1
|
Ford JJ, Santos-Aberturas J, Hems ES, Sallmen JW, Bögeholz LAK, Polturak G, Osbourn A, Wright JA, Rodnina MV, Vereecke D, Francis IM, Truman AW. Identification of the lydiamycin biosynthetic gene cluster in a plant pathogen guides structural revision and identification of molecular target. Proc Natl Acad Sci U S A 2025; 122:e2424388122. [PMID: 40388608 DOI: 10.1073/pnas.2424388122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/21/2025] Open
Abstract
The natural products actinonin and matlystatin feature an N-hydroxy-2-pentyl-succinamyl (HPS) chemophore that facilitates metal chelation and confers their metalloproteinase inhibitory activity. Actinonin is the most potent natural inhibitor of peptide deformylase (PDF) and exerts antimicrobial and herbicidal bioactivity by disrupting protein synthesis. Here, we used a genomics-led approach to identify candidate biosynthetic gene clusters (BGCs) hypothesized to produce HPS-containing natural products. We show that one of these BGCs is on the pathogenicity megaplasmid of the plant pathogen Rhodococcus fascians and produces lydiamycin A, a macrocyclic pentapeptide. The presence of genes predicted to make an HPS-like chemophore informed the structural recharacterization of lydiamycin via NMR and crystallography to show that it features a rare 2-pentyl-succinyl chemophore. We demonstrate that lydiamycin A inhibits bacterial PDF in vitro and show that a cluster-situated PDF gene confers resistance to lydiamycin A, representing an uncommon self-immunity mechanism associated with the production of a PDF inhibitor. In planta competition assays showed that lydiamycin enhances the fitness of R. fascians during plant colonization. This study highlights how a BGC can inform the structure, biochemical target, and ecological function of a natural product.
Collapse
Affiliation(s)
- Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Javier Santos-Aberturas
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Joseph W Sallmen
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lena A K Bögeholz
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joseph A Wright
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Danny Vereecke
- School of Nursing, Howest University of Applied Sciences, Bruges 8200, Belgium
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA 93311
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| |
Collapse
|
2
|
Willner DL, Paudel S, Halleran AD, Solini GE, Gray V, Saha MS. Transcriptional dynamics during Rhodococcus erythropolis infection with phage WC1. BMC Microbiol 2024; 24:107. [PMID: 38561651 PMCID: PMC10986025 DOI: 10.1186/s12866-024-03241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Belonging to the Actinobacteria phylum, members of the Rhodococcus genus thrive in soil, water, and even intracellularly. While most species are non-pathogenic, several cause respiratory disease in animals and, more rarely, in humans. Over 100 phages that infect Rhodococcus species have been isolated but despite their importance for Rhodococcus ecology and biotechnology applications, little is known regarding the molecular genetic interactions between phage and host during infection. To address this need, we report RNA-Seq analysis of a novel Rhodococcus erythopolis phage, WC1, analyzing both the phage and host transcriptome at various stages throughout the infection process. RESULTS By five minutes post-infection WC1 showed upregulation of a CAS-4 family exonuclease, putative immunity repressor, an anti-restriction protein, while the host showed strong upregulation of DNA replication, SOS repair, and ribosomal protein genes. By 30 min post-infection, WC1 DNA synthesis genes were strongly upregulated while the host showed increased expression of transcriptional and translational machinery and downregulation of genes involved in carbon, energy, and lipid metabolism pathways. By 60 min WC1 strongly upregulated structural genes while the host showed a dramatic disruption of metal ion homeostasis. There was significant expression of both host and phage non-coding genes at all time points. While host gene expression declined over the course of infection, our results indicate that phage may exert more selective control, preserving the host's regulatory mechanisms to create an environment conducive for virion production. CONCLUSIONS The Rhodococcus genus is well recognized for its ability to synthesize valuable compounds, particularly steroids, as well as its capacity to degrade a wide range of harmful environmental pollutants. A detailed understanding of these phage-host interactions and gene expression is not only essential for understanding the ecology of this important genus, but will also facilitate development of phage-mediated strategies for bioremediation as well as biocontrol in industrial processes and biomedical applications. Given the current lack of detailed global gene expression studies on any Rhodococcus species, our study addresses a pressing need to identify tools and genes, such as F6 and rpf, that can enhance the capacity of Rhodococcus species for bioremediation, biosynthesis and pathogen control.
Collapse
Affiliation(s)
- Dana L Willner
- Data Science Program, William & Mary, Williamsburg, VA, USA
| | - Sudip Paudel
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Wyss Institute, Harvard University, Cambridge, MA, USA
| | - Andrew D Halleran
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Atalaya Capital Management, New York, NY, USA
| | - Grace E Solini
- Department of Biology, William & Mary, Williamsburg, VA, USA
- California Institute of Technology, Pasadena, CA, USA
| | - Veronica Gray
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Margaret S Saha
- Department of Biology, William & Mary, Williamsburg, VA, USA.
| |
Collapse
|
3
|
Dinev T, Velichkova K, Stoyanova A, Sirakov I. Microbial Pathogens in Aquaponics Potentially Hazardous for Human Health. Microorganisms 2023; 11:2824. [PMID: 38137969 PMCID: PMC10745371 DOI: 10.3390/microorganisms11122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
The union of aquaculture and hydroponics is named aquaponics-a system where microorganisms, fish and plants coexist in a water environment. Bacteria are essential in processes which are fundamental for the functioning and equilibrium of aquaponic systems. Such processes are nitrification, extraction of various macro- and micronutrients from the feed leftovers and feces, etc. However, in aquaponics there are not only beneficial, but also potentially hazardous microorganisms of fish, human, and plant origin. It is important to establish the presence of human pathogens, their way of entering the aforementioned systems, and their control in order to assess the risk to human health when consuming plants and fish grown in aquaponics. Literature analysis shows that aquaponic bacteria and yeasts are mainly pathogenic to fish and humans but rarely to plants, while most of the molds are pathogenic to humans, plants, and fish. Since the various human pathogenic bacteria and fungi found in aquaponics enter the water when proper hygiene practices are not applied and followed, if these requirements are met, aquaponic systems are a good choice for growing healthy fish and plants safe for human consumption. However, many of the aquaponic pathogens are listed in the WHO list of drug-resistant bacteria for which new antibiotics are urgently needed, making disease control by antibiotics a real challenge. Because pathogen control by conventional physical methods, chemical methods, and antibiotic treatment is potentially harmful to humans, fish, plants, and beneficial microorganisms, a biological control with antagonistic microorganisms, phytotherapy, bacteriophage therapy, and nanomedicine are potential alternatives to these methods.
Collapse
Affiliation(s)
- Toncho Dinev
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Katya Velichkova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Antoniya Stoyanova
- Department of Plant Production, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Ivaylo Sirakov
- Department of Animal Husbandry–Non-Ruminant Animals and Special Branches, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
4
|
Roy S, Agarwal T, Das A, Halder T, Upadhyaya G, Chaubey B, Ray S. The C-terminal stretch of glycine-rich proline-rich protein (SbGPRP1) from Sorghum bicolor serves as an antimicrobial peptide by targeting the bacterial outer membrane protein. PLANT MOLECULAR BIOLOGY 2023; 111:131-151. [PMID: 36271987 DOI: 10.1007/s11103-022-01317-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The C-terminal stretch in SbGPRP1 (Sorghum glycine-rich proline-rich protein) acts as an antimicrobial peptide in the host innate defense mechanism. Cationic antimicrobial proteins or peptides can either bind to the bacterial membrane or target a specific protein on the bacterial membrane thus leading to membrane perturbation. The 197 amino acid polypeptide of SbGPRP1 showed disordered structure at the N-terminal end and ordered conformation at the C-terminal end. In the present study, the expression of N-SbGPRP1, C-SbGPRP1, and ∆SbGPRP1 followed by antimicrobial assays showed potential antimicrobial property of the C-terminal peptide against gram-positive bacteria Bacillus subtilis and phytopathogen Rhodococcus fascians. The SbGPRP1 protein loses its antimicrobial property when the 23 amino acid sequence (GHGGHGVFGGGYGHGGYGHGYGG) from position 136 to 158 is deleted from the protein. Thus, it can be concluded that the 23 amino acid sequence is vital for the said antimicrobial property. NPN assay, SEM analysis, and electrolyte leakage assays showed potent antimicrobial activity for C-SbGPRP1. Overexpression of the C-SbGPRP1 mutant protein in tobacco followed by infection with Rhodococcus fascians inhibited bacterial growth as shown by SEM analysis. To determine if C-SbGPRP1 might target any protein on the bacterial membrane we isolated the bacterial membrane protein from both Bacillus subtilis and Rhodococcus fascians. Bacterial membrane protein that interacted with the column-bound C-SbGPRP1 was eluted and subjected to LC-MS/MS. LC-MS/MS data analysis showed peptide hit with membrane protein YszA from Bacillus subtilis and a membrane protein from Rhodococcus fascians. Isolated bacterial membrane protein from Bacillus subtilis or Rhodococcus fascians was able to reduce the antimicrobial activity of C-SbGPRP1. Furthermore, BiFC experiments showed interactions between C-SbGPRP1 and YszA protein from Bacillus subtilis leading to the conclusion that bacterial membrane protein was targeted in such membrane perturbation leading to antimicrobial activity.
Collapse
Affiliation(s)
- Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Binay Chaubey
- Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
5
|
Yang SH, Shan L, Chu KH. Fate and Transformation of 6:2 Fluorotelomer Sulfonic Acid Affected by Plant, Nutrient, Bioaugmentation, and Soil Microbiome Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10721-10731. [PMID: 35830472 PMCID: PMC10134682 DOI: 10.1021/acs.est.2c01867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
6:2 Fluorotelomer sulfonic acid (6:2 FTSA) is a dominant per- and poly-fluoroalkyl substance (PFAS) in aqueous film-forming foam (AFFF)-impacted soil. While its biotransformation mechanisms have been studied, the complex effects from plants, nutrients, and soil microbiome interactions on the fate and removal of 6:2 FTSA are poorly understood. This study systematically investigated the potential of phytoremediation for 6:2 FTSA byArabidopsis thalianacoupled with bioaugmentation ofRhodococcus jostiiRHA1 (designated as RHA1 hereafter) under different nutrient and microbiome conditions. Hyperaccumulation of 6:2 FTSA, defined as tissue/soil concentration > 10 and high translocation factor > 3, was observed in plants. However, biotransformation of 6:2 FTSA only occurred under sulfur-limited conditions. Spiking RHA1 not only enhanced the biotransformation of 6:2 FTSA in soil but also promoted plant growth. Soil microbiome analysis uncovered Rhodococcus as one of the dominant species in all RHA1-spiked soil. Different nutrients such as sulfur and carbon, bioaugmentation, and amendment of 6:2 FTSA caused significant changes in - microbial community structure. This study revealed the synergistic effects of phytoremediation and bioaugmentation on 6:2 FTSA removal. and highlighted that the fate of 6:2 FTSA was highly influced by the complex interactions of plants, nutrients, and soil microbiome.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Libo Shan
- Institute for Plant Genomics and Biotechnology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
7
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
8
|
Detection of Rhodococcus fascians, the Causative Agent of Lily Fasciation in South Korea. Pathogens 2021; 10:pathogens10020241. [PMID: 33672562 PMCID: PMC7924060 DOI: 10.3390/pathogens10020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
Rhodococcus fascians is an important pathogen that infects various herbaceous perennials and reduces their economic value. In this study, we examined R. fascians isolates carrying a virulence gene from symptomatic lily plants grown in South Korea. Phylogenetic analysis using the nucleotide sequences of 16S rRNA, vicA, and fasD led to the classification of the isolates into four different strains of R. fascians. Inoculation of Nicotiana benthamiana with these isolates slowed root growth and resulted in symptoms of leafy gall. These findings elucidate the diversification of domestic pathogenic R. fascians and may lead to an accurate causal diagnosis to help reduce economic losses in the bulb market.
Collapse
|
9
|
Pátek M, Grulich M, Nešvera J. Stress response in Rhodococcus strains. Biotechnol Adv 2021; 53:107698. [PMID: 33515672 DOI: 10.1016/j.biotechadv.2021.107698] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Rhodococci are bacteria which can survive under various extreme conditions, in the presence of toxic compounds, and in other hostile habitats. Their tolerance of unfavorable conditions is associated with the structure of their cell wall and their large array of enzymes, which degrade or detoxify harmful compounds. Their physiological and biotechnological properties, together with tools for their genetic manipulation, enable us to apply them in biotransformations, biodegradation and bioremediation. Many such biotechnological applications cause stresses that positively or negatively affect their efficiency. Whereas numerous reviews on rhodococci described their enzyme activities, the optimization of degradation or production processes, and corresponding technological solutions, only a few reviews discussed some specific effects of stresses on the physiology of rhodococci and biotechnological processes. This review aims to comprehensively describe individual stress responses in Rhodococcus strains, the interconnection of different types of stresses and their consequences for cell physiology. We examine here the responses to (1) environmental stresses (desiccation, heat, cold, osmotic and pH stress), (2) the presence of stress-inducing compounds (metals, organic compounds and antibiotics) in the environment (3) starvation and (4) stresses encountered during biotechnological applications. Adaptations of the cell envelope, the formation of multicellular structures and stresses induced by the interactions of hosts with pathogenic rhodococci are also included. The roles of sigma factors of RNA polymerase in the global regulation of stress responses in rhodococci are described as well. Although the review covers a large number of stressful conditions, our intention was to provide an overview of the selected stress responses and their possible connection to biotechnological processes, not an exhaustive survey of the scientific literature. The findings on stress responses summarized in this review and the demonstration of gaps in current knowledge may motivate researchers working to fill these gaps.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Michal Grulich
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| |
Collapse
|
10
|
Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Comparative Genomics of the Rhodococcus Genus Shows Wide Distribution of Biodegradation Traits. Microorganisms 2020; 8:microorganisms8050774. [PMID: 32455698 PMCID: PMC7285261 DOI: 10.3390/microorganisms8050774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
The genus Rhodococcus exhibits great potential for bioremediation applications due to its huge metabolic diversity, including biotransformation of aromatic and aliphatic compounds. Comparative genomic studies of this genus are limited to a small number of genomes, while the high number of sequenced strains to date could provide more information about the Rhodococcus diversity. Phylogenomic analysis of 327 Rhodococcus genomes and clustering of intergenomic distances identified 42 phylogenomic groups and 83 species-level clusters. Rarefaction models show that these numbers are likely to increase as new Rhodococcus strains are sequenced. The Rhodococcus genus possesses a small “hard” core genome consisting of 381 orthologous groups (OGs), while a “soft” core genome of 1253 OGs is reached with 99.16% of the genomes. Models of sequentially randomly added genomes show that a small number of genomes are enough to explain most of the shared diversity of the Rhodococcus strains, while the “open” pangenome and strain-specific genome evidence that the diversity of the genus will increase, as new genomes still add more OGs to the whole genomic set. Most rhodococci possess genes involved in the degradation of aliphatic and aromatic compounds, while short-chain alkane degradation is restricted to a certain number of groups, among which a specific particulate methane monooxygenase (pMMO) is only found in Rhodococcus sp. WAY2. The analysis of Rieske 2Fe-2S dioxygenases among rhodococci genomes revealed that most of these enzymes remain uncharacterized.
Collapse
|
11
|
Garrido-Sanz D, Sansegundo-Lobato P, Redondo-Nieto M, Suman J, Cajthaml T, Blanco-Romero E, Martin M, Uhlik O, Rivilla R. Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microb Genom 2020; 6. [PMID: 32238227 PMCID: PMC7276702 DOI: 10.1099/mgen.0.000363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The complete genome sequence of Rhodococcus sp. WAY2 (WAY2) consists of a circular chromosome, three linear replicons and a small circular plasmid. The linear replicons contain typical actinobacterial invertron-type telomeres with the central CGTXCGC motif. Comparative phylogenetic analysis of the 16S rRNA gene along with phylogenomic analysis based on the genome-to-genome blast distance phylogeny (GBDP) algorithm and digital DNA–DNA hybridization (dDDH) with other Rhodococcus type strains resulted in a clear differentiation of WAY2, which is likely a new species. The genome of WAY2 contains five distinct clusters of bph, etb and nah genes, putatively involved in the degradation of several aromatic compounds. These clusters are distributed throughout the linear plasmids. The high sequence homology of the ring-hydroxylating subunits of these systems with other known enzymes has allowed us to model the range of aromatic substrates they could degrade. Further functional characterization revealed that WAY2 was able to grow with biphenyl, naphthalene and xylene as sole carbon and energy sources, and could oxidize multiple aromatic compounds, including ethylbenzene, phenanthrene, dibenzofuran and toluene. In addition, WAY2 was able to co-metabolize 23 polychlorinated biphenyl congeners, consistent with the five different ring-hydroxylating systems encoded by its genome. WAY2 could also use n-alkanes of various chain-lengths as a sole carbon source, probably due to the presence of alkB and ladA gene copies, which are only found in its chromosome. These results show that WAY2 has a potential to be used for the biodegradation of multiple organic compounds.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Paula Sansegundo-Lobato
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Tomas Cajthaml
- Laboratory of Environmental Biotechnology, Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 14200 Prague, Czech Republic
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
12
|
Abstract
OBJECTIVES Microbial communities influencing health and disease are being increasingly studied in preterm neonates. There exists little data, however, detailing longitudinal microbial acquisition, especially in the most extremely preterm (<26 weeks' gestation). This study aims to characterize the development of the microbiota in this previously under-represented cohort. METHODS Seven extremely preterm infant-mother dyads (mean gestation 23.6 weeks) were recruited from a single neonatal intensive care unit. Oral and endotracheal secretions, stool, and breast milk (n = 157 total), were collected over the first 60 days of life. Targeted 16S rRNA gene sequencing identified bacterial communities present. RESULTS Microbiota of all body sites were most similar immediately following birth and diverged longitudinally. Throughout the sampling period Escherichia, Enterococcus, Staphylococcus, and an Enterobacteriaceae were dominant and well dispersed across all sites. Temporal divergence of the stool from other microbiota was driven by decreasing diversity and significantly greater proportional abundance of Bifidobacteriaceae compared to other sites. CONCLUSIONS Four taxa dominated all anatomical sampling sites. Rare taxa promoted dissimilarity. Cross-seeding between upstream communities and the stool was demonstrated, possibly relating to buccal colostrum/breast milk exposure and indwelling tubes. Given the importance of dysbiosis in health and disease of extremely preterm infants, better understanding of microbial acquisition within this context may be of clinical benefit.
Collapse
|
13
|
Thapa SP, Davis EW, Lyu Q, Weisberg AJ, Stevens DM, Clarke CR, Coaker G, Chang JH. The Evolution, Ecology, and Mechanisms of Infection by Gram-Positive, Plant-Associated Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:341-365. [PMID: 31283433 DOI: 10.1146/annurev-phyto-082718-100124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gram-positive bacteria are prominent members of plant-associated microbial communities. Although many are hypothesized to be beneficial, some are causative agents of economically important diseases of crop plants. Because the features of Gram-positive bacteria are fundamentally different relative to those of Gram-negative bacteria, the evolution and ecology as well as the mechanisms used to colonize and infect plants also differ. Here, we discuss recent advances in our understanding of Gram-positive, plant-associated bacteria and provide a framework for future research directions on these important plant symbionts.
Collapse
Affiliation(s)
- Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| | - Qingyang Lyu
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Danielle M Stevens
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Integrative Genetics and Genomics, University of California, Davis, California 95616, USA
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
14
|
Francis IM, Vereecke D. Plant-Associated Rhodococcus Species, for Better and for Worse. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Randall JJ, Stamler RA, Kallsen CE, Fichtner EJ, Heerema RJ, Cooke P, Francis I. Comment on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management". eLife 2018; 7:35272. [PMID: 29737967 PMCID: PMC5951677 DOI: 10.7554/elife.35272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
We would like to address a number of concerns regarding this paper (Savory et al., 2017)
Collapse
Affiliation(s)
- Jennifer J Randall
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, United States
| | - Rio A Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, United States
| | - Craig E Kallsen
- University of California, Cooperative Extension, Bakersfield, United States
| | | | - Richard J Heerema
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, United States
| | - Peter Cooke
- Core University Research Resource Laboratory, New Mexico State University, Las Cruces, United States
| | - Isolde Francis
- Department of Biology, California State University, Bakersfield, United States
| |
Collapse
|
16
|
Vereecke D. Comment on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management". eLife 2018; 7:35238. [PMID: 29737966 PMCID: PMC5951678 DOI: 10.7554/elife.35238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
I would like to report significant issues of concern regarding this paper (Savory et al., 2017).
Collapse
Affiliation(s)
- Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Dolzblasz A, Banasiak A, Vereecke D. Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. PLANTA 2018; 247:215-228. [PMID: 28942496 DOI: 10.1007/s00425-017-2778-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland.
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Dhandapani P, Song J, Novak O, Jameson PE. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. ANNALS OF BOTANY 2017; 119:841-852. [PMID: 27864224 PMCID: PMC5378184 DOI: 10.1093/aob/mcw202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 05/06/2023]
Abstract
Background and Aims Pisum sativum L. (pea) seed is a source of carbohydrate and protein for the developing plant. By studying pea seeds inoculated by the cytokinin-producing bacterium, Rhodococcus fascians , we sought to determine the impact of both an epiphytic (avirulent) strain and a pathogenic strain on source-sink activity within the cotyledons during and following germination. Methods Bacterial spread was monitored microscopically, and real-time reverse transcription-quantitative PCR was used to determine the expression of cytokinin biosynthesis, degradation and response regulator gene family members, along with expression of family members of SWEET , SUT , CWINV and AAP genes - gene families identified initially in pea by transcriptomic analysis. The endogenous cytokinin content was also determined. Key Results The cotyledons infected by the virulent strain remained intact and turned green, while multiple shoots were formed and root growth was reduced. The epiphytic strain had no such marked impact. Isopentenyl adenine was elevated in the cotyledons infected by the virulent strain. Strong expression of RfIPT , RfLOG and RfCKX was detected in the cotyledons infected by the virulent strain throughout the experiment, with elevated expression also observed for PsSWEET , PsSUT and PsINV gene family members. The epiphytic strain had some impact on the expression of these genes, especially at the later stages of reserve mobilization from the cotyledons. Conclusions The pathogenic strain retained the cotyledons as a sink tissue for the pathogen rather than the cotyledon converting completely to a source tissue for the germinating plant. We suggest that the interaction of cytokinins, CWINVs and SWEETs may lead to the loss of apical dominance and the appearance of multiple shoots.
Collapse
Affiliation(s)
- Pragatheswari Dhandapani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- School of Life Sciences, Yantai University, Yantai 264005, China
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Paula E. Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
19
|
Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. N Biotechnol 2016; 33:706-717. [PMID: 26877150 DOI: 10.1016/j.nbt.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase.
Collapse
|
20
|
Herrero OM, Moncalián G, Alvarez HM. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Microbiology (Reading) 2016; 162:384-397. [DOI: 10.1099/mic.0.000232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- O. Marisa Herrero
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales,Universidad Nacional de la Patagonia San Juan Bosco y CIT-CHUBUT CONICET, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia (Chubut), Argentina
- Oil m&s, Avenida Hipólito Yrigoyen 4250, 9000 Comodoro Rivadavia (Chubut), Argentina
| | - Gabriel Moncalián
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria,Universidad de Cantabria-Consejo Superior de Investigaciones Científicas-SODERCAN, Calle Albert Einstein 22, 39011 Santander,Spain
| | - Héctor M. Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales,Universidad Nacional de la Patagonia San Juan Bosco y CIT-CHUBUT CONICET, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia (Chubut), Argentina
| |
Collapse
|
21
|
Stamler RA, Kilcrease J, Kallsen C, Fichtner EJ, Cooke P, Heerema RJ, Randall JJ. First Report of Rhodococcus Isolates Causing Pistachio Bushy Top Syndrome on 'UCB-1' Rootstock in California and Arizona. PLANT DISEASE 2015; 99:1468-1476. [PMID: 30695969 DOI: 10.1094/pdis-12-14-1340-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'UCB-1' (Pistacia atlantica × Pistacia integerrima) rootstock is a hybrid cultivar widely used by the U.S. pistachio industry. In the last three years, a large number of micropropagated UCB-1 pistachio rootstocks planted in California and Arizona orchards exhibited shortened internodes, stunted growth, swollen lateral buds, bushy/bunchy growth, stem galls with multiple buds, and twisted roots with minimal lateral branching. Field T-budding success in affected orchards was reduced to approximately 30% with unusual bark cracking often observed around the bud-union. The percentage of abnormal rootstocks within affected orchards varied from 10 to 90%. We have termed the cumulative symptoms "pistachio bushy top syndrome" (PBTS) to describe these affected trees. Two isolates, both containing virulence factors from the phytopathogen Rhodococcus fascians, were identified on symptomatic trees in field and nursery samples. Micropropagated UCB-1 trees inoculated with the Rhodococcus isolates exhibited stunted growth, shortened internode length, swollen lateral buds, sylleptic branching, and differences in root morphology, compared with control UCB-1 trees. To our knowledge, this is the first report of Rhodococcus isolates, related to Rhodococcus fascians, causing disease on a commercial tree crop and the results presented indicate that this organism is responsible at least in part for PBTS in California and Arizona.
Collapse
Affiliation(s)
- Rio A Stamler
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003
| | - James Kilcrease
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003
| | - Craig Kallsen
- University of California, Cooperative Extension, Bakersfield, CA 93307
| | | | - Peter Cooke
- Core University Resource Laboratory, New Mexico State University, Las Cruces, NM 88003
| | | | - Jennifer J Randall
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003
| |
Collapse
|
22
|
Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 2015; 112:104-17. [DOI: 10.1016/j.mimet.2015.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|
23
|
Creason AL, Davis EW, Putnam ML, Vandeputte OM, Chang JH. Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. FRONTIERS IN PLANT SCIENCE 2014; 5:406. [PMID: 25237311 PMCID: PMC4154481 DOI: 10.3389/fpls.2014.00406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
The accurate diagnosis of diseases caused by pathogenic bacteria requires a stable species classification. Rhodococcus fascians is the only documented member of its ill-defined genus that is capable of causing disease on a wide range of agriculturally important plants. Comparisons of genome sequences generated from isolates of Rhodococcus associated with diseased plants revealed a level of genetic diversity consistent with them representing multiple species. To test this, we generated a tree based on more than 1700 homologous sequences from plant-associated isolates of Rhodococcus, and obtained support from additional approaches that measure and cluster based on genome similarities. Results were consistent in supporting the definition of new Rhodococcus species within clades containing phytopathogenic members. We also used the genome sequences, along with other rhodococcal genome sequences to construct a molecular phylogenetic tree as a framework for resolving the Rhodococcus genus. Results indicated that Rhodococcus has the potential for having 20 species and also confirmed a need to revisit the taxonomic groupings within Rhodococcus.
Collapse
Affiliation(s)
- Allison L. Creason
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Molecular and Cellular Biology Program, Oregon State UniversityCorvallis, OR, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Molecular and Cellular Biology Program, Oregon State UniversityCorvallis, OR, USA
| | - Melodie L. Putnam
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Olivier M. Vandeputte
- Laboratoire de Biotechnologie Vegetale, Universite Libre de BruxellesGosselies, Belgium
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Molecular and Cellular Biology Program, Oregon State UniversityCorvallis, OR, USA
- Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
24
|
Creason AL, Vandeputte OM, Savory EA, Davis EW, Putnam ML, Hu E, Swader-Hines D, Mol A, Baucher M, Prinsen E, Zdanowska M, Givan SA, Jaziri ME, Loper JE, Mahmud T, Chang JH. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS One 2014; 9:e101996. [PMID: 25010934 PMCID: PMC4092121 DOI: 10.1371/journal.pone.0101996] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022] Open
Abstract
Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of three loci present on a linear plasmid, with the fas operon central to virulence. The Fas proteins synthesize, modify, and activate a mixture of growth regulating cytokinins, which cause a hormonal imbalance in plants, resulting in abnormal growth. We sequenced and compared the genomes of 20 isolates of Rhodococcus to gain insights into the mechanisms and evolution of virulence in these bacteria. Horizontal gene transfer was identified as critical but limited in the scale of virulence evolution, as few loci are conserved and exclusive to phytopathogenic isolates. Although the fas operon is present in most phytopathogenic isolates, it is absent from phytopathogenic isolate A21d2. Instead, this isolate has a horizontally acquired gene chimera that encodes a novel fusion protein with isopentyltransferase and phosphoribohydrolase domains, predicted to be capable of catalyzing and activating cytokinins, respectively. Cytokinin profiling of the archetypal D188 isolate revealed only one activate cytokinin type that was specifically synthesized in a fas-dependent manner. These results suggest that only the isopentenyladenine cytokinin type is synthesized and necessary for Rhodococcus phytopathogenicity, which is not consistent with the extant model stating that a mixture of cytokinins is necessary for Rhodococcus to cause leafy gall symptoms. In all, data indicate that only four horizontally acquired functions are sufficient to confer the trait of phytopathogenicity to members of the genetically diverse clade of Rhodococcus.
Collapse
Affiliation(s)
- Allison L. Creason
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Olivier M. Vandeputte
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Elizabeth A. Savory
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Melodie L. Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Erdong Hu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - David Swader-Hines
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Adeline Mol
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Els Prinsen
- University of Antwerp, Department of Biology, Laboratory of Plant Growth and Development, Antwerp, Belgium
| | - Magdalena Zdanowska
- University of Antwerp, Department of Biology, Laboratory of Plant Growth and Development, Antwerp, Belgium
| | - Scott A. Givan
- Informatics Research Core Facility, University of Missouri, Columbia, Missouri, United States of America
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- United States Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Taifo Mahmud
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tarkowski P, Vereecke D. Threats and opportunities of plant pathogenic bacteria. Biotechnol Adv 2013; 32:215-29. [PMID: 24216222 DOI: 10.1016/j.biotechadv.2013.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/22/2013] [Accepted: 11/03/2013] [Indexed: 02/08/2023]
Abstract
Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae.
Collapse
Affiliation(s)
- Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| | - Danny Vereecke
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000 Ghent, Belgium.
| |
Collapse
|
26
|
Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D. The leafy gall syndrome induced byRhodococcus fascians. FEMS Microbiol Lett 2013; 342:187-94. [DOI: 10.1111/1574-6968.12119] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Isolde Francis
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Ine Pertry
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Alicja Dolzblasz
- Institute of Experimental Biology; Department of Plant Developmental Biology; Wrocław University; Wrocław; Poland
| | | | - Danny Vereecke
- Department of Plant Production; University College Ghent; Ghent University; Gent; Belgium
| |
Collapse
|
27
|
Serdani M, Curtis M, Miller ML, Kraus J, Putnam ML. Loop-Mediated Isothermal Amplification and Polymerase Chain Reaction Methods for Specific and Rapid Detection of Rhodococcus fascians. PLANT DISEASE 2013; 97:517-529. [PMID: 30722233 DOI: 10.1094/pdis-02-12-0214-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rhodococcus fascians is a phytopathogenic actinobacterium which causes leafy galls and other plant distortions that result in economically significant losses to nurseries producing ornamental plants. Traditional assays for detection and identification are time-consuming and laborious. We developed a rapid polymerase chain reaction (PCR) diagnostic assay based on two primer pairs, p450 and fas, which target the fasA and fasD genes, respectively, that are essential for pathogenicity. We also developed a faster, more convenient, loop-mediated isothermal amplification (LAMP) assay targeting the fasR gene, which regulates expression of virulence genes. Both assays were evaluated for sensitivity and specificity in vitro and in planta. The p450 and fas primers amplified DNA only from pure cultures of pathogenic reference isolates of R. fascians. Nonpathogenic isolates and 51 other plant-associated bacteria were not amplified. The PCR primers correctly detected pathogenic R. fascians from 73 of 75 (97%) bacterial strains isolated from naturally infected plants. The PCR assay correctly discriminated between pathogenic R. fascians and other bacteria in 132 of 139 (95%) naturally infected plants, and in 34 of 34 (100%) artificially inoculated plants. The fas primers were slightly more accurate than the p450 primers. The LAMP assay accurately detected pathogenic R. fascians in 26 of 28 (93%) naturally infected plants and did not react with 23 asymptomatic plants. The LAMP primers also amplified product for DNA extracts of 40 of 41 bacterial strains isolated from plants with leafy galls. The detection limit of both the PCR and LAMP assays was approximately 103 CFU/30-μl reaction. These new tools allow fast, reliable, and accurate detection of R. fascians in vitro and in planta. The LAMP assay in particular is a significant advancement in rapid R. fascians diagnostics, and enables those with limited laboratory facilities to confirm the presence of this pathogen in infected plants.
Collapse
Affiliation(s)
- M Serdani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M Curtis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M L Miller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - J Kraus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
28
|
Francis I, De Keyser A, De Backer P, Simón-Mateo C, Kalkus J, Pertry I, Ardiles-Diaz W, De Rycke R, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:637-47. [PMID: 22482837 DOI: 10.1094/mpmi-08-11-0215] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rhodococcus fascians is currently the only phytopathogen of which the virulence genes occur on a linear plasmid. To get insight into the origin of this replicon and into the virulence strategy of this broad-spectrum phytopathogen, the sequence of the linear plasmid of strain D188, pFiD188, was determined. Analysis of the 198,917 bp revealed four syntenic regions with linear plasmids of R. erythropolis, R. jostii, and R. opacus, suggesting a common origin of these replicons. Mutational analysis of pFi_086 and pFi_102, similar to cutinases and type IV peptidases, respectively, showed that conserved region R2 was involved in plasmid dispersal and pointed toward a novel function for actinobacterial cutinases in conjugation. Additionally, pFiD188 had three regions that were unique for R. fascians. Functional analysis of the stk and nrp loci of regions U2 and U3, respectively, indicated that their role in symptom development was limited compared with that of the previously identified fas, att, and hyp virulence loci situated in region U1. Thus, pFiD188 is a typical rhodococcal linear plasmid with a composite structure that encodes core functions involved in plasmid maintenance and accessory functions, some possibly acquired through horizontal gene transfer, implicated in virulence and the interaction with the host.
Collapse
Affiliation(s)
- Isolde Francis
- Department of Plant Biotechnology and Bioinformatics, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. A successful bacterial coup d'état: how Rhodococcus fascians redirects plant development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:69-86. [PMID: 21495844 DOI: 10.1146/annurev-phyto-072910-095217] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rhodococcus fascians is a gram-positive phytopathogen that induces differentiated galls, known as leafy galls, on a wide variety of plants, employing virulence genes located on a linear plasmid. The pathogenic strategy consists of the production of a mixture of six synergistically acting cytokinins that overwhelm the plant's homeostatic mechanisms, ensuring the activation of a signaling cascade that targets the plant cell cycle and directs the newly formed cells to differentiate into shoot meristems. The shoots that are formed upon infection remain immature and never convert to source tissues resulting in the establishment of a nutrient sink that is a niche for the epiphytic and endophytic R. fascians subpopulations. Niche formation is accompanied by modifications of the transcriptome, metabolome, physiology, and morphology of both host and pathogen. Here, we review a decade of research and set the outlines of the molecular basis of the leafy gall syndrome.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Stes E, Holsters M, Vereecke D. Phytopathogenic Strategies of Rhodococcus fascians. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
31
|
Nikolaeva EV, Park SY, Kang S, Olson TN, Kim SH. Ratios of Cells With and Without Virulence Genes in Rhodococcus fascians Populations Correlate with Degrees of Symptom Development. PLANT DISEASE 2009; 93:499-506. [PMID: 30764134 DOI: 10.1094/pdis-93-5-0499] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rhodococcus fascians, a gram-positive phytopathogenic bacterium, causes fasciation and leafy galls on a wide range of monocotyledonous and dicotyledonous plants for which it requires the plasmid-borne fas operon. Strains isolated from symptomatic plants over a 20-year-period exhibited a high degree of variability when their virulence was assessed on garden pea seedlings. Polymerase chain reaction amplification of the fas-1 and fasR virulence genes from randomly chosen single colonies showed that many strains consisted of two subpopulations, of which one had lost these genes. Inoculation of pea seedlings with mixtures of fas-1-positive and -negative cells that originated from the same strain demonstrated a strong correlation (Pearson's r ≥ 0.9205) between the proportion of cells in the inoculum carrying the fas-1 gene and the severity of disease symptoms. The minimal concentration of fas-1-positive cells required for the development of small lateral shoots on pea seedlings was 2.5 × 104 CFU/ml (P ≤ 0.008), while the overall suppression of main stem growth was observed at 2.5 × 105 CFU/ml (P ≤ 0.019). These observations underline that care should be taken when the virulence of clinical R. fascians strains is evaluated.
Collapse
Affiliation(s)
| | - Sook-Young Park
- Department of Plant Pathology, Penn State University, University Park, PA 16802
| | - Seogchan Kang
- Department of Plant Pathology, Penn State University, University Park, PA 16802
| | - Tracey N Olson
- Pennsylvania Department of Agriculture, Harrisburg 17110
| | - Seong H Kim
- Pennsylvania Department of Agriculture, Harrisburg 17110
| |
Collapse
|
32
|
Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou JP, Vuylsteke M, Holsters M, Vereecke D. An integrated genomics approach to define niche establishment by Rhodococcus fascians. PLANT PHYSIOLOGY 2009; 149:1366-86. [PMID: 19118125 PMCID: PMC2649413 DOI: 10.1104/pp.108.131805] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 12/25/2008] [Indexed: 05/18/2023]
Abstract
Rhodococcus fascians is a Gram-positive phytopathogen that induces shooty hyperplasia on its hosts through the secretion of cytokinins. Global transcriptomics using microarrays combined with profiling of primary metabolites on infected Arabidopsis (Arabidopsis thaliana) plants revealed that this actinomycete modulated pathways to convert its host into a niche. The transcript data demonstrated that R. fascians leaves a very characteristic mark on Arabidopsis with a pronounced cytokinin response illustrated by the activation of cytokinin perception, signal transduction, and homeostasis. The microarray data further suggested active suppression of an oxidative burst during the R. fascians pathology, and comparison with publicly available transcript data sets implied a central role for auxin in the prevention of plant defense activation. Gene Ontology categorization of the differentially expressed genes hinted at a significant impact of infection on the primary metabolism of the host, which was confirmed by subsequent metabolite profiling. The much higher levels of sugars and amino acids in infected plants are presumably accessed by the bacteria as carbon and nitrogen sources to support epiphytic and endophytic colonization. Hexoses, accumulating from a significantly increased invertase activity, possibly inhibited the expression of photosynthesis genes and photosynthetic activity in infected leaves. Altogether, these changes are indicative of sink development in symptomatic tissues. The metabolomics data furthermore point to the possible occurrence of secondary signaling during the interaction, which might contribute to symptom development. These data are placed in the context of regulation of bacterial virulence gene expression, suppression of defense, infection phenotype, and niche establishment.
Collapse
Affiliation(s)
- Stephen Depuydt
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci U S A 2009; 106:929-34. [PMID: 19129491 DOI: 10.1073/pnas.0811683106] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decades ago, the importance of cytokinins (CKs) during Rhodococcus fascians pathology had been acknowledged, and an isopentenyltransferase gene had been characterized in the fas operon of the linear virulence plasmid, but hitherto, no specific CK(s) could be associated with virulence. We show that the CK receptors AHK3 and AHK4 of Arabidopsis thaliana are essential for symptom development, and that the CK perception machinery is induced upon infection, underlining its central role in the symptomatology. Three classical CKs [isopentenyladenine, trans-zeatin, and cis-zeatin (cZ)] and their 2-methylthio (2MeS)-derivatives were identified by CK profiling of both the pathogenic R. fascians strain D188 and its nonpathogenic derivative D188-5. However, the much higher CK levels in strain D188 suggest that the linear plasmid is responsible for the virulence-associated production. All R. fascians CKs were recognized by AHK3 and AHK4, and, although they individually provoked typical CK responses in several bioassays, the mixture of bacterial CKs exhibited clear synergistic effects. The cis- and 2MeS-derivatives were poor substrates of the apoplastic CK oxidase/dehydrogenase enzymes and the latter were not cytotoxic at high concentrations. Consequently, the accumulating 2MeScZ (and cZ) in infected Arabidopsis tissue contribute to the continuous stimulation of tissue proliferation. Based on these results, we postulate that the R. fascians pathology is based on the local and persistent secretion of an array of CKs.
Collapse
|
34
|
Putnam ML, Miller ML. Rhodococcus fascians in Herbaceous Perennials. PLANT DISEASE 2007; 91:1064-1076. [PMID: 30780643 DOI: 10.1094/pdis-91-9-1064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
35
|
Vandeputte O, Lowe YO, Burssens S, VAN Raemdonck D, Hutin D, Boniver D, Geelen D, El Jaziri M, Baucher M. The tobacco Ntann12 gene, encoding an annexin, is induced upon Rhodoccocus fascians infection and during leafy gall development. MOLECULAR PLANT PATHOLOGY 2007; 8:185-94. [PMID: 20507490 DOI: 10.1111/j.1364-3703.2007.00385.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Annexins are calcium-binding proteins that have been associated in plants with different biological processes such as responses to abiotic stress and early nodulation stages. Until now, the implication of annexins during plant-pathogen interactions has not been reported. Here, a novel plant annexin gene induced in tobacco BY-2 cell suspension cultures infected with the phytopathogenic bacterium Rhodococcus fascians (strain D188) has been identified. Expression of this gene, called Ntann12, is also induced, but to a lower extent, by a strain (D188-5) that is unable to induce leafy gall formation. This gene was also induced in BY-2 cells infected with Pseudomonas syringae but not in cells infected with Agrobacterium tumefaciens or Escherichia coli. Ntann12 expression was also found to be stimulated by abiotic stress, including NaCl and abscissic acid, confirming a putative role in stress signal transduction pathways. In addition, promoter-GUS analyses using homozygous transgenic tobacco seedlings showed that the developmentally controlled expression of Ntann12 is altered upon R. fascians infection. Finally, up-regulation of Ntann12 during leafy gall ontogenesis was confirmed by RT-qPCR. Discussion is focused on the potential role of Ntann12 in biotic and abiotic stress responses and in plant development, both processes that may involve Ca(2+)-dependent signalling.
Collapse
Affiliation(s)
- Olivier Vandeputte
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, Rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aoshima H, Hirase T, Tada T, Ichimura N, Kato H, Nagata Y, Myoenzono T, Taguchi M, Takahashi K, Hukuzumi T, Aoki T, Makino S, Hagiya K, Ishiwata H. SAFETY EVALUATION OF A HEAVY OIL-DEGRADING BACTERIUM, RHODOCOCCUS ERYTHROPOLIS C2. J Toxicol Sci 2007; 32:69-78. [PMID: 17327695 DOI: 10.2131/jts.32.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The safety of an oil-degrading bacterium, C2 strain, was evaluated for utilization in an open system for bioremediation of oil-contaminated environments. The C2 strain was identified as Rhodococcus erythropolis by performing an alignment analysis of the whole 16S rRNA sequence. R. erythropolis was classified as a nonpathogenic (category 1) bacterium. Biological and biochemical properties of the C2 strain also confirmed its nonpathogenicity. The pathogenicity and basic ecotoxicity were studied in laboratory animals and in a variety of test species, respectively. General and inhalation toxicities were not detected; additionally, there was no evidence of skin irritation, mutagenic potential, eye irritation, skin sensitization, ecotoxicity or notable pathogenicity. The comparison of these results with human exposure levels and previously published data indicates that the C2 strain appears to be safe for utilization in bioremediation of polluted environments, requires no special occupational health precautions during the application process, and has a low environmental impact. This study suggests that the C2 strain could be suitable for bioremediation of oil-contaminated environments.
Collapse
Affiliation(s)
- Hisae Aoshima
- KRI Inc., Kyoto Research Park, 134 Chudoji-minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vandeputte O, Vereecke D, Mol A, Lenjou M, Van Bockstaele D, El Jaziri M, Baucher M. Rhodococcus fascians infection accelerates progression of tobacco BY-2 cells into mitosis through rapid changes in plant gene expression. THE NEW PHYTOLOGIST 2007; 175:140-154. [PMID: 17547674 DOI: 10.1111/j.1469-8137.2007.02062.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
* To characterize plant cell cycle activation following Rhodococcus fascians infection, bacterial impact on cell cycle progression of tobacco BY-2 cells was investigated. * S-phase-synchronized BY-2 cells were cocultivated with R. fascians and cell cycle progression was monitored by measuring mitotic index, cell cycle gene expression and flow cytometry parameters. Cell cycle alteration was further investigated by cDNA-AFLP (amplified fragment length polymorphism). * It was shown that cell cycle progression of BY-2 cells was accelerated only upon infection with bacteria whose virulence gene expression was induced by a leafy gall extract. Thirty-eight BY-2 genes showed a differential expression within 6 h post-infection. Among these, seven were previously associated with specific plant cell cycle phases (in particular S and G2/M phases). Several genes also showed a differential expression during leafy gall formation. * R. fascians-infected BY-2 cells provide a simple model to identify plant genes related to leafy gall development. R. fascians can also be regarded as a useful biotic agent to alter cell cycle progression and, thereby, gain a better understanding of cell cycle regulation in plants.
Collapse
Affiliation(s)
- Olivier Vandeputte
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Danny Vereecke
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Marc Lenjou
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Dirk Van Bockstaele
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| |
Collapse
|
38
|
Simón-Mateo C, Depuydt S, DE Oliveira Manes CL, Cnudde F, Holsters M, Goethals K, Vereecke D. The phytopathogen Rhodococcus fascians breaks apical dominance and activates axillary meristems by inducing plant genes involved in hormone metabolism. MOLECULAR PLANT PATHOLOGY 2006; 7:103-112. [PMID: 20507431 DOI: 10.1111/j.1364-3703.2006.00322.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Rhodococcus fascians is a Gram-positive bacterium that interacts with many plant species and induces multiple shoots through a combination of activation of dormant axillary meristems and de novo meristem formation. Although phenotypic analysis of the symptoms of infected plants clearly demonstrates a disturbance of the phytohormonal balance and an activation of the cell cycle, the actual mechanism of symptom development and the targets of the bacterial signals are unknown. To elucidate the molecular pathways that are responsive to R. fascians infection, differential display was performed on Nicotiana tabacum as a host. Four differentially expressed genes could be identified that putatively encode a senescence-associated protein, a gibberellin 2-oxidase, a P450 monooxygenase and a proline dehydrogenase. The differential expression of the three latter genes was confirmed on infected Arabidopsis thaliana plants by quantitative reverse transcription polymerase chain reactions, supporting their general function in R. fascians-induced symptom development. The role of these genes in hormone metabolism, especially of gibberellin and abscisic acid, in breaking apical dominance and in activating axillary meristems, which are processes associated with symptom development, is discussed.
Collapse
Affiliation(s)
- Carmen Simón-Mateo
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
D'Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M. Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci U S A 2003; 100:11789-94. [PMID: 12975522 PMCID: PMC208836 DOI: 10.1073/pnas.1333899100] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Indexed: 11/18/2022] Open
Abstract
Lateral root base nodulation on the tropical, semiaquatic legume Sesbania rostrata results from two coordinated, Nod factor-dependent processes: formation of intercellular infection pockets and induction of cell division. Infection pocket formation is associated with cell death and production of hydrogen peroxide. Pharmacological experiments showed that ethylene and reactive oxygen species mediate Nod factor responses and are required for nodule initiation, whereby induction of division and infection could not be uncoupled. Application of purified Nod factors triggered cell division, and both Nod factors and ethylene induced cavities and cell death features in the root cortex. Thus, in S. rostrata, ethylene and reactive oxygen species act downstream from the Nod factors in pathways that lead to formation of infection pockets and initiation of nodule primordia.
Collapse
Affiliation(s)
- Wim D'Haeze
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cohen MF, Yamasaki H. Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 2003; 9:1-9. [PMID: 14559426 DOI: 10.1016/s1089-8603(03)00043-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen peroxide (H2O2) tolerance of Rhodococcus sp. strain APG1, previously isolated from the aquatic fern Azolla pinnata, was examined in relation to nitric oxide (NO) production by cells cultured on a variety of C sources. Cells inoculated onto A. pinnata fronds established a surface-sterilant resistant density of 2-4x10(7) cells g(-1) without causing disease. Compared to cultures containing glucose, fructose, mannitol, or glycerol, those provided only with sucrose displayed, on a per C basis, substantially lower (<10%) growth yields and higher resistance to H2O2. NO, a positive regulator of catalase synthesis in bacteria, was produced in larger amounts in sucrose-grown cells as evidence by eightfold greater per cell accumulations in the medium of nitrite (NO2-), a stable oxidation product of NO. Addition to cells of L-arginine, the substrate for nitric oxide synthase (NOS), stimulated production of NO, detected both by fluorometric reaction with diaminofluorescein-FM diacetate (DAF-FM DA) and by increased levels of NO2- in the culture medium. These results suggest that sucrose may enhance H2O2 tolerance of Rhodococcus APG1 by increasing cellular NO producing capacity. We propose a regulatory role for NOS in promoting tolerance of Rhodococcus APG1 to oxidative stress in the phyllosphere.
Collapse
Affiliation(s)
- Michael F Cohen
- Division of Functional Genomics, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | | |
Collapse
|
41
|
Sabaratnam S, Beattie GA. Differences between Pseudomonas syringae pv. syringae B728a and Pantoea agglomerans BRT98 in epiphytic and endophytic colonization of leaves. Appl Environ Microbiol 2003; 69:1220-8. [PMID: 12571050 PMCID: PMC143625 DOI: 10.1128/aem.69.2.1220-1228.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Accepted: 11/18/2002] [Indexed: 01/05/2023] Open
Abstract
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.
Collapse
Affiliation(s)
- Siva Sabaratnam
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
42
|
Coombs JT, Franco CMM, Loria R. Complete sequencing and analysis of pEN2701, a novel 13-kb plasmid from an endophytic Streptomyces sp. Plasmid 2003; 49:86-92. [PMID: 12584005 DOI: 10.1016/s0147-619x(02)00153-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 12,855 bp cryptic plasmid was isolated from strains of an endophytic Streptomyces sp. over a wide geographical area in South Australia. This plasmid was completely sequenced and 13 putative ORFs were identified. Two of the ORFs may be involved in the regulation of host plant genes. ORF7 exhibited homology to a plant transcriptional regulatory protein and ORF1 was a homolog of a plant protein synthesis initiation factor. The plasmid appears to use a novel transfer mechanism for a Streptomyces plasmid. Pocks were detected during conjugative transfer and kor but not tra homologs could be identified. This structure and the sequence of the putative Kor protein are similar to the pFQ series of plasmids isolated from Frankia, another endophytic actinomycete.
Collapse
Affiliation(s)
- Justin T Coombs
- Plant Pathology Department, Cornell University, Ithaca, NY 14850, USA.
| | | | | |
Collapse
|
43
|
|
44
|
Vereecke D, Cornelis K, Temmerman W, Holsters M, Goethals K. Versatile persistence pathways for pathogens of animals and plants. Trends Microbiol 2002; 10:485-8. [PMID: 12419605 DOI: 10.1016/s0966-842x(02)02457-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glyoxylate cycle and the glycine cleavage system are part of conserved metabolic pathways involved in the chronic persistence of microorganisms in animal hosts. In the chromosome of the plant pathogen Rhodococcus fascians, the vic locus has been identified as a region containing genes essential for persistence inside induced leafy galls. Sequence analysis showed that this 18-kb locus is syntenic with chromosomal regions of Mycobacterium species that encompass the 'persistence' loci of these mammalian pathogens. Hence, the ability to switch diet inside the host appears to be governed by 'persistence' enzymes that are conserved between pathogens of animals and plants.
Collapse
Affiliation(s)
- Danny Vereecke
- Dept of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, K.L. Ledeganckstraat 35, Belgium
| | | | | | | | | |
Collapse
|
45
|
Beattie GA, Marcell LM. Comparative dynamics of adherent and nonadherent bacterial populations on maize leaves. PHYTOPATHOLOGY 2002; 92:1015-1023. [PMID: 18944027 DOI: 10.1094/phyto.2002.92.9.1015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The dynamics of the adherent and nonadherent populations of three bacterial species on maize leaves were examined to identify the extent to which bacteria adhere to leaves and the importance of this adhesion to leaf colonization. Pantoea agglomerans strain BRT98, Clavibacter michiganensis subsp. nebraskensis strain GH2390, and Pseudomonas syringae pv. syringae strain HS191R all rapidly adhered to maize leaves following inoculation, but differed in the percentage of cells that adhered to the leaves. Immediately following inoculation, the percentage of adherent cells was highest for the saprophyte P. agglomerans (8 to 10%) and was much lower for the pathogens C. michiganensis subsp. nebras-kensis and P. syringae pv. syringae (2 to 3 and <1%, respectively), although the results for P. syringae pv. syringae HS191R were based on only one experiment. In the 4 days following inoculation, the percentage of the P. agglomerans populations that adhered to the leaves increased to approximately 70%. Similarly, the percentage of C. michiganensis subsp. nebraskensis and P. syringae pv. syringae cells that resisted removal steadily increased in the days following inoculation, although these increases probably reflected both adherence and localization to endophytic sites. Based on differences in the percentage of cells adhering to several cuticular wax mutants of maize, the rapid adherence of C. michiganensis subsp. nebraskensis cells to maize leaves was influenced by the cuticular wax properties, while the rapid adherence of P. agglomerans was not. Finally, bacterial adherence to leaves was advantageous to P. agglomerans survival and growth on leaves based on the finding that the nonadherent populations of the P. agglomerans strain decreased significantly more than did the adherent populations in the 24 h following inoculation, and increased much less than did the adherent populations over the next 3 days. Similar results with the C. michiganensis subsp. nebraskensis and P. syringae pv. syringae strains indicate that bacterial adherence to leaves, bacterial movement to endophytic sites, or both were advantageous to the survival and growth of these strains on leaves.
Collapse
|
46
|
Cornelis K, Maes T, Jaziri M, Holsters M, Goethals K. Virulence genes of the phytopathogen Rhodococcus fascians show specific spatial and temporal expression patterns during plant infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:398-403. [PMID: 12026179 DOI: 10.1094/mpmi.2002.15.4.398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytopathogenic bacterium Rhodococcus fascians provokes shoot meristem formation and malformations on aerial plant parts, mainly at the axils. The interaction is accompanied by bacterial colonization of the plant surface and tissues. Upon infection, the two bacterial loci required for full virulence, fas and att, were expressed only at the sites of symptom development, although their expression profiles differed both spatially and temporally. The att locus was expressed principally in bacteria located on the plant surface at early stages of infection. Expression of the fas locus occurred throughout infection, mainly in bacteria that were penetrating, or had penetrated, the plant tissues and coincided with sites of meristem initiation and proliferation. The implications for the regulation of virulence genes of R. fascians during plant infection are discussed.
Collapse
Affiliation(s)
- Karen Cornelis
- Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
47
|
Vereecke D, Cornelis K, Temmerman W, Jaziri M, Van Montagu M, Holsters M, Goethals K. Chromosomal locus that affects pathogenicity of Rhodococcus fascians. J Bacteriol 2002; 184:1112-20. [PMID: 11807072 PMCID: PMC134788 DOI: 10.1128/jb.184.4.1112-1120.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive plant pathogen Rhodococcus fascians provokes leafy gall formation on a wide range of plants through secretion of signal molecules that interfere with the hormone balance of the host. Crucial virulence genes are located on a linear plasmid, and their expression is tightly controlled. A mutant with a mutation in a chromosomal locus that affected virulence was isolated. The mutation was located in gene vicA, which encodes a malate synthase and is functional in the glyoxylate shunt of the Krebs cycle. VicA is required for efficient in planta growth in symptomatic, but not in normal, plant tissue, indicating that the metabolic requirement of the bacteria or the nutritional environment in plants or both change during the interaction. We propose that induced hyperplasia on plants represents specific niches for the causative organisms as a result of physiological alterations in the symptomatic tissue. Hence, such interaction could be referred to as metabolic habitat modification.
Collapse
Affiliation(s)
- Danny Vereecke
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Maes T, Vereecke D, Ritsema T, Cornelis K, Thu HN, Van Montagu M, Holsters M, Goethals K. The att locus of Rhodococcus fascians strain D188 is essential for full virulence on tobacco through the production of an autoregulatory compound. Mol Microbiol 2001; 42:13-28. [PMID: 11679063 DOI: 10.1046/j.1365-2958.2001.02615.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of Rhodococcus fascians strain D188 to provoke leafy gall formation on a variety of plant species is correlated with the linear plasmid pFiD188, on which different pathogenicity loci were identified. The att locus affects the severity of symptom development on tobacco, whereas the fas locus is essential for virulence. To gain insight into the function of the att locus, sequence and expression analyses were performed. The att locus contains nine open reading frames homologous to arginine and beta-lactam biosynthetic genes. att gene expression is transcriptionally induced by leafy gall extracts, but not by extracts of uninfected plants, and depends on the attR gene that encodes a LysR-type transcriptional regulator. The att locus proves to be essential for the formation of inducing factors (IFs) that are present in gall extracts. Because the induction of the fas locus also requires the presence of IFs in gall extracts, the att locus is proposed to play an important role in regulating the expression of the virulence loci of R. fascians.
Collapse
Affiliation(s)
- T Maes
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Goethals K, Vereecke D, Jaziri M, Van Montagu M, Holsters M. Leafy gall formation by Rhodococcus fascians. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:27-52. [PMID: 11701858 DOI: 10.1146/annurev.phyto.39.1.27] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhodococcus fascians infects a wide range of plants, initiating the formation of leafy galls that consist of centers of shoot amplification and shoot growth inhibition. R. fascians is an epiphyte but it also can establish endophytic populations. Bacterial signals involved in symptom development initiate de novo cell division and shoot meristem formation in differentiated tissues. The R. fascians signals exert activities that are distinct from mere cytokinin effects, and the evidence points to a process that adopted cytokinin biosynthetic enzymes to form derivatives with unique activity. Genes implicated in leafy gall formation are located on a linear plasmid and are subject to a highly controlling, complex regulatory network, integrating autoregulatory compounds and environmental signals. Leafy galls are considered as centers with specific metabolic features, a niche where populations of R. fascians experience a selective advantage. Such "metabolic habitat modification" might be universal for gall-inducing bacteria.
Collapse
Affiliation(s)
- K Goethals
- Vakgroep Moleculaire Genetica & Departement of Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|