina Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianying Dou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Synthetic Biology Center, College of Future Technologies, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Lambou K, Tag A, Lassagne A, Collemare J, Clergeot PH, Barbisan C, Perret P, Tharreau D, Millazo J, Chartier E, De Vries RP, Hirsch J, Morel JB, Beffa R, Kroj T, Thomas T, Lebrun MH. The bZIP transcription factor BIP1 of the rice blast fungus is essential for infection and regulates a specific set of appressorium genes. PLoS Pathog 2024; 20:e1011945. [PMID: 38252628 PMCID: PMC10833574 DOI: 10.1371/journal.ppat.1011945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.
Collapse
Affiliation(s)
- Karine Lambou
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Andrew Tag
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Alexandre Lassagne
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Collemare
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Pierre-Henri Clergeot
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- ASP Bourgogne Franche-Comté, Dijon, France
| | | | - Philippe Perret
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
- Bayer S.A.S. Crop Science Division Global Toxicology- Sophia Antipolis Cedex, France
| | - Didier Tharreau
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Joelle Millazo
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Elia Chartier
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Ronald P. De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Judith Hirsch
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Pathologie Végétale, INRAE, Montfavet, France
| | - Jean-Benoit Morel
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Roland Beffa
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
| | - Thomas Kroj
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Terry Thomas
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Marc-Henri Lebrun
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Université Paris-Saclay, INRAE, UR 1290 BIOGER, Palaiseau, France
| |
Collapse
|
5
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
6
|
Quoc NB, Trang HTT, Phuong NDN, Chau NNB, Jantasuriyarat C. Development of a SCAR marker linked to fungal pathogenicity of rice blast fungus Magnaporthe Oryzae. Int Microbiol 2020; 24:149-156. [PMID: 33161504 DOI: 10.1007/s10123-020-00150-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/17/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
PCR-based molecular approaches including RAPD (random amplified polymorphic DNA), ISSR (inter-simple sequence repeat), and SRAP (sequence-related amplified polymorphism) are commonly used to analyze genetic diversity. The aims of this study are to analyze genetic diversity of M. oryzae isolates using PCR-based molecular approaches such as RAPD, ISSR, and SRAP and to develop SCAR marker linked to the pathogenicity of rice blast fungus. Twenty Magnaporthe oryzae isolates were collected mainly from the south of Vietnam and assessed for genetic variation by RAPD, ISSR, and SRAP methods. The comparison of those methods was conducted based on the number of polymorphic bands, percentage of polymorphism, PIC values, and phylogenetic analysis. Then, sequenced characterized amplified region (SCAR) markers were developed based on specific bands linked to fungal pathogenicity of rice blast fungus, M. oryzae. The results indicated that SRAP markers yielded the greatest number of polymorphic bands (174) and occupied 51.7% with polymorphism information content (PIC) value of 0.66. Additionally, the SRAP approach showed stability and high productivity compared with RAPD and ISSR. The SCAR marker developed from the SRAP method identified the presence of the avirulence AVR-pita1 gene involving fungal pathogenicity that can break down blast resistance in rice cultivars. The consistency of SCAR marker obtained in this study showed its efficiency in rapid in-field detection of fungal pathogenicity. SCAR marker developed from SRAP technique provides a useful tool for improving the efficiency of blast disease management in rice fields.
Collapse
Affiliation(s)
- Nguyen Bao Quoc
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam.
| | - Ho Thi Thu Trang
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nguyen Doan Nguyen Phuong
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nguyen Ngoc Bao Chau
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
7
|
High nucleotide sequence variation of avirulent gene, AVR-Pita1, in Thai rice blast fungus population. J Genet 2020. [DOI: 10.1007/s12041-020-01197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Rodríguez-Romero J, Marconi M, Ortega-Campayo V, Demuez M, Wilkinson MD, Sesma A. Virulence- and signaling-associated genes display a preference for long 3'UTRs during rice infection and metabolic stress in the rice blast fungus. THE NEW PHYTOLOGIST 2019; 221:399-414. [PMID: 30169888 DOI: 10.1111/nph.15405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Generation of mRNA isoforms by alternative polyadenylation (APA) and their involvement in regulation of fungal cellular processes, including virulence, remains elusive. Here, we investigated genome-wide polyadenylation site (PAS) selection in the rice blast fungus to understand how APA regulates pathogenicity. More than half of Magnaporthe oryzae transcripts undergo APA and show novel motifs in their PAS region. Transcripts with shorter 3'UTRs are more stable and abundant in polysomal fractions, suggesting they are being translated more efficiently. Importantly, rice colonization increases the use of distal PASs of pathogenicity genes, especially those participating in signalling pathways like 14-3-3B, whose long 3'UTR is required for infection. Cleavage factor I (CFI) Rbp35 regulates expression and distal PAS selection of virulence and signalling-associated genes, tRNAs and transposable elements, pointing its potential to drive genomic rearrangements and pathogen evolution. We propose a noncanonical PAS selection mechanism for Rbp35 that recognizes UGUAH, unlike humans, without CFI25. Our results showed that APA controls turnover and translation of transcripts involved in fungal growth and environmental adaptation. Furthermore, these data provide useful information for enhancing genome annotations and for cross-species comparisons of PASs and PAS usage within the fungal kingdom and the tree of life.
Collapse
Affiliation(s)
- Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marco Marconi
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Víctor Ortega-Campayo
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Mark D Wilkinson
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Ane Sesma
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
9
|
Ghareeb H, Zhao Y, Schirawski J. Sporisorium reilianum possesses a pool of effector proteins that modulate virulence on maize. MOLECULAR PLANT PATHOLOGY 2019; 20:124-136. [PMID: 30136754 PMCID: PMC6430478 DOI: 10.1111/mpp.12744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The biotrophic maize head smut fungus Sporisorium reilianum is a close relative of the tumour-inducing maize smut fungus Ustilago maydis with a distinct disease aetiology. Maize infection with S. reilianum occurs at the seedling stage, but spores first form in inflorescences after a long endophytic growth phase. To identify S. reilianum-specific virulence effectors, we defined two gene sets by genome comparison with U. maydis and with the barley smut fungus Ustilago hordei. We tested virulence function by individual and cluster deletion analysis of 66 genes and by using a sensitive assay for virulence evaluation that considers both disease incidence (number of plants with a particular symptom) and disease severity (number and strength of symptoms displayed on any individual plant). Multiple deletion strains of S. reilianum lacking genes of either of the two sets (sr10057, sr10059, sr10079, sr10703, sr11815, sr14797 and clusters uni5-1, uni6-1, A1A2, A1, A2) were affected in virulence on the maize cultivar 'Gaspe Flint', but each of the individual gene deletions had only a modest impact on virulence. This indicates that the virulence of S. reilianum is determined by a complex repertoire of different effectors which each contribute incrementally to the aggressiveness of the pathogen.
Collapse
Affiliation(s)
- Hassan Ghareeb
- Department of Molecular Biology of Plant–Microbe InteractionsAlbrecht‐von‐Haller Institute of Plant Sciences, Schwann‐Schleiden Research Center for Molecular Cell Biology, Georg‐August‐Universität GöttingenJulia‐Lermontowa‐Weg 3Göttingen37077Germany
- Department of Organismic InteractionsMax Planck Institute for Terrestrial MicrobiologyKarl‐von‐Frisch Straße 10Marburg35043Germany
- Department of Plant BiotechnologyNational Research CentreCairo12311Egypt
- Present address:
Georg‐August‐Universität Göttingen, Plant Cell Biology, Albrecht‐von‐Haller Institute of Plant SciencesJulia‐Lermontowa‐Weg 3Göttingen37077Germany
| | - Yulei Zhao
- Department of Molecular Biology of Plant–Microbe InteractionsAlbrecht‐von‐Haller Institute of Plant Sciences, Schwann‐Schleiden Research Center for Molecular Cell Biology, Georg‐August‐Universität GöttingenJulia‐Lermontowa‐Weg 3Göttingen37077Germany
- Department of Microbial GeneticsInstitute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen UniversityWorringer Weg 1Aachen52074Germany
| | - Jan Schirawski
- Department of Molecular Biology of Plant–Microbe InteractionsAlbrecht‐von‐Haller Institute of Plant Sciences, Schwann‐Schleiden Research Center for Molecular Cell Biology, Georg‐August‐Universität GöttingenJulia‐Lermontowa‐Weg 3Göttingen37077Germany
- Department of Organismic InteractionsMax Planck Institute for Terrestrial MicrobiologyKarl‐von‐Frisch Straße 10Marburg35043Germany
- Department of Microbial GeneticsInstitute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen UniversityWorringer Weg 1Aachen52074Germany
| |
Collapse
|
10
|
Korinsak S, Tangphatsornruang S, Pootakham W, Wanchana S, Plabpla A, Jantasuriyarat C, Patarapuwadol S, Vanavichit A, Toojinda T. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach. Genomics 2018; 111:661-668. [PMID: 29775784 DOI: 10.1016/j.ygeno.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 01/22/2023]
Abstract
Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7.
Collapse
Affiliation(s)
- Siripar Korinsak
- Plant Breeding Program, Faculty of Agriculture at Kamphaeng Saen, Kesetsart University, Nakhon Pathom 73140, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Anucha Plabpla
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sujin Patarapuwadol
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Apichart Vanavichit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand.
| |
Collapse
|
11
|
Sornkom W, Miki S, Takeuchi S, Abe A, Asano K, Sone T. Fluorescent reporter analysis revealed the timing and localization of AVR-Pia expression, an avirulence effector of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1138-1149. [PMID: 27528510 PMCID: PMC6638300 DOI: 10.1111/mpp.12468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/20/2016] [Accepted: 08/11/2016] [Indexed: 05/09/2023]
Abstract
In order to facilitate infection, the rice blast pathogen Magnaporthe oryzae secretes an abundance of proteins, including avirulence effectors, to diminish its host's defences. Avirulence effectors are recognized by host resistance proteins and trigger the host's hypersensitive response, which is a rapid and effective form of innate plant immunity. An understanding of the underlying molecular mechanisms of such interactions is crucial for the development of strategies to control disease. However, the expression and secretion of certain effector proteins, such as AVR-Pia, have yet to be reported. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that AVR-Pia was only expressed during infection. Fluorescently labelled AVR-Pia indicated that AVR-Pia expression was induced during appressorial differentiation in the cells of both rice and onion, as well as in a penetration-deficient (Δpls1) mutant capable of developing melanized appressoria, but unable to penetrate host cells, suggesting that AVR-Pia expression is independent of fungal penetration. Using live-cell imaging, we also documented the co-localization of green fluorescent protein (GFP)-labelled AVR-Pia and monomeric red fluorescent protein (mRFP)-labelled PWL2, which indicates that AVR-Pia accumulates in biotrophic interfacial complexes before being delivered to the plant cytosol. Together, these results suggest that AVR-Pia is a cytoplasmic effector that is expressed at the onset of appressorial differentiation and is translocated to the biotrophic interfacial complex, and then into the host's cytoplasm.
Collapse
Affiliation(s)
- Worawan Sornkom
- Graduation School of AgricultureHokkaido University, Kita‐9, Nishi‐9Kita‐kuSapporo060‐8589Japan
| | - Shinsuke Miki
- Graduation School of AgricultureHokkaido University, Kita‐9, Nishi‐9Kita‐kuSapporo060‐8589Japan
| | - Saori Takeuchi
- Graduation School of AgricultureHokkaido University, Kita‐9, Nishi‐9Kita‐kuSapporo060‐8589Japan
| | - Ayumi Abe
- Graduation School of AgricultureHokkaido University, Kita‐9, Nishi‐9Kita‐kuSapporo060‐8589Japan
| | - Kozo Asano
- Graduation School of AgricultureHokkaido University, Kita‐9, Nishi‐9Kita‐kuSapporo060‐8589Japan
| | - Teruo Sone
- Graduation School of AgricultureHokkaido University, Kita‐9, Nishi‐9Kita‐kuSapporo060‐8589Japan
| |
Collapse
|
12
|
Sharpee W, Oh Y, Yi M, Franck W, Eyre A, Okagaki LH, Valent B, Dean RA. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:850-863. [PMID: 27301772 PMCID: PMC6638229 DOI: 10.1111/mpp.12449] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 05/04/2023]
Abstract
Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae.
Collapse
Affiliation(s)
- William Sharpee
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| | - Yeonyee Oh
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| | - Mihwa Yi
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
- Present address:
Noble FoundationArdmoreOK73401USA
| | - William Franck
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
- Present address:
USDA‐ARS Northern Plains Agricultural Research ServiceSidneyMT59270USA
| | - Alex Eyre
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| | - Laura H. Okagaki
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
- Present address:
Department of Microbiology and ImmunologyUniversity of MinnesotaMN55455USA
| | - Barbara Valent
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Ralph A. Dean
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| |
Collapse
|
13
|
McCluskey K, Baker SE. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology 2017; 8:67-83. [PMID: 30123633 PMCID: PMC6059044 DOI: 10.1080/21501203.2017.1281849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
Filamentous fungi have been important as model organisms since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycete filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Similarly, shared data has contributed to the success of model systems. The scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.
Collapse
Affiliation(s)
- Kevin McCluskey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Scott E. Baker
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
14
|
Castanera R, Borgognone A, Pisabarro AG, Ramírez L. Biology, dynamics, and applications of transposable elements in basidiomycete fungi. Appl Microbiol Biotechnol 2017; 101:1337-1350. [PMID: 28074220 DOI: 10.1007/s00253-017-8097-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 11/25/2022]
Abstract
The phylum Basidiomycota includes filamentous fungi and yeast species with different ecological and genomic characteristics. Transposable elements (TEs) are abundant components of most eukaryotic genomes, and their transition from being genomic parasites to key drivers of genomic architecture, functionality, and evolution is a subject receiving much attention. In light of the abundant genomic information released during the last decade, the aims of this mini-review are to discuss the dynamics and impact of TEs in basidiomycete fungi. To do this, we surveyed and explored data from 75 genomes, which encompass the phylogenetic diversity of the phylum Basidiomycota. We describe annotation approaches and analyze TE distribution in the context of species phylogeny and genome size. Further, we review the most relevant literature about the role of TEs in species lifestyle, their impact on genome architecture and functionality, and the defense mechanisms evolved to control their proliferation. Finally, we discuss potential applications of TEs that can drive future innovations in fungal research.
Collapse
Affiliation(s)
- Raúl Castanera
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Alessandra Borgognone
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain.
| |
Collapse
|
15
|
Chiapello H, Mallet L, Guérin C, Aguileta G, Amselem J, Kroj T, Ortega-Abboud E, Lebrun MH, Henrissat B, Gendrault A, Rodolphe F, Tharreau D, Fournier E. Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus Magnaporthe oryzae Attacking Different Host Plants. Genome Biol Evol 2015; 7:2896-912. [PMID: 26454013 PMCID: PMC4684704 DOI: 10.1093/gbe/evv187] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39–43 Mb) and gene content (12,283–14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo).
Collapse
Affiliation(s)
- Hélène Chiapello
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France INRA, UR 875, Unité Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | - Ludovic Mallet
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France INRA, UR 875, Unité Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France INRA, UR 1164, Unité de Recherche Génomique Info, Versailles, France
| | - Cyprien Guérin
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France
| | - Gabriela Aguileta
- CNRS, UMR 8079, Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France Center for Genomic Regulation, Barcelona, Spain
| | - Joëlle Amselem
- INRA, UR 1164, Unité de Recherche Génomique Info, Versailles, France
| | - Thomas Kroj
- INRA, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| | - Enrique Ortega-Abboud
- CIRAD, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| | - Marc-Henri Lebrun
- INRA-AgroParisTech, UMR 1190, Biologie et Gestion des Risques en Agriculture BIOGER-CPP, Campus AgroParisTech, Thiverval-Grignon, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Université d'Aix Marseille, France Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Annie Gendrault
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France
| | - François Rodolphe
- INRA, UR 1404, Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement, Jouy-en-Josas, France
| | - Didier Tharreau
- CIRAD, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| | - Elisabeth Fournier
- INRA, UMR 385, Biologie et Génétique des Interactions Plantes-Pathogènes BGPI, INRA-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
16
|
Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA, Otillar R, Martin J, Schackwitz W, Grimwood J, MohdZainudin N, Xue C, Wang R, Manning VA, Dhillon B, Tu ZJ, Steffenson BJ, Salamov A, Sun H, Lowry S, LaButti K, Han J, Copeland A, Lindquist E, Barry K, Schmutz J, Baker SE, Ciuffetti LM, Grigoriev IV, Zhong S, Turgeon BG. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 2013; 9:e1003233. [PMID: 23357949 PMCID: PMC3554632 DOI: 10.1371/journal.pgen.1003233] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022] Open
Abstract
The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.
Collapse
Affiliation(s)
- Bradford J. Condon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Dongliang Wu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Kathryn E. Bushley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Robin A. Ohm
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Robert Otillar
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Joel Martin
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Wendy Schackwitz
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - NurAinIzzati MohdZainudin
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chunsheng Xue
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Rui Wang
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, Canada
| | - Zheng Jin Tu
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Asaf Salamov
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Hui Sun
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Steve Lowry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Kurt LaButti
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - James Han
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Alex Copeland
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Erika Lindquist
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Kerrie Barry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Scott E. Baker
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Igor V. Grigoriev
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
17
|
|
18
|
Li P, Bai B, Zhang HY, Zhou H, Zhou B. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae. J Zhejiang Univ Sci B 2012; 13:452-64. [PMID: 22661208 DOI: 10.1631/jzus.b1100338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plants utilize multiple layers of defense mechanisms to fight against the invasion of diverse pathogens. The R gene mediates resistance, in most cases, dependent on the co-existence of its cognate pathogen-derived avirulence (Avr) gene. The rice blast R gene Piz-t corresponds in gene-for-gene fashion to the Magnaporthe oryzae Avr gene AvrPiz-t. In this study, we determined and compared the genomic sequences surrounding the AvrPiz-t gene in both avirulent and virulent isolates, designating as AvrPiz-t-ZB15 and avrPiz-t-70-15 regions, respectively. The sequence of the AvrPiz-t-ZB15 region is 120966 bp whereas avrPiz-t-70-15 is 146292 bp in length. The extreme sequence similarity and good synteny in gene order and content along with the absence of two predicted genes in the avrPiz-t-70-15 region were observed in the predicted protein-coding regions in the AvrPiz-t locus. Nevertheless, frequent presence/absence and highly dynamic organization of transposable elements (TEs) were identified, representing the major variation of the AvrPiz-t locus between different isolates. Moreover, TEs constitute 27.3% and 43.2% of the genomic contents of the AvrPiz-t-ZB15 and avrPiz-t-70-15 regions, respectively, indicating that TEs contribute largely to the organization and evolution of AvrPiz-t locus. The findings of this study suggest that M. oryzae could benefit in an evolutionary sense from the presence of active TEs in genes conferring avirulence and provide an ability to rapidly change and thus to overcome host R genes.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | |
Collapse
|
19
|
Yan J, Zhang L, Zhao W, Zhang G, Peng Y. Genetic and physical mapping of the avirulence gene Avr-Pik m in Magnaporthe oryzae. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 2011; 7:e1002147. [PMID: 21829350 PMCID: PMC3145791 DOI: 10.1371/journal.ppat.1002147] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/17/2011] [Indexed: 01/22/2023] Open
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.
Collapse
Affiliation(s)
- Izumi Chuma
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Chihiro Isobe
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Yuma Hotta
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Kana Ibaragi
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Natsuru Futamata
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Yukio Tosa
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
21
|
Zhang Z, Jiang H, Wang YL, Sun GC. [Progress on avirulence genes of the rice blast fungus Magnaporthe grisea]. YI CHUAN = HEREDITAS 2011; 33:591-600. [PMID: 21684864 DOI: 10.3724/sp.j.1005.2011.00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe grisea, is one of the most devastating diseases of rice. The specific interaction between rice and M. grisea is an important model system for studying the host-pathogen interaction mechanisms. In this article, we summarized recent research progresses on avirulence genes, which are the most important effectors in M. grisea with the focus on chromosome mapping, cloning method, functional analysis, and evolution study of avirulence genes, and the possible hotspot of the research on avirulence genes in the future was also been discussed. This knowledge may shed a light on the molecular mechanism underlying avirulence genes function and the possible interaction relationship between the host and the pathogen.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Chemistry and Life Science, ZhejiangNormalUniversity, Jinhua 321004, China.
| | | | | | | |
Collapse
|
22
|
Dai Y, Jia Y, Correll J, Wang X, Wang Y. Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol 2010; 47:973-80. [DOI: 10.1016/j.fgb.2010.08.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 07/12/2010] [Accepted: 08/06/2010] [Indexed: 12/27/2022]
|
23
|
Jia Y, Liu G, Costanzo S, Lee S, Dai Y. Current progress on genetic interactions of rice with rice blast and sheath blight fungi. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11703-009-0062-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Zeng J, Feng S, Cai J, Wang L, Lin F, Pan Q. Distribution of Mating Type and Sexual Status in Chinese Rice Blast Populations. PLANT DISEASE 2009; 93:238-242. [PMID: 30764177 DOI: 10.1094/pdis-93-3-0238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A collection of 520 field isolates of the rice blast fungus (Magnaporthe oryzae) originating from five provinces in China was assessed for mating type and sexual fertility. One of the two tester sets was composed of isolates collected from barley and the other from rice. Two mating types (MAT1-1 and MAT1-2) were identified among the 443 fertile isolates. The two mating types were roughly in balance with one another in the southwestern region but one or the other predominated in the southeastern and southern regions. Male-only fertile isolates were the most common, and only a few hermaphroditic and no female only fertile isolates were detected. The fertility level of the isolates was variable. Isolates from Jiangsu were more fertile than those from Fujian. The mating capacity of the testers collected from barley was higher than that of those collected from rice, but this was because the MAT1-2 testers differed very significantly from one another. In contrast, the mating capacities of the two MAT1-1 testers were similar to one another.
Collapse
Affiliation(s)
- Jing Zeng
- Laboratory of Plant Resistance and Genetics, College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shujie Feng
- Laboratory of Plant Resistance and Genetics, College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangqiao Cai
- Laboratory of Plant Resistance and Genetics, College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ling Wang
- Laboratory of Plant Resistance and Genetics, College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fei Lin
- Laboratory of Plant Resistance and Genetics, College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qinghua Pan
- Laboratory of Plant Resistance and Genetics, College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
25
|
Khang CH, Park SY, Lee YH, Valent B, Kang S. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:658-670. [PMID: 18393625 DOI: 10.1094/mpmi-21-5-0658] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The avirulence (AVR) gene AVR-Pita in Magnaporthe oryzae prevents the fungus from infecting rice cultivars containing the resistance gene Pi-ta. A survey of isolates of the M. grisea species complex from diverse hosts showed that AVR-Pita is a member of a gene family, which led us to rename it to AVR-Pita1. Avirulence function, distribution, and genomic context of two other members, named AVR-Pita2 and AVR-Pita3, were characterized. AVR-Pita2, but not AVR-Pita3, was functional as an AVR gene corresponding to Pi-ta. The AVR-Pita1 and AVR-Pita2 genes were present in isolates of both M. oryzae and M. grisea, whereas the AVR-Pita3 gene was present only in isolates of M. oryzae. Orthologues of members of the AVR-Pita family could not be found in any fungal species sequenced to date, suggesting that the gene family may be unique to the M. grisea species complex. The genomic context of its members was analyzed in eight strains. The AVR-Pita1 and AVR-Pita2 genes in some isolates appeared to be located near telomeres and flanked by diverse repetitive DNA elements, suggesting that frequent deletion or amplification of these genes within the M. grisea species complex might have resulted from recombination mediated by repetitive DNA elements.
Collapse
Affiliation(s)
- Chang Hyun Khang
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
26
|
Collemare J, Pianfetti M, Houlle AE, Morin D, Camborde L, Gagey MJ, Barbisan C, Fudal I, Lebrun MH, Böhnert HU. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. THE NEW PHYTOLOGIST 2008; 179:196-208. [PMID: 18433432 DOI: 10.1111/j.1469-8137.2008.02459.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The avirulence gene ACE1 from the rice blast fungus Magnaporthe grisea encodes a polyketide synthase (PKS) fused to a nonribosomal peptide synthetase (NRPS) probably involved in the biosynthesis of a secondary metabolite recognized by Pi33 resistant rice (Oryza sativa) cultivars. Analysis of the M. grisea genome revealed that ACE1 is located in a cluster of 15 genes, of which 14 are potentially involved in secondary metabolism as they encode enzymes such as a second PKS-NRPS (SYN2), two enoyl reductases (RAP1 and RAP2) and a putative Zn(II)(2)Cys(6) transcription factor (BC2). These 15 genes are specifically expressed during penetration into the host plant, defining an infection-specific gene cluster. A pORF3-GFP transcriptional fusion showed that the highly expressed ORF3 gene from the ACE1 cluster is only expressed in appressoria, as is ACE1. Phenotypic analysis of deletion or disruption mutants of SYN2 and RAP2 showed that they are not required for avirulence in Pi33 rice cultivars, unlike ACE1. Inactivation of other genes was unsuccessful because targeted gene replacement and disruption were inefficient at this locus. Overall, the ACE1 gene cluster displays an infection-specific expression pattern restricted to the penetration stage which is probably controlled at the transcriptional level and reflects regulatory networks specific to early stages of infection.
Collapse
Affiliation(s)
- Jérôme Collemare
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Mikaël Pianfetti
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Anne-Elodie Houlle
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Damien Morin
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Laurent Camborde
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Marie-Josèphe Gagey
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Crystel Barbisan
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Isabelle Fudal
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Marc-Henri Lebrun
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| | - Heidi U Böhnert
- UMR5240 CNRS/UCB/INSA/BAYER CropScience, 14-20 Rue Pierre Baizet, 69263 Lyon cedex 09, France
| |
Collapse
|
27
|
Construction of an electronic physical map of Magnaporthe oryzae using genomic position-ready SSR markers. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Genetics of avirulence genes in Blumeria graminis f.sp. hordei and physical mapping of AVR(a22) and AVR(a12). Fungal Genet Biol 2007; 45:243-52. [PMID: 18036855 DOI: 10.1016/j.fgb.2007.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/10/2007] [Accepted: 09/20/2007] [Indexed: 11/21/2022]
Abstract
Powdery mildew fungi are parasites that cause disease on a wide range of important crops. Plant resistance (R) genes, which induce host defences against powdery mildews, encode proteins that recognise avirulence (AVR) molecules from the parasite in a gene-for-gene manner. To gain insight into how virulence evolves in Blumeria graminis f.sp. hordei, associations between segregating AVR genes were established. As a prerequisite to the isolation of AVR genes, two loci were selected for further analysis. AVR(a22) is located in a tightly linked cluster comprising AVR(a10) and AVR(k1) as well as up to five other AVR genes. The ratio between physical and genetic distance in the cluster ranged between 0.7 and 35 kB/cM. The AVR(a22) locus was delimited by the previously isolated gene AVR(a10) and two cleaved amplified polymorphic sequence (CAPS) markers, 19H12R and 74E9L. By contrast, AVR(a12) was not linked to other AVR genes in two crosses. Bulk segregant analysis of over 100,000 AFLP fragments yielded two markers, ETAMTG-285 and PAAMACT-473, mapping 10 and 2cM from AVR(a12), respectively, thus delimiting AVR(a12) on one side. All markers obtained for AVR(a12) mapped proximal to it, indicating that the gene is located at the end of a chromosome. Three more AVR(a10) paralogues were identified at the locus interspersed among genes for metabolic enzymes and abundant repetitive elements, especially those homologous to the CgT1 class of retrotransposons. The flanking and close markers obtained will facilitate the isolation of AVR(a22) and AVR(a12) and provide useful tools for studies of the evolution of powdery mildew fungi in agriculture and nature.
Collapse
|
29
|
Gogvadze E, Barbisan C, Lebrun MH, Buzdin A. Tripartite chimeric pseudogene from the genome of rice blast fungus Magnaporthe grisea suggests double template jumps during long interspersed nuclear element (LINE) reverse transcription. BMC Genomics 2007; 8:360. [PMID: 17922896 PMCID: PMC2104539 DOI: 10.1186/1471-2164-8-360] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/08/2007] [Indexed: 01/26/2023] Open
Abstract
Background A systematic survey of loci carrying retrotransposons in the genome of the rice blast fungus Magnaporthe grisea allowed the identification of novel non-canonical retropseudogenes. These elements are chimeric retrogenes composed of DNA copies from different cellular transcripts directly fused to each other. Their components are copies of a non protein-coding highly expressed RNA of unknown function termed WEIRD and of two fungal retrotransposons: MGL and Mg-SINE. Many of these chimeras are transcribed in various M. grisea tissues and during plant infection. Chimeric retroelements with a similar structure were recently found in three mammalian genomes. All these chimeras are likely formed by RNA template switches during the reverse transcription of diverse LINE elements. Results We have shown that in M. grisea template switching occurs at specific sites within the initial template RNA which contains a characteristic consensus sequence. We also provide evidence that both single and double template switches may occur during LINE retrotransposition, resulting in the fusion of three different transcript copies. In addition to the 33 bipartite elements, one tripartite chimera corresponding to the fusion of three retrotranscripts (WEIRD, Mg-SINE, MGL-LINE) was identified in the M. grisea genome. Unlike the previously reported two human tripartite elements, this fungal retroelement is flanked by identical 14 bp-long direct repeats. The presence of these short terminal direct repeats demonstrates that the LINE enzymatic machinery was involved in the formation of this chimera and its integration in the M. grisea genome. Conclusion A survey of mammalian genomic databases also revealed two novel tripartite chimeric retroelements, suggesting that double template switches occur during reverse transcription of LINE retrotransposons in different eukaryotic organisms.
Collapse
Affiliation(s)
- Elena Gogvadze
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117871, Russia.
| | | | | | | |
Collapse
|
30
|
Zhou E, Jia Y, Singh P, Correll JC, Lee FN. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol 2007; 44:1024-34. [PMID: 17387027 DOI: 10.1016/j.fgb.2007.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 02/07/2007] [Accepted: 02/10/2007] [Indexed: 10/23/2022]
Abstract
The avirulence gene AVR-Pita of Magnaporthe oryzae determines the efficacy of the resistance gene Pi-ta in rice. The structures of the AVR-Pita alleles in 39 US isolates of M. oryzae were analyzed using polymerase chain reaction. A series of allele-specific primers were developed from the AVR-Pita gene to examine the presence of AVR-Pita. Orthologous alleles of the AVR-Pita gene were amplified from avirulent isolates. Sequence analysis of five alleles revealed three introns at identical positions in the AVR-Pita gene. All five alleles were predicted to encode metalloprotease proteins highly similar to the AVR-Pita protein. In contrast, the same regions of the AVR-Pita alleles were not amplified in the most virulent isolates, and significant variations of DNA sequence at the AVR-Pita allele were verified by Southern blot analysis. A Pot3 transposon was identified in the DNA region encoding the putative protease motif of the AVR-Pita protein from a field isolate B2 collected from a Pi-ta-containing cultivar Banks. These findings show that transposons can contribute to instability of AVR-Pita and is one molecular mechanism for defeating resistance genes in rice cultivar Banks.
Collapse
Affiliation(s)
- Erxun Zhou
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, PR China
| | | | | | | | | |
Collapse
|
31
|
Farman ML. Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it. FEMS Microbiol Lett 2007; 273:125-32. [PMID: 17610516 DOI: 10.1111/j.1574-6968.2007.00812.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The subtelomeres of many microbial eukaryotes are highly enriched in genes with roles in niche adaptation. Host and cultivar specificity genes in the rice blast fungus Magnaporthe oryzae also tend to be located near telomeres. In addition, the M. oryzae telomeres are highly variable chromosome regions. These observations suggested that plant pathogenic fungi might also use subtelomere regions for the amplification of genes with adaptive significance. Targeted sequencing of the M. oryzae telomeres provided an opportunity to test this hypothesis, and has yielded valuable insights into the organization and dynamics of these important chromosome regions.
Collapse
Affiliation(s)
- Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40503, USA.
| |
Collapse
|
32
|
Feng S, Wang L, Ma J, Lin F, Pan Q. Genetic and physical mapping of AvrPi7, a novel avirulence gene of Magnaporthe oryzae using physical position-ready markers. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0125-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Fudal I, Collemare J, Böhnert HU, Melayah D, Lebrun MH. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. EUKARYOTIC CELL 2007; 6:546-54. [PMID: 17142568 PMCID: PMC1828936 DOI: 10.1128/ec.00330-05] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Magnaporthe grisea is responsible for a devastating fungal disease of rice called blast. Current control of this disease relies on resistant rice cultivars that recognize M. grisea signals corresponding to specific secreted proteins encoded by avirulence genes. The M. grisea ACE1 avirulence gene differs from others, since it controls the biosynthesis of a secondary metabolite likely recognized by rice cultivars carrying the Pi33 resistance gene. Using a transcriptional fusion between ACE1 promoter and eGFP, we showed that ACE1 is only expressed in appressoria during fungal penetration into rice and barley leaves, onion skin, and cellophane membranes. ACE1 is almost not expressed in appressoria differentiated on Teflon and Mylar artificial membranes. ACE1 expression is not induced by cellophane and plant cell wall components, demonstrating that it does not require typical host plant compounds. Cyclic AMP (cAMP) signaling mutants delta cpkA and delta mac1 sum1-99 and tetraspanin mutant delta pls1::hph differentiate melanized appressoria with normal turgor but are unable to penetrate host plant leaves. ACE1 is normally expressed in these mutants, suggesting that it does not require cAMP signaling or a successful penetration event. ACE1 is not expressed in appressoria of the buf1::hph mutant defective for melanin biosynthesis and appressorial turgor. The addition of hyperosmotic solutes to buf1::hph appressoria restores appressorial development and ACE1 expression. Treatments of young wild-type appressoria with actin and tubulin inhibitors reduce both fungal penetration and ACE1 expression. These experiments suggest that ACE1 appressorium-specific expression does not depend on host plant signals but is connected to the onset of appressorium-mediated penetration.
Collapse
Affiliation(s)
- Isabelle Fudal
- UMR2847 CNRS/Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | | | | | | | | |
Collapse
|
34
|
Chen QH, Wang YC, Zheng XB. Genetic analysis and molecular mapping of the avirulence gene PRE1, a gene for host-species specificity in the blast fungus Magnaporthe grisea. Genome 2007; 49:873-81. [PMID: 17036061 DOI: 10.1139/g06-043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We analyzed host-species specificity of Magnaporthe grisea on rice using 110 F1 progeny derived from a cross between the Oryza isolate CH87 (pathogenic to rice) and the Digitaria isolate 6023 (pathogenic to crabgrass). To elucidate the genetic mechanisms controlling species specificity in M. grisea, we performed a genetic analysis of species-specific avirulence on this rice population. Avirulent and virulent progeny segregated in a 1:1 ratio on the 2 rice cultivars 'Lijiangxintuanheigu' (LTH) and 'Shin2', suggesting that a single locus, designated PRE1, was involved in the specificity. In a combination between 'Kusabue' and 'Tsuyuake', the segregation of the 4 possible phenotypes of F1 progeny was significantly different from the expected 3:1:3:1 and instead fit a ratio of 2:0:1:1. This indicated that 2 loci, PRE1 and AVR2, were involved in specific parasitism on rice. These results suggest that the species specificity of M. grisea on rice is governed by species-dependent genetic mechanisms that are similar to the gene-for-gene interactions controlling cultivar specificity. Pathogenicity tests with various plant species revealed that the Digitaria isolate 6023 was exclusively parasitic on crabgrass. Genetic linkage analysis showed that PRE1 was mapped on chromosome 3 with respect to RAPD and SSR markers. RAPD marker S361 was linked to the avirulence gene at a distance of ~6.4 cM. Two SSR markers, m677-678 and m77-78, were linked to the PRE1 gene on M. grisea chromosome 3 at distances of 5.9 and 7.1 cM, respectively. Our results will facilitate positional cloning and functional studies of this gene.
Collapse
Affiliation(s)
- Q H Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | | |
Collapse
|
35
|
Ballini E, Berruyer R, Morel JB, Lebrun MH, Nottéghem JL, Tharreau D. Modern elite rice varieties of the 'Green Revolution' have retained a large introgression from wild rice around the Pi33 rice blast resistance locus. THE NEW PHYTOLOGIST 2007; 175:340-350. [PMID: 17587382 DOI: 10.1111/j.1469-8137.2007.02105.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During the breeding process of cultivated crops, resistance genes to pests and diseases are commonly introgressed from wild species. The size of these introgressions is predicted by theoretical models but has rarely been measured in cultivated varieties. By combining resistance tests with isogenic strains, genotyping and sequencing of different rice accessions, it was shown that, in the elite rice variety IR64, the resistance conferring allele of the rice blast resistance gene Pi33 was introgressed from the wild rice Oryza rufipogon (accession IRGC101508). Further characterization of this introgression revealed a large introgression at this locus in IR64 and the related variety IR36. The introgressed fragment represents approximately half of the short arm of rice chromosome 8. This is the first report of a large introgression in a cultivated variety of rice. Such a large introgression is likely to have been maintained during backcrossing only if a selection pressure was exerted on this genomic region. The possible traits that were selected are discussed.
Collapse
Affiliation(s)
- Elsa Ballini
- UMR BGPI, AGRO.M-CIRAD-INRA, Montpellier, France
| | | | | | - Marc-Henri Lebrun
- UMR 2847 CNRS-Bayer CropScience, Physiologie des plantes et des champignons lors de l'infection, Lyon, France
| | | | | |
Collapse
|
36
|
Xu JR, Zhao X, Dean RA. From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae. ADVANCES IN GENETICS 2007; 57:175-218. [PMID: 17352905 DOI: 10.1016/s0065-2660(06)57005-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.
Collapse
Affiliation(s)
- Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
37
|
Luna-Martínez F, Rodríguez-Guerra R, Victoria-Campos M, Simpson J. Development of a molecular genetic linkage map for Colletotrichum lindemuthianum and segregation analysis of two avirulence genes. Curr Genet 2006; 51:109-21. [PMID: 17151855 DOI: 10.1007/s00294-006-0111-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/01/2006] [Accepted: 11/08/2006] [Indexed: 11/28/2022]
Abstract
A framework genetic map was developed for the fungal pathogen Colletotrichum lindemuthianum, the causal agent of anthracnose of common bean (Phaseolus vulgaris L.). This is the first genetic map for any species within the family Melanconiaceae and the genus Colletotrichum and provides the first estimate of genome length for C. lindemuthianum. The map was generated using 106 haploid F1 progeny derived from crossing two Mexican C. lindemuthianum isolates differing in two avirulence genes (AvrclMex and AvrclTO). The map comprises 165 AFLP markers covering 1,897 cM with an average spacing of 11.49 cM. The markers are distributed over 19 major linkage groups containing between 5 and 25 markers each and the genome length was estimated to be approximately 3,241 cM. The avirulence genes AvrclMex and AvrclTO segregate in a 1:1 ratio supporting the gene for gene hypothesis for the incompatible reaction between C. lindemuthianum and P. vulgaris, but could not be incorporated into the genetic map. This initial outline map forms the basis for the development of a more detailed C. lindemuthianum linkage map, which would include other types of molecular markers and allow the location of genes previously isolated and characterized in this species.
Collapse
Affiliation(s)
- Francisco Luna-Martínez
- Department of Genetic Engineering, CINVESTAV, Unidad Irapuato, Apdo. Postal 629, Irapuato, Guanajuato, México
| | | | | | | |
Collapse
|
38
|
Chen QH, Wang YC, Li AN, Zhang ZG, Zheng XB. Molecular mapping of two cultivar-specific avirulence genes in the rice blast fungus Magnaporthe grisea. Mol Genet Genomics 2006; 277:139-48. [PMID: 17115220 DOI: 10.1007/s00438-006-0179-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 10/02/2006] [Indexed: 11/26/2022]
Abstract
Rice blast, caused by the fungus Magnaporthe grisea, is a globally important disease of rice that causes annual yield losses. The segregation of genes controlling the virulence of M. grisea on rice was studied to establish the genetic basis of cultivar specificity in the interaction of rice and M. grisea. The segregation of avirulence and virulence was studied in 87 M. grisea F(1) progeny isolates from a cross of two isolates, Guy11 and JS153, using resistance-gene-differential rice cultivars. The segregation ratio indicated that avirulence and virulence in the rice cultivars Aichi-asahi and K59, respectively, are controlled by single major genes. Genetic analyses of backcrosses and full-sib crosses in these populations were also performed. The chi(2 )test of goodness-of-fitness for a 1:1 ratio indicated that one dominant gene controls avirulence in Aichi-asahi and K59 in this population. Based on the resistance reactions of rice differential lines harboring known resistance genes to the parental isolates, two genetically independent avirulence genes, AVR-Pit and AVR-Pia, were identified. Genetic linkage analysis showed that the SSR marker m355-356 is closely linked to AVR-Pit, on the telomere of chromosome 1 at a distance of approximately 2.3 cM. The RAPD marker S487, which was converted to a sequence-characterized amplified region (SCAR) marker, was found to be closely linked to AVR-Pia, on the chromosome 7 telomere at a distance of 3.5 cM. These molecular markers will facilitate the positional cloning of the two AVR genes, and can be applied to molecular-marker-assisted studies of M. grisea populations.
Collapse
Affiliation(s)
- Q H Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, Dean R, Farman M. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 2006; 34:4685-701. [PMID: 16963777 PMCID: PMC1635262 DOI: 10.1093/nar/gkl588] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.
Collapse
Affiliation(s)
- Cathryn Rehmeyer
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Weixi Li
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Motoaki Kusaba
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Yun-Sik Kim
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Doug Brown
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Chuck Staben
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Ralph Dean
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Mark Farman
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
- To whom correspondence should be addressed. Tel: 859 257 7445, ext. 80728; Fax: 859 323 1961;
| |
Collapse
|
40
|
Ma JH, Wang L, Feng SJ, Lin F, Xiao Y, Pan QH. Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:875-83. [PMID: 16845520 DOI: 10.1007/s00122-006-0347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 06/13/2006] [Indexed: 05/10/2023]
Abstract
Avirulence of Magnaporthe grisea isolate CHL346 on rice cultivar GA25 was studied with 242 ascospore progenies derived from the cross CHL346 x CHL42. Segregation analysis of the avirulence in the progeny population was in agreement with the existence of a single avirulence (Avr) gene, designated as AvrPi15. For mapping the Avr gene, we developed a total of 121 microsatellite DNA markers [simple sequence repeat (SSR)], which evenly distributed in the whole-genome of M. grisea through bioinformatics analysis (BIA) using the publicly available sequence. Linkage analysis of the AvrPi15 gene with these SSR markers showed that six markers on chromosome 6, MS6-1, MS6-2, MS6-3, MS6-7, MS6-8 and MS6-10, were linked to the AvrPi15 locus. To further define the chromosomal location of the AvrPi15 locus, two additional markers, MS6-17 and STS6-6, which were developed based on the sequences of telomeric region 11 (TEL11), were subjected to linkage analysis. The results showed that MS6-17 and STS6-6 were associated with the locus by 3.3 and 0.8 cM, respectively. To finely map the Avr gene, two additional candidate avirulence gene (CAG) markers, CAG6-1 and CAG6-2, were developed based on the gene annotation of the sequence of TEL 11. Linkage analysis of the Avr gene with these two markers revealed that both of them completely cosegregated with the AvrPi15 locus. Finally, this locus was physically mapped into approximately 7.2-kb interval of the TEL11 by BIA using these sequence-ready markers. This is the key step toward positional cloning of the AvrPi15 gene.
Collapse
Affiliation(s)
- Jun-Hong Ma
- Laboratory of Plant Resistance and Genetics, College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Recent advances in sequencing technologies have led to a remarkable increase in the number of sequenced fungal genomes. Several important plant pathogenic fungi are among those that have been sequenced or are being sequenced. Additional fungal pathogens are likely to be sequenced in the near future. Analysis of the available genomes has provided useful information about genes that may be important for plant infection and colonization. Genome features, such as repetitive sequences, telomeres, conserved syntenic blocks, and expansion of pathogenicity-related genes, are discussed in detail with Magnaporthe oryzae (M. grisea) and Fusarium graminearum as examples. Functional and comparative genomic studies in plant pathogenic fungi, although still in the early stages and limited to a few pathogens, have enormous potential to improve our understanding of the molecular mechanisms involved in host-pathogen interactions. Development of advanced genomics tools and infrastructure is critical for efficient utilization of the vast wealth of available genome sequence information and will form a solid foundation for systems biology studies of plant pathogenic fungi.
Collapse
Affiliation(s)
- Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
42
|
Fudal I, Böhnert HU, Tharreau D, Lebrun MH. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 2005; 42:761-72. [PMID: 15978851 DOI: 10.1016/j.fgb.2005.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 04/21/2005] [Accepted: 05/01/2005] [Indexed: 11/30/2022]
Abstract
The ACE1 avirulence gene allele from the rice blast fungus Magnaporthe grisea was characterized in virulent isolate 2/0/3, revealing the insertion of a 1.9 kb MINE retrotransposon in the last ACE1 exon. MINE is a novel chimeric element composed of a transcribed non-coding sequence of 1.1 kb (WEIRD) fused to a 5'-truncated MGL retrotransposon. MINEs were found in high copy number in M. grisea isolates from rice (68 copies) and as a single copy in isolate CD156 from Eleusine. MINEs vary in size (1.3-6.7 kb) with conserved 5' WEIRD sequences and variable 3' MGL sequences. MGLs fused to WEIRDs correspond to different 5'-truncated MGLs with conserved 3' ends. The organization and diversity of MINEs suggest that these retrotransposons result from independent fusions between WEIRD and 5'-truncated MGLs. Such chimera could be formed during MGL reverse transcription as proposed for human U6-LINE1 chimeric retrotransposons and integrated into M. grisea genome using MGL machinery.
Collapse
Affiliation(s)
- Isabelle Fudal
- UMR2847 CNRS-Bayercropscience Bayer CropScience, F69263 Lyon Cedex 09, France
| | | | | | | |
Collapse
|
43
|
Luo CX, Yin LF, Koyanagi S, Farman ML, Kusaba M, Yaegashi H. Genetic Mapping and Chromosomal Assignment of Magnaporthe oryzae Avirulence Genes AvrPik, AvrPiz, and AvrPiz-t Controlling Cultivar Specificity on Rice. PHYTOPATHOLOGY 2005; 95:640-647. [PMID: 18943780 DOI: 10.1094/phyto-95-0640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT A genetic map including three avirulence (Avr) genes, AvrPik, AvrPiz, and AvrPiz-t, was constructed in a genetic cross of two rice field isolates, 84R-62B and Y93-245c-2. The chromosomal locations of the Avr genes were determined by using selected markers to probe Southern blots of the parental chromosomes that had been separated by contour-clamped homogenous electric fields electrophoresis. Electrophoretic karyotyping showed that both parental isolates 84R-62B and Y93-245c-2 contained seven chromosomes greater than 3.5 megabases (Mb) in size and 84R-62B possessed a small chromosome of approximately 1.6 Mb. The linkage groups containing AvrPiz and AvrPiz-t were assigned to chromosomes 3 and 7, respectively. Some markers from the linkage group that contained AvrPik hybridized with chromosome 1 and the 1.6-Mb chromosome, yet all of the cloned RAPD markers that were closely linked to AvrPik hybridized exclusively to the 1.6-Mb chromosome in 84R-62B, the parent that possesses AvrPik. Thus, we conclude that AvrPik is located on the 1.6-Mb chromosome in 84R-62B.
Collapse
|
44
|
Ebbole DJ, Jin Y, Thon M, Pan H, Bhattarai E, Thomas T, Dean R. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1337-1347. [PMID: 15597739 DOI: 10.1094/mpmi.2004.17.12.1337] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over 28,000 expressed sequence tags (ESTs) were produced from cDNA libraries representing a variety of growth conditions and cell types. Several Magnaporthe grisea strains were used to produce the libraries, including a nonpathogenic strain bearing a mutation in the PMK1 mitogen-activated protein kinase. Approximately 23,000 of the ESTs could be clustered into 3,050 contigs, leaving 5,127 singleton sequences. The estimate of 8,177 unique sequences indicates that over half of the genes of the fungus are represented in the ESTs. Analysis of EST frequency reveals growth and cell type-specific patterns of gene expression. This analysis establishes criteria for identification of fungal genes involved in pathogenesis. A large fraction of the genes represented by ESTs have no known function or described homologs. Manual annotation of the most abundant cDNAs with no known homologs allowed us to identify a family of metallothionein proteins present in M. grisea, Neurospora crassa, and Fusarium graminearum. In addition, multiply represented ESTs permitted the identification of alternatively spliced mRNA species. Alternative splicing was rare, and in most cases, the alternate mRNA forms were unspliced, although alternative 5' splice sites were also observed.
Collapse
Affiliation(s)
- Daniel J Ebbole
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology & Microbiology, Texas A&M University, College Station, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Linning R, Lin D, Lee N, Abdennadher M, Gaudet D, Thomas P, Mills D, Kronstad JW, Bakkeren G. Marker-based cloning of the region containing the UhAvr1 avirulence gene from the basidiomycete barley pathogen Ustilago hordei. Genetics 2004; 166:99-111. [PMID: 15020410 PMCID: PMC1470683 DOI: 10.1534/genetics.166.1.99] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Race-cultivar specialization during the interaction of the basidiomycete smut pathogen Ustilago hordei with its barley host was described in the 1940s. Subsequent genetic analyses revealed the presence of dominant avirulence genes in the pathogen that conform to the gene-for-gene theory. This pathosystem therefore presents an opportunity for the molecular genetic characterization of fungal genes controlling avirulence. We performed a cross between U. hordei strains to obtain 54 progeny segregating for three dominant avirulence genes on three differential barley cultivars. Bulked segregant analysis was used to identify RAPD and AFLP markers tightly linked to the avirulence gene UhAvr1. The UhAvr1 gene is located in an area containing repetitive DNA and this region is undetectable in cosmid libraries prepared from the avirulent parental strain. PCR and hybridization probes developed from the linked markers were therefore used to identify cosmid clones from the virulent (Uhavr1) parent. By walking on Uhavr1-linked cosmid clones, a nonrepetitive, nearby probe was found that recognized five overlapping BAC clones spanning 170 kb from the UhAvr1 parent. A contig of the clones in the UhAvr1 region was constructed and selected probes were used for RFLP analysis of the segregating population. This approach genetically defined an approximately 80-kb region that carries the UhAvr1 gene and provided cloned sequences for subsequent genetic analysis. UhAvr1 represents the first avirulence gene cloned from a basidiomycete plant pathogen.
Collapse
Affiliation(s)
- R Linning
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. THE PLANT CELL 2004; 16:2499-513. [PMID: 15319478 PMCID: PMC520948 DOI: 10.1105/tpc.104.022715] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 06/11/2004] [Indexed: 05/18/2023]
Abstract
Isolates of the rice blast fungus Magnaporthe grisea that carry the gene encoding Avirulence Conferring Enzyme1 (ACE1) are specifically recognized by rice (Oryza sativa) cultivars carrying the resistance gene Pi33. This recognition enables resistant plants to activate a defense response. ACE1 was isolated by map-based cloning and encodes a putative hybrid between a polyketide synthase and a nonribosomal peptide synthetase, enzymes involved in microbial secondary metabolism. ACE1 is expressed exclusively during fungal penetration of host leaves, the time point at which plant defense reactions are triggered. Ace1 appears to be localized in the cytoplasm of the appressorium. Mutation of the putative catalytic site of the beta-ketoacyl synthase domain of Ace1 abolishes recognition of the fungus by resistant rice. This suggests that Ace1 biosynthetic activity is required for avirulence. Our results are consistent with the hypothesis that the fungal signal recognized by resistant rice plants is the secondary metabolite whose synthesis depends on Ace1.
Collapse
Affiliation(s)
- Heidi U Böhnert
- FRE 2579 Centre National de la Recherche Scientifique/Bayer CropScience, F-69263 Lyon Cedex 09, France
| | | | | | | | | | | |
Collapse
|
47
|
Routledge APM, Shelley G, Smith JV, Talbot NJ, Draper J, Mur LAJ. Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). MOLECULAR PLANT PATHOLOGY 2004; 5:253-65. [PMID: 20565594 DOI: 10.1111/j.1364-3703.2004.00224.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
SUMMARY Germplasm of Brachypodium distachyon was inoculated with Magnaporthe grisea using either rice- (Guy11) or grass-adapted (FAG1.1.1, PA19w-06, PA31v-01) host-limited forms of the fungus, and interactions with varying degrees of susceptibility and resistance were identified. Ecotype ABR5 was resistant to each M. grisea strain whereas ABR1 was susceptible to all but P31vi-01. Mendelian segregation in ABR1 x ABR5 crosses suggested that a single dominant resistance gene conferred resistance to Guy11. Microscopic analyses revealed that the aetiology of Guy11 fungal development and disease progression in ABR1 closely resembled that of rice infections. In ABR5, Guy11 pathogenesis was first suppressed at 48 h post-inoculation, at the secondary hyphal formation stage and was coincident with cytoplasmic granulation. Resistance to strains PA31v-01 and FAG1.1.1 was associated with a localized cell death with little callose deposition. 3,3-Diaminobenzidine staining indicated the elicitation of cell death in B. distachyon was preceded by oxidative stress in the interacting epidermal cells and the underlying mesophyll cells. Northern blot hybridization using probes for barley genes (PR1, PR5 and PAL) indicated that each was more rapidly expressed in ABR5 challenged with Guy11 although the B. distachyon defence genes BD1 and BD8 were more quickly induced in ABR1. Such data show that B. distachyon is an appropriate host for functional genomic investigations into M. grisea pathology and plant responses.
Collapse
Affiliation(s)
- Andrew P M Routledge
- Institute of Biological Sciences, University of Wales, Aberystwyth, Edward Llwyd Building Ceredigion, Aberystwyth SY23 3DA, Wales, UK
| | | | | | | | | | | |
Collapse
|
48
|
Luo CX, Fujita Y, Yasuda N, Hirayae K, Nakajima T, Hayashi N, Kusaba M, Yaegashi H. Identification of Magnaporthe oryzae Avirulence Genes to Three Rice Blast Resistance Genes. PLANT DISEASE 2004; 88:265-270. [PMID: 30812358 DOI: 10.1094/pdis.2004.88.3.265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The segregation of avirulence/virulence was studied in 115 F1 progeny isolates of Magnaporthe oryzae from a cross of two field isolates on three Japanese race-differential rice cultivars Kanto 51, Fukunishiki, and Toride 1. The χ2 tests of goodness-of-fit for a 1:1 ratio indicated that avirulence on cvs. Kanto 51, Fukunishiki, and Toride 1 was under monogenic control. The relationship between the avirulence (Avr) gene in the parental isolate and the Avr gene in the standard isolate was investigated by using 100 lines each of three F3 families from the crosses of the rice cultivars Norin 3/Kanto 51, AK61/Fukunishiki, and Norin 3/Toride 1, respectively. Based on the resistant reactions of the F3 rice lines to the parental isolates and the standard isolates harboring three known Avr genes, three genetically independent Avr genes, AvrPik, AvrPiz, and AvrPiz-t, were identified. The three identified Avr genes were mapped using random amplified polymorphic DNA (RAPD) analysis, and a partial linkage map was constructed with 17 RAPD markers closely linked to the Avr genes. Twelve markers and AvrPik, three markers and AvrPiz, and two markers and AvrPiz-t, as well as mating locus MAT1, constructed linkage groups A, B, and C, respectively.
Collapse
Affiliation(s)
- C X Luo
- Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Y Fujita
- National Agricultural Research Center for Hokkaido Region, Sapporo, 062-8555, Japan
| | - N Yasuda
- National Agricultural Research Center, Tsukuba, 305-8666, Japan
| | - K Hirayae
- National Agricultural Research Center, Joetsu, 943-0193, Japan
| | - T Nakajima
- National Agricultural Research Center for Kyushu Okinawa Region, Kumamoto, 861-1192, Japan
| | - N Hayashi
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
| | - M Kusaba
- Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - H Yaegashi
- Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| |
Collapse
|
49
|
Whisson SC, Basnayake S, Maclean DJ, Irwin JAG, Drenth A. Phytophthora sojae avirulence genes Avr4 and Avr6 are located in a 24kb, recombination-rich region of genomic DNA. Fungal Genet Biol 2004; 41:62-74. [PMID: 14643260 DOI: 10.1016/j.fgb.2003.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cross between two different races (race 7xrace 25) of the soybean root and stem rot pathogen Phytophthora sojae was analyzed to characterize the genomic region flanking two cosegregating avirulence genes, Avr4 and Avr6. Both genes cosegregated in the ratio of 82:17 (avirulent:virulent) in an F(2) population, suggestive of a single locus controlling both phenotypes. A chromosome walk was commenced from RAPD marker OPE7.1C, 2.0cM distant from the Avr4/6 locus. Three overlapping cosmids were isolated which included genetic markers that flank the Avr4/6 locus. The chromosome walk spanned a physical distance of 67kb which represented a genetic map distance of 22.3cM, an average recombination frequency of 3.0kb/cM and 11.7-fold greater than the predicted average recombination frequency of 35.3kb/cM for the entire P. sojae genome. Six genes (cDNA clones) expressed from the Avr4/6 genomic region encompassed by the cosmid contig were identified. Single nucleotide polymorphisms and restriction fragment length polymorphisms showed these six genes were closely linked to the Avr4/6 locus. Physical mapping of the cDNA clones within the cosmid contig made it possible to deduce the precise linkage order of the cDNAs. None of the six cDNA clones appear to be candidates for Avr4/6. We conclude that two of these cDNA clones flank a physical region of approximately 24kb and 4.3cM that appears to include the Avr4/6 locus.
Collapse
Affiliation(s)
- Stephen C Whisson
- Plant Pathogen Interactions Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | | | | | | | | |
Collapse
|
50
|
Bakkeren G, Gold S. The path in fungal plant pathogenicity: many opportunities to outwit the intruders? GENETIC ENGINEERING 2004; 26:175-223. [PMID: 15387298 DOI: 10.1007/978-0-306-48573-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The number of genes implicated in the infection and disease processes of phytopathogenic fungi is increasing rapidly. Forward genetic approaches have identified mutated genes that affect pathogenicity, host range, virulence and general fitness. Likewise, candidate gene approaches have been used to identify genes of interest based on homology and recently through 'comparative genomic approaches' through analysis of large EST databases and whole genome sequences. It is becoming clear that many genes of the fungal genome will be involved in the pathogen-host interaction in its broadest sense, affecting pathogenicity and the disease process in planta. By utilizing the information obtained through these studies, plants may be bred or engineered for effective disease resistance. That is, by trying to disable pathogens by hitting them where it counts.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture & Agri-Food Canada,Pacific Agri-Food Research Centre, Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|