1
|
Venkatesh J, Jahn M, Kang BC. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper. PLoS One 2016; 11:e0161545. [PMID: 27536870 PMCID: PMC4990186 DOI: 10.1371/journal.pone.0161545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| | - Molly Jahn
- University of Wisconsin, Madison, Wisconsin, WI 53706, United States of America
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| |
Collapse
|
2
|
Kraus CM, Munkvold KR, Martin GB. Natural Variation in Tomato Reveals Differences in the Recognition of AvrPto and AvrPtoB Effectors from Pseudomonas syringae. MOLECULAR PLANT 2016; 9:639-649. [PMID: 26993968 DOI: 10.1016/j.molp.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 05/13/2023]
Abstract
The Pto protein kinase from Solanum pimpinellifolium interacts with Pseudomonas syringae effectors AvrPto or AvrPtoB to activate effector-triggered immunity. The previously solved crystal structures of the AvrPto-Pto and AvrPtoB-Pto complexes revealed that Pto binds each effector through both a shared and a unique interface. Here we use natural variation in wild species of tomato to further investigate Pto recognition of these two effectors. One species, Solanum chmielewskii, was found to have many accessions that recognize only AvrPtoB. The Pto ortholog from one of these accessions was responsible for recognition of AvrPtoB and it differed from Solanum pimpinellifolium Pto by only 14 amino acids, including two in the AvrPto-specific interface, glutamate-49/glycine-51. Converting these two residues to those in Pto (histidine-49/valine-51) did not restore recognition of AvrPto. Subsequent experiments revealed that a single substitution of a histidine-to-aspartate at position 193 in Pto, which is not near the AvrPto-specific interface, was sufficient for conferring recognition of AvrPto in plant cells. The reciprocal substitution of aspartate-to-histidine-193 in Pto abolished AvrPto recognition, confirming the importance of this residue. Our results reveal new aspects about effector recognition by Pto and demonstrate the value of using natural variation to understand the interaction between resistance proteins and pathogen effectors.
Collapse
Affiliation(s)
- Christine M Kraus
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kathy R Munkvold
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Mohanta TK, Mohanta N, Mohanta YK, Bae H. Genome-Wide Identification of Calcium Dependent Protein Kinase Gene Family in Plant Lineage Shows Presence of Novel D-x-D and D-E-L Motifs in EF-Hand Domain. FRONTIERS IN PLANT SCIENCE 2015; 6:1146. [PMID: 26734045 PMCID: PMC4690006 DOI: 10.3389/fpls.2015.01146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/02/2015] [Indexed: 05/04/2023]
Abstract
Calcium ions are considered ubiquitous second messengers in eukaryotic signal transduction pathways. Intracellular Ca(2+) concentration are modulated by various signals such as hormones and biotic and abiotic stresses. Modulation of Ca(2+) ion leads to stimulation of calcium dependent protein kinase genes (CPKs), which results in regulation of gene expression and therefore mediates plant growth and development as well as biotic and abiotic stresses. Here, we reported the CPK gene family of 40 different plant species (950 CPK genes) and provided a unified nomenclature system for all of them. In addition, we analyzed their genomic, biochemical and structural conserved features. Multiple sequence alignment revealed that the kinase domain, auto-inhibitory domain and EF-hands regions of regulatory domains are highly conserved in nature. Additionally, the EF-hand domains of higher plants were found to contain four D-x-D and two D-E-L motifs, while lower eukaryotic plants had two D-x-D and one D-x-E motifs in their EF-hands. Phylogenetic analysis showed that CPK genes are clustered into four different groups. By studying the CPK gene family across the plant lineage, we provide the first evidence of the presence of D-x-D motif in the calcium binding EF-hand domain of CPK proteins.
Collapse
Affiliation(s)
- Tapan K. Mohanta
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Nibedita Mohanta
- Department Of Biotechnology, North Orissa UniversityBaripada, India
| | | | - Hanhong Bae
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
4
|
Pilotti M, Brunetti A, Uva P, Lumia V, Tizzani L, Gervasi F, Iacono M, Pindo M. Kinase domain-targeted isolation of defense-related receptor-like kinases (RLK/Pelle) in Platanus×acerifolia: phylogenetic and structural analysis. BMC Res Notes 2014; 7:884. [PMID: 25486898 PMCID: PMC4295470 DOI: 10.1186/1756-0500-7-884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 11/18/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Plant receptor-like kinase (RLK/Pelle) family regulates growth and developmental processes and interaction with pathogens and symbionts.Platanaceae is one of the earliest branches of Eudicots temporally located before the split which gave rise to Rosids and Asterids. Thus investigations into the RLK family in Platanus can provide information on the evolution of this gene family in the land plants.Moreover RLKs are good candidates for finding genes that are able to confer resistance to Platanus pathogens. RESULTS Degenerate oligonucleotide primers targeting the kinase domain of stress-related RLKs were used to isolate for the first time 111 RLK gene fragments in Platanus×acerifolia. Sequences were classified as candidates of the following subfamilies: CrRLK1L, LRR XII, WAK-like, and LRR X-BRI1 group. All the structural features typical of the RLK kinase domain were identified, including the non-RD motif which marks potential pathogen recognition receptors (PRRs). The LRR XII candidates, whose counterpart in Arabidopsis and rice comprises non-RD PRRs, were mostly non-RD kinases, suggesting a group of PRRs. Region-specific signatures of a relaxed purifying selection in the LRR XII candidates were also found, which is novel for plant RLK kinase domain and further supports the role of LRR XII candidates as PRRs. As we obtained CrRLK1L candidates using primers designed on Pto of tomato, we analysed the phylogenetic relationship between CrRLK1L and Pto-like of plant species. We thus classified all non-solanaceous Pto-like genes as CrRLK1L and highlighted for the first time the close phylogenetic vicinity between CrRLK1L and Pto group. The origins of Pto from CrRLK1L is proposed as an evolutionary mechanism. CONCLUSIONS The signatures of relaxed purifying selection highlight that a group of RLKs might have been involved in the expression of phenotypic plasticity and is thus a good candidate for investigations into pathogen resistance.Search of Pto-like genes in Platanus highlighted the close relationship between CrRLK1L and Pto group. It will be exciting to verify if sensu strictu Pto are present in taxonomic groups other than Solanaceae, in order to further clarify the evolutionary link with CrRLK1L.We obtained a first valuable resource useful for an in-depth study on stress perception systems.
Collapse
Affiliation(s)
- Massimo Pilotti
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Angela Brunetti
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Paolo Uva
- />CRS4 Bioinformatics Laboratory POLARIS Science and Technology Park, 09010 Pula, Cagliari, Italy
| | - Valentina Lumia
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Lorenza Tizzani
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Fabio Gervasi
- />Fruit Tree Research Center, CRA-FRU Agricultural Research Council, V. Fioranello, 52, 00134 Rome, Italy
| | - Michele Iacono
- />Roche Diagnostics SpA, V. G.B. Stucchi 110, 20052 Monza Milano, Italy
| | - Massimo Pindo
- />Research and Innovation Centre, Edmund Mach Foundation, V. E. Mach 1, 38010 San Michele a/A, Trento, Italy
| |
Collapse
|
5
|
Zhang Y, Wang X, Li Y, Wu L, Zhou H, Zhang G, Ma Z. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis. PLANT CELL REPORTS 2013; 32:1703-13. [PMID: 23912851 DOI: 10.1007/s00299-013-1481-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Overexpression of a cotton defense-related gene GbSTK in Arabidopsis resulted in enhancing pathogen infection and oxidative stress by activating multiple defense-signaling pathways. ABSTRACT Serine/threonine protein kinase (STK) plays an important role in the plant stress-signaling transduction pathway via phosphorylation. Most studies about STK genes have been conducted with model species. However, their molecular and biochemical characterizations have not been thoroughly investigated in cotton. Here, we focused on one such member, GbSTK. RT-PCR indicated that it is induced not only by Verticillium dahliae Kleb., but also by signaling molecules. Subcellular localization showed that GbSTK is present in the cell membrane, cytoplasm, and nucleus. Overexpression of GbSTK in Arabidopsis resulted into the enhanced resistance to V. dahliae. Moreover, Overexpression of GbSTK elevated the expression of PR4, PR5, and EREBP, conferring on transgenic plants enhanced reactive oxygen species scavenging capacity and oxidative stress tolerance. Our results suggest that GbSTK is active in multiple defense-signaling pathways, including those involved in responses to pathogen infection and oxidative stress.
Collapse
Affiliation(s)
- Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Department of Agriculture, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
6
|
Xu Q, Deng X. Cloning and phylogenetic analyses of serine/threonine kinase class defense-related genes in a wild fruit crop 'chestnut rose'. BMC Res Notes 2010; 3:202. [PMID: 20637125 PMCID: PMC2916010 DOI: 10.1186/1756-0500-3-202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 07/18/2010] [Indexed: 01/20/2023] Open
Abstract
Background Chestnut rose (Rosa roxburghii Tratt) is a promising wild fruit crop in Southwest China. However, chestnut rose suffers from several important diseases such as powdery mildew and black spot. Cloning and phylogenetic analysis of plant immunity related genes will strengthen the evolutionary knowledge of plant immune system and will facilitate the utilization of candidate genes in disease resistance breeding programs. Findings Serine/threonine kinase (STK) genes, encoding one of the important proteins for defense signal transduction, were cloned from 'chestnut rose'. Fifteen STK sequences were obtained by degenerate PCR. Sequence analysis showed that nine of them have continued open reading frames, and they are separated into five classes based on sequence analysis. Interestingly, one of the classes (STK V) showed less than 40% similarity to any other class, possibly representing new type genes from chestnut rose. Southern blotting analysis revealed that the new type STK V genes are single copy, while all the other genes have several copies in the genome. Phylogenetic analysis of STK genes from chestnut rose and 21 plant species revealed that most chestnut rose genes show close relationship with Rosaceae homologs, while the STK V genes are rather ancient and form a unique clade distantly from plant homologs. Conclusions We cloned nine STK genes from a wild fruit crop 'chestnut rose', of which a new type of STK genes was identified. The new type STK genes exist as single copies in the genome, and they are phylogenetically distant to plant homologs. The polymorphic STK genes, combined with other plant immunity genes, provide plenty of resources to be utilized to defend against pathogens attack.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | | |
Collapse
|
7
|
Martínez Zamora MG, Castagnaro AP, Díaz Ricci JC. Genetic diversity of Pto-like serine/threonine kinase disease resistance genes in cultivated and wild strawberries. J Mol Evol 2008; 67:211-21. [PMID: 18618068 DOI: 10.1007/s00239-008-9134-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/16/2008] [Accepted: 06/09/2008] [Indexed: 02/03/2023]
Abstract
Degenerate oligonucleotide primers, designed based on conserved regions of several serine-threonine kinases (STK) previously cloned in tomato and Arabidopsis, were used to isolate STK candidates in wild and cultivated strawberries. Seven distinct classes of STKs were identified from three related wild species, i.e., Fragaria vesca, Fragaria chiloensis, and Potentilla tucumanensis, and seven different Fragaria x ananassa cultivars. Alignment of the deduced amino acid sequences and the Pto R protein from tomato revealed the presence of characteristic subdomains and conservation of the plant STK consensus and other residues that are crucial for Pto function. Based on identity scores and clustering in phylogenetic trees, five groups were recognized as Pto-like kinases. Strawberry Pto-like clones presented sequences that were clearly identified as the activation segments contained in the Pto, and some of them showed residues previously identified as being required for binding to AvrPto. Some of the non-Pto-like kinases presented a high degree of identity and grouped together with B-lectin receptor kinases that are also involved in disease resistance. Statistical studies carried out to evaluate departure from the neutral theory and nonsynonymous/synonymous substitutions suggest that the evolution of STK-encoding sequences in strawberries is subjected mainly to a purifying selection process. These results represent the first report of Pto-like STKs in strawberry.
Collapse
Affiliation(s)
- M G Martínez Zamora
- INSIBIO (CONICET-UNT), Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica Dr. Bernabé Bloj (UNT), Chacabuco 461, 4000, Tucuman, Argentina
| | | | | |
Collapse
|
8
|
Lin NC, Martin GB. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:806-15. [PMID: 17601168 DOI: 10.1094/mpmi-20-7-0806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.
Collapse
Affiliation(s)
- Nai-Chun Lin
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801, USA
| | | |
Collapse
|
9
|
Peraza-Echeverria S, James-Kay A, Canto-Canché B, Castillo-Castro E. Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Mol Genet Genomics 2007; 278:443-53. [PMID: 17587056 DOI: 10.1007/s00438-007-0262-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/30/2007] [Indexed: 01/10/2023]
Abstract
The tomato Pto gene encodes a serine/threonine kinase (STK) whose molecular characterization has provided valuable insights into the disease resistance mechanism of tomato and it is considered as a promising candidate for engineering broad-spectrum pathogen resistance in this crop. In this study, a pair of degenerate primers based on conserved subdomains of plant STKs similar to the tomato Pto protein was used to amplify similar sequences in banana. A fragment of approximately 550 bp was amplified, cloned and sequenced. The sequence analysis of several clones revealed 13 distinct sequences highly similar to STKs. Based on their significant similarity with the tomato Pto protein (BLASTX E value <3e-53), seven of them were classified as Pto resistance gene candidates (Pto-RGCs). Multiple sequence alignment of the banana Pto-RGC products revealed that these sequences contain several conserved subdomains present in most STKs and also several conserved residues that are crucial for Pto function. Moreover, the phylogenetic analysis showed that the banana Pto-RGCs were clustered with Pto suggesting a common evolutionary origin with this R gene. The Pto-RGCs isolated in this study represent a valuable sequence resource that could assist in the development of disease resistance in banana.
Collapse
Affiliation(s)
- Santy Peraza-Echeverria
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México.
| | | | | | | |
Collapse
|
10
|
Rose LE, Michelmore RW, Langley CH. Natural variation in the Pto disease resistance gene within species of wild tomato (Lycopersicon). II. Population genetics of Pto. Genetics 2007; 175:1307-19. [PMID: 17179076 PMCID: PMC1840093 DOI: 10.1534/genetics.106.063602] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Accepted: 12/08/2006] [Indexed: 11/18/2022] Open
Abstract
Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the host species Lycopersicon esculentum, the cultivated tomato, and the closely related L. pimpinellifolium is triggered by the physical interaction between the protein products of the host resistance (R) gene Pto and the pathogen avirulence genes AvrPto and AvrPtoB. Sequence variation at the Pto locus was surveyed in natural populations of seven species of Lycopersicon to test hypotheses of host-parasite coevolution and functional adaptation of the Pto gene. Pto shows significantly higher nonsynonymous polymorphism than 14 other non-R-gene loci in the same samples of Lycopersicon species, while showing no difference in synonymous polymorphism, suggesting that the maintenance of amino acid polymorphism at this locus is mediated by pathogen selection. Also, a larger proportion of ancestral variation is maintained at Pto as compared to these non-R-gene loci. The frequency spectrum of amino acid polymorphisms known to negatively affect Pto function is skewed toward low frequency compared to amino acid polymorphisms that do not affect function or silent polymorphisms. Therefore, the evolution of Pto appears to be influenced by a mixture of both purifying and balancing selection.
Collapse
Affiliation(s)
- Laura E Rose
- The Center for Population Biology, University of California, Davis, California 95616
| | | | | |
Collapse
|
11
|
Millett BP, Bradeen JM. Development of allele-specific PCR and RT-PCR assays for clustered resistance genes using a potato late blight resistance transgene as a model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:501-13. [PMID: 17177064 DOI: 10.1007/s00122-006-0449-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Accepted: 10/25/2006] [Indexed: 05/13/2023]
Abstract
Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT-PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT-PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes.
Collapse
Affiliation(s)
- B P Millett
- Department of Plant Pathology, University of Minnesota, 495 Borlaug, 1991 Upper Buford Cir., St. Paul, MN 55108, USA
| | | |
Collapse
|
12
|
de Vries JS, Andriotis VME, Wu AJ, Rathjen JP. Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:31-45. [PMID: 16367952 DOI: 10.1111/j.1365-313x.2005.02590.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pto kinase of tomato (Lycopersicon esculentum) confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato expressing avrPto or avrPtoB. Pto interacts directly with these type-III secreted effectors, leading to induction of defence responses including the hypersensitive response (HR). Signalling by Pto requires the nucleotide-binding site-leucine-rich repeat (NBS-LRR) protein Prf. Little is known of how Pto is controlled prior to or during stimulation, although kinase activity is required for Avr-dependent activation. Here we demonstrate a role for the N-terminus in signalling by Pto. N-terminal residues outside the kinase domain were required for induction of the HR in Nicotiana benthamiana. The N-terminus also contributed to both AvrPto-binding and phosphorylation abilities. Pto residues 1-10 comprise a consensus motif for covalent attachment of myristate, a hydrophobic 14-carbon saturated fatty acid, to the Gly-2 residue. Several lines of evidence indicate that this motif is important for Pto function. A heterologous N-myristoylation motif complemented N-terminal deletion mutants of Pto for Prf-dependent signalling. Signalling by wild-type and mutant forms of Pto was strictly dependent on the Gly-2 residue. The N-myristoylation motif of Pto complemented the cognate motif of AvrPto for avirulence function and membrane association. Furthermore, Pto was myristoylated in vivo dependent on the presence of Gly-2. The subcellular localization of Pto was independent of N-myristoylation, indicating that N-myristoylation is required for some function other than membrane affinity. Consistent with this idea, AvrPtoB was also found to be a soluble protein. The data indicate an important role(s) for the myristoylated N-terminus in Pto signalling.
Collapse
Affiliation(s)
- Jeroen S de Vries
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | | | | | | |
Collapse
|
13
|
Caicedo AL, Schaal BA. Heterogeneous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proc Natl Acad Sci U S A 2004; 101:17444-9. [PMID: 15583124 PMCID: PMC536038 DOI: 10.1073/pnas.0407899101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance (R) genes of plants are responsible for pathogen recognition and encode proteins that trigger a cascade of responses when a pathogen invades a plant. R genes are assumed to be under strong selection, but there is limited knowledge of the processes affecting R gene diversity in the wild. In this study, DNA sequence variation of Cf-2 homologs was surveyed in populations of Solanum pimpinellifolium, a wild relative of the cultivated tomato. The Cf-2 locus is involved in resistance to strains of the fungus Cladosporium fulvum. At least 26 different Cf-2 homologs were detected in natural populations of S. pimpinellifolium. These homologs differ by single base pair substitutions as well as indels in regions coding for leucine-rich repeats. Molecular population genetic analyses suggest that natural selection has acted heterogeneously on Cf-2 homologs, with selection against amino acid substitutions occurring in the 5' portion of the genes, and possible restricted positive selection in the 3' end. Balancing selection may have maintained haplotypes at the 5' end of the genes. Limited sequence exchange between genes has also contributed to sequence variation. S. pimpinellifolium individuals differ in the number of Cf-2 homologs they contain, obscuring the relationships of orthology and paralogy. This survey of Cf-2 variation in S. pimpinellifolium illustrates the wealth of R gene diversity that exists in wild plant populations, as well as the complexity of interacting genetic and evolutionary processes that generate such diversity.
Collapse
Affiliation(s)
- Ana L Caicedo
- Biology Department, Washington University, St. Louis, MO 63130, USA.
| | | |
Collapse
|
14
|
de Kock MJD, Iskandar HM, Brandwagt BF, Laugé R, de Wit PJGM, Lindhout P. Recognition of Cladosporium fulvum Ecp2 elicitor by non-host Nicotiana spp. is mediated by a single dominant gene that is not homologous to known Cf-genes. MOLECULAR PLANT PATHOLOGY 2004; 5:397-408. [PMID: 20565616 DOI: 10.1111/j.1364-3703.2004.00239.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Cladosporium fulvum is a fungal pathogen of tomato that grows exclusively in the intercellular spaces of leaves. Ecp2 is one of the elicitor proteins that is secreted by C. fulvum and is specifically recognized by tomato plants containing the resistance gene Cf-Ecp2. Recognition is followed by a hypersensitive response (HR) resulting in resistance. HR-associated recognition of Ecp2 has been observed in Nicotiana paniculata, N. sylvestris, N. tabacum and N. undulata that are non-host plants of C. fulvum. Absence of Ecp2-recognition did not lead to growth of C. fulvum on Nicotiana plants. We show that HR-associated recognition of Ecp2 is mediated by a single dominant gene in N. paniculata. However, based on PCR and hybridization analysis this gene is not homologous to known Cf-genes.
Collapse
Affiliation(s)
- Maarten J D de Kock
- Laboratory of Plant Breeding, Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Pedley KF, Martin GB. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:215-43. [PMID: 14527329 DOI: 10.1146/annurev.phyto.41.121602.143032] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Pto gene in tomato confers gene-for-gene resistance to Pseudomonas syringae pv. tomato, the causative agent of bacterial speck disease. Pto was first introgressed from a wild species of tomato into cultivated tomato varieties over 60 years ago and is now widely used to control speck disease. Cloning of the Pto gene revealed that it encodes a cytoplasmically localized serine-threonine protein kinase. The molecular basis of gene-for-gene recognition in this pathosystem is the direct physical interaction of the Pto kinase with either of two Pseudomonas effector proteins, AvrPto and AvrPtoB. Upon recognition of AvrPto or AvrPtoB, the Pto kinase acts in concert with Prf, a leucine-rich repeat-containing protein, to activate multiple signal transduction pathways. There has been much progress in understanding the evolutionary origin of the Pto gene, structural details about how the Pto kinase interacts with AvrPto and AvrPtoB, signaling steps downstream of Pto, and defense responses activated by the Pto pathway. Future work on this model system will focus on how the interaction of the Pto kinase with bacterial effector proteins activates signal transduction, defining the specific role of signaling components, and ultimately, determining which host defense responses are most responsible for inhibiting growth of the pathogen and suppressing symptoms of bacterial speck disease.
Collapse
Affiliation(s)
- Kerry F Pedley
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
16
|
Bogdanove AJ. Pto update: recent progress on an ancient plant defence response signalling pathway. MOLECULAR PLANT PATHOLOGY 2002; 3:283-288. [PMID: 20569336 DOI: 10.1046/j.1364-3703.2002.00117.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary The Pto resistance gene in a gene-for-gene interaction with the avrPto avirulence gene governs resistance to bacterial speck of tomato. A member of a small gene family in tomato, Pto encodes a serine/threonine kinase that interacts in the yeast two-hybrid system with the product of avrPto, an 18-kDa hydrophilic protein. Over the past decade, studies of these genes, their products, and the defence response signalling pathway they govern have led to significant advances in our understanding of the biochemistry of Pto, the bacterial delivery and Pto recognition specificity for AvrPto, and candidate components in the pathway and their potential functions. This article provides an update of recent advances, which include the discovery of AvrPto structure-function relationships in disease and resistance, discovery of a second avirulence protein (AvrPtoB) recognized by Pto and its limited similarity to AvrPto, expression analysis and functional characterization of transcription factors Pti4, Pti5, and Pti6 that interact with Pto, analyses of Pto over-expression that activates defence responses independent of AvrPto, and comparisons of Pto gene family members and homologues in tomato and other Solanaceae, as well as other plant species. These comparisons, in particular, have provided exciting new insight into the antiquity of the Pto gene family and of the capacity for specific recognition of AvrPto that activates plant defence.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Affiliation(s)
- R Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|