1
|
Lee HJ, Lee SM, Choi M, Kwon JH, Lee SW. A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant. THE PLANT PATHOLOGY JOURNAL 2023; 39:417-429. [PMID: 37817490 PMCID: PMC10580051 DOI: 10.5423/ppj.oa.06.2023.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogen-containing heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPS-defective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.
Collapse
Affiliation(s)
- Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Minseo Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Joo Hwan Kwon
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
2
|
Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, Badía J, Baldomá L, Pérez-Mendoza D, Sanjuán J. Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli. BIOLOGY 2022; 12:44. [PMID: 36671740 PMCID: PMC9855851 DOI: 10.3390/biology12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Extracellular matrix components of bacterial biofilms include biopolymers such as polysaccharides, nucleic acids and proteins. Similar to polysaccharides, the secretion of adhesins and other matrix proteins can be regulated by the second messenger cyclic diguanylate (cdG). We have performed quantitative proteomics to determine the extracellular protein contents of a Rhizobium etli strain expressing high cdG intracellular levels. cdG promoted the exportation of proteins that likely participate in adhesion and biofilm formation: the rhizobial adhesion protein RapA and two previously undescribed likely adhesins, along with flagellins. Unexpectedly, cdG also promoted the selective exportation of cytoplasmic proteins. Nearly 50% of these cytoplasmic proteins have been previously described as moonlighting or candidate moonlighting proteins in other organisms, often found extracellularly. Western blot assays confirmed cdG-promoted export of two of these cytoplasmic proteins, the translation elongation factor (EF-Tu) and glyceraldehyde 3-phosphate dehydrogenase (Gap). Transmission Electron Microscopy immunolabeling located the Gap protein in the cytoplasm but was also associated with cell membranes and extracellularly, indicative of an active process of exportation that would be enhanced by cdG. We also obtained evidence that cdG increases the number of extracellular Gap proteoforms, suggesting a link between cdG, the post-translational modification and the export of cytoplasmic proteins.
Collapse
Affiliation(s)
- María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Natalia Díaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefa Badía
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
| | - Laura Baldomá
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
3
|
Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes. Int J Mol Sci 2021; 22:6233. [PMID: 34207734 PMCID: PMC8227245 DOI: 10.3390/ijms22126233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022] Open
Abstract
Rhizobia are soil proteobacteria able to engage in a nitrogen-fixing symbiotic interaction with legumes that involves the rhizobial infection of roots and the bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both symbionts. Bacterial N-acetyl-glucosamine oligomers called Nod factors are indispensable in most cases for early steps of the symbiotic interaction. In addition, different rhizobial surface polysaccharides, such as exopolysaccharides (EPS), may also be symbiotically relevant. EPS are acidic polysaccharides located out of the cell with little or no cell association that carry out important roles both in free-life and in symbiosis. EPS production is very complexly modulated and, frequently, co-regulated with Nod factors, but the type of co-regulation varies depending on the rhizobial strain. Many studies point out a signalling role for EPS-derived oligosaccharides in root infection and nodule invasion but, in certain symbiotic couples, EPS can be dispensable for a successful interaction. In summary, the complex regulation of the production of rhizobial EPS varies in different rhizobia, and the relevance of this polysaccharide in symbiosis with legumes depends on the specific interacting couple.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Francisco Fuentes-Romero
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Jose-Enrique Ruiz-Sainz
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - José-María Vinardell
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| |
Collapse
|
4
|
Marczak M, Wójcik M, Żebracki K, Turska-Szewczuk A, Talarek K, Nowak D, Wawiórka L, Sieńczyk M, Łupicka-Słowik A, Bobrek K, Romańczuk M, Koper P, Mazur A. PssJ Is a Terminal Galactosyltransferase Involved in the Assembly of the Exopolysaccharide Subunit in Rhizobium Leguminosarum bv. Trifolii. Int J Mol Sci 2020; 21:ijms21207764. [PMID: 33092221 PMCID: PMC7589315 DOI: 10.3390/ijms21207764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii produces exopolysaccharide (EPS) composed of glucose, glucuronic acid, and galactose residues at a molar ratio 5:2:1. A majority of genes involved in the synthesis, modification, and export of exopolysaccharide are located in the chromosomal Pss-I region. In the present study, a ΔpssJ deletion mutant was constructed and shown to produce EPS lacking terminal galactose in the side chain of the octasaccharide subunit. The lack of galactose did not block EPS subunit translocation and polymerization. The in trans delivery of the pssJ gene restored the production of galactose-containing exopolysaccharide. The mutant was compromised in several physiological traits, e.g., motility and biofilm production. An impact of the pssJ mutation and changed EPS structure on the symbiotic performance was observed as improper signaling at the stage of molecular recognition, leading to formation of a significant number of non-infected empty nodules. Terminal galactosyltransferase PssJ was shown to display a structure typical for the GT-A class of glycosyltransferases and interact with other GTs and Wzx/Wzy system proteins. The latter, together with PssJ presence in soluble and membrane protein fractions indicated that the protein plays its role at the inner membrane interface and as a component of a larger complex.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
- Correspondence:
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Kamila Talarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Dominika Nowak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Marcin Sieńczyk
- Department of Organic and Medical Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6 St., 50-373 Wrocław, Poland; (M.S.).; (A.Ł.-S.)
| | - Agnieszka Łupicka-Słowik
- Department of Organic and Medical Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6 St., 50-373 Wrocław, Poland; (M.S.).; (A.Ł.-S.)
| | - Kamila Bobrek
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 St., 50-375 Wrocław, Poland;
| | - Marceli Romańczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| |
Collapse
|
5
|
Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibañez F, Wang J, Guo B, Sudini HK, Gopalakrishnan S, DasGupta M, Varshney RK, Pandey MK. Molecular Basis of Root Nodule Symbiosis between Bradyrhizobium and 'Crack-Entry' Legume Groundnut ( Arachis hypogaea L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E276. [PMID: 32093403 PMCID: PMC7076665 DOI: 10.3390/plants9020276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen is one of the essential plant nutrients and a major factor limiting crop productivity. To meet the requirements of sustainable agriculture, there is a need to maximize biological nitrogen fixation in different crop species. Legumes are able to establish root nodule symbiosis (RNS) with nitrogen-fixing soil bacteria which are collectively called rhizobia. This mutualistic association is highly specific, and each rhizobia species/strain interacts with only a specific group of legumes, and vice versa. Nodulation involves multiple phases of interactions ranging from initial bacterial attachment and infection establishment to late nodule development, characterized by a complex molecular signalling between plants and rhizobia. Characteristically, legumes like groundnut display a bacterial invasion strategy popularly known as "crack-entry'' mechanism, which is reported approximately in 25% of all legumes. This article accommodates critical discussions on the bacterial infection mode, dynamics of nodulation, components of symbiotic signalling pathway, and also the effects of abiotic stresses and phytohormone homeostasis related to the root nodule symbiosis of groundnut and Bradyrhizobium. These parameters can help to understand how groundnut RNS is programmed to recognize and establish symbiotic relationships with rhizobia, adjusting gene expression in response to various regulations. This review further attempts to emphasize the current understanding of advancements regarding RNS research in the groundnut and speculates on prospective improvement possibilities in addition to ways for expanding it to other crops towards achieving sustainable agriculture and overcoming environmental challenges.
Collapse
Affiliation(s)
- Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Samrat Bhattacharyya
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
- Department of Botany, Sister Nibedita Government General Degree College for Girls, Kolkata 700027, India
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Kadaganchi-585367, India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
- DBT-National Agri-food Biotechnology Institute (NABI), Punjab 140308, India
| | - Fernando Ibañez
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto-5800, Córdoba, Argentina
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 103610, USA;
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture- Agriculture Research Service (USDA-ARS), Tifton, GA 31793, USA;
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| |
Collapse
|
6
|
Lipa P, Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. PeerJ 2020; 8:e8466. [PMID: 32095335 PMCID: PMC7020829 DOI: 10.7717/peerj.8466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Symbiotic bacteria, commonly called rhizobia, lead a saprophytic lifestyle in the soil and form nitrogen-fixing nodules on legume roots. During their lifecycle, rhizobia have to adapt to different conditions prevailing in the soils and within host plants. To survive under these conditions, rhizobia fine-tune the regulatory machinery to respond rapidly and adequately to environmental changes. Symbiotic bacteria play an essential role in the soil environment from both ecological and economical point of view, since these bacteria provide Fabaceae plants (legumes) with large amounts of accessible nitrogen as a result of symbiotic interactions (i.e., rhizobia present within the nodule reduce atmospheric dinitrogen (N2) to ammonia, which can be utilized by plants). Because of its restricted availability in the soil, nitrogen is one of the most limiting factors for plant growth. In spite of its high content in the atmosphere, plants are not able to assimilate it directly in the N2 form. During symbiosis, rhizobia infect host root and trigger the development of specific plant organ, the nodule. The aim of root nodule formation is to ensure a microaerobic environment, which is essential for proper activity of nitrogenase, i.e., a key enzyme facilitating N2 fixation. To adapt to various lifestyles and environmental stresses, rhizobia have developed several regulatory mechanisms, e.g., reversible phosphorylation. This key mechanism regulates many processes in both prokaryotic and eukaryotic cells. In microorganisms, signal transduction includes two-component systems (TCSs), which involve membrane sensor histidine kinases (HKs) and cognate DNA-binding response regulators (RRs). Furthermore, regulatory mechanisms based on phosphoenolopyruvate-dependent phosphotranspherase systems (PTSs), as well as alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) play an important role in regulation of many cellular processes in both free-living bacteria and during symbiosis with the host plant (e.g., growth and cell division, envelope biogenesis, biofilm formation, response to stress conditions, and regulation of metabolism). In this review, we summarize the current knowledge of phosphorylation systems in symbiotic nitrogen-fixing bacteria, and their role in the physiology of rhizobial cells and adaptation to various environmental conditions.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| |
Collapse
|
7
|
Marczak M, Żebracki K, Koper P, Turska-Szewczuk A, Mazur A, Wydrych J, Wójcik M, Skorupska A. Mgl2 Is a Hypothetical Methyltransferase Involved in Exopolysaccharide Production, Biofilm Formation, and Motility in Rhizobium leguminosarum bv. trifolii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:899-911. [PMID: 30681888 DOI: 10.1094/mpmi-01-19-0026-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, functional characterization of the mgl2 gene located near the Pss-I exopolysaccharide biosynthesis region in Rhizobium leguminosarum bv. trifolii TA1 is described. The hypothetical protein encoded by the mgl2 gene was found to be similar to methyltransferases (MTases). Protein homology and template-based modeling facilitated prediction of the Mgl2 structure, which greatly resembled class I MTases with a S-adenosyl-L-methionine-binding cleft. The Mgl2 protein was engaged in exopolysaccharide, but not lipopolysaccharide, synthesis. The mgl2 deletion mutant produced exopolysaccharide comprised of only low molecular weight fractions, while overexpression of mgl2 caused overproduction of exopolysaccharide with a normal low to high molecular weight ratio. The deletion of the mgl2 gene resulted in disturbances in biofilm formation and a slight increase in motility in minimal medium. Red clover (Trifolium pratense) inoculated with the mgl2 mutant formed effective nodules, and the appearance of the plants indicated active nitrogen fixation. The mgl2 gene was preceded by an active and strong promoter. Mgl2 was defined as an integral membrane protein and formed homodimers in vivo; however, it did not interact with Pss proteins encoded within the Pss-I region. The results are discussed in the context of the possible involvement of the newly described potential MTase in various metabolic traits, such as the exopolysaccharide synthesis and motility that are important for rhizobial saprophytic and symbiotic relationships.
Collapse
Affiliation(s)
- Małgorzata Marczak
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Kamil Żebracki
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Piotr Koper
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Anna Turska-Szewczuk
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Andrzej Mazur
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Jerzy Wydrych
- 2 Department of Comparative Anatomy and Anthropology, Institute of Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University
| | - Magdalena Wójcik
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Anna Skorupska
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| |
Collapse
|
8
|
Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A. Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants. Genes (Basel) 2017; 8:E360. [PMID: 29194398 PMCID: PMC5748678 DOI: 10.3390/genes8120360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
Rhizobia dwell and multiply in the soil and represent a unique group of bacteria able to enter into a symbiotic interaction with plants from the Fabaceae family and fix atmospheric nitrogen inside de novo created plant organs, called nodules. One of the key determinants of the successful interaction between these bacteria and plants are exopolysaccharides, which represent species-specific homo- and heteropolymers of different carbohydrate units frequently decorated by non-carbohydrate substituents. Exopolysaccharides are typically built from repeat units assembled by the Wzx/Wzy-dependent pathway, where individual subunits are synthesized in conjunction with the lipid anchor undecaprenylphosphate (und-PP), due to the activity of glycosyltransferases. Complete oligosaccharide repeat units are transferred to the periplasmic space by the activity of the Wzx flippase, and, while still being anchored in the membrane, they are joined by the polymerase Wzy. Here we have focused on the genetic control over the process of exopolysaccharides (EPS) biosynthesis in rhizobia, with emphasis put on the recent advancements in understanding the mode of action of the key proteins operating in the pathway. A role played by exopolysaccharide in Rhizobium-legume symbiosis, including recent data confirming the signaling function of EPS, is also discussed.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
9
|
PssP2 is a polysaccharide co-polymerase involved in exopolysaccharide chain-length determination in Rhizobium leguminosarum. PLoS One 2014; 9:e109106. [PMID: 25268738 PMCID: PMC4182512 DOI: 10.1371/journal.pone.0109106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022] Open
Abstract
Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS), displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed.
Collapse
|
10
|
Galván EM, Ielmini MV, Patel YN, Bianco MI, Franceschini EA, Schneider JC, Ielpi L. Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB. Glycobiology 2012; 23:259-72. [DOI: 10.1093/glycob/cws146] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 2011; 12:7898-933. [PMID: 22174640 PMCID: PMC3233446 DOI: 10.3390/ijms12117898] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids) and stress conditions (osmolarity, ionic strength) affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., Lublin 20-033, Poland; E-Mail: ; Tel.: +48-81-537-5974
| |
Collapse
|
12
|
Kucho KI, Hay AE, Normand P. The determinants of the actinorhizal symbiosis. Microbes Environ 2011; 25:241-52. [PMID: 21576879 DOI: 10.1264/jsme2.me10143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The actinorhizal symbiosis is a major contributor to the global nitrogen budget, playing a dominant role in ecological successions following disturbances. The mechanisms involved are still poorly known but there emerges the vision that on the plant side, the kinases that transmit the symbiotic signal are conserved with those involved in the transmission of the Rhizobium Nod signal in legumes. However, on the microbial side, complementation with Frankia DNA of Rhizobium nod mutants failed to permit identification of symbiotic genes. Furthermore, analysis of three Frankia genomes failed to permit identification of canonical nod genes and revealed symbiosis-associated genes such as nif, hup, suf and shc to be spread around the genomes. The present review explores some recently published approaches aimed at identifying bacterial symbiotic determinants.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima UniversityKorimoto1–21–35, Kagoshima 890–0065, Japan
| | | | | |
Collapse
|
13
|
Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev Microbiol 2010; 36:179-94. [PMID: 20214416 DOI: 10.3109/10408410903584863] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The leguminous crop Arachis hypogaea L. (peanut) is originally from South America and then was disseminated to tropical and subtropical regions. The dissemination of the crop resulted in peanut plants establishing a symbiotic nitrogen-fixing relationship with a wide diversity of indigenous soil bacteria. We present in this review, advances on the molecular basis for the crack-entry infection process involved in the peanut-rhizobia interaction, the diversity of rhizobial and fungal antagonistic bacteria associated with peanut plants, the effect of abiotic and biotic stresses on this interaction and the response of peanut to inoculation.
Collapse
Affiliation(s)
- A Fabra
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Marczak M, Mazur A, Gruszecki WI, Skorupska A. PssO, a unique extracellular protein important for exopolysaccharide synthesis in Rhizobium leguminosarum bv. trifolii. Biochimie 2008; 90:1781-90. [PMID: 18835420 DOI: 10.1016/j.biochi.2008.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 08/25/2008] [Indexed: 11/29/2022]
Abstract
Synthesis and secretion of polysaccharides by Gram-negative bacteria are a result of a concerted action of enzymatic and channel-forming proteins localized in different compartments of the cell. The presented work comprises functional characterization of PssO protein encoded within the previously identified, chromosomal exopolysaccharide (EPS) biosynthesis region (Pss-I) of symbiotic bacterium Rhizobium leguminosarum bv. trifolii TA1 (RtTA1). pssO gene localization between pssN and pssP genes encoding proteins engaged in exopolysaccharide synthesis and transport, suggested its role in EPS synthesis and/or secretion. RtTA1 pssO deletion mutant and the PssO protein overproducing strains were constructed. The mutant strain was EPS-deficient, however, this mutation was not complemented. The PssO-overproducing strain was characterized by increase in EPS secretion. Subcellular fractionation, pssO-phoA/lacZ translational fusion analyses and immunolocalisation of PssO on RtTA1 cell surface by electron microscopy demonstrated that PssO is secreted to the extracellular medium and remains attached to the cell. Western blotting analysis revealed the presence of immunologically related proteins within the species R. leguminosarum bv. trifolii, bv. viciae and Rhizobium etli. The secondary structure of PssO-His(6), as determined by FTIR spectroscopy, consists of at least 32% alpha-helical and 12% beta-sheet structures. A putative function of PssO in EPS synthesis and/or transport is discussed in the context of its cellular localization and the phenotypes of the deletion mutant and pssO-overexpressing strain.
Collapse
Affiliation(s)
- M Marczak
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | |
Collapse
|
15
|
Wielbo J, Skorupska A. Influence of phosphate and ammonia on the growth, exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii TA1 with clover (Trifolium pratense). ACTA BIOLOGICA HUNGARICA 2008; 59:115-27. [PMID: 18401950 DOI: 10.1556/abiol.59.2008.1.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Rhizobium-legume interaction is sensitive to a number of environmental factors, among which phosphate (Pi) and ammonium availability are the most important. We investigated the effect of Pi and ammonia concentration on exopolysaccharide production and symbiosis Trifolium pratense with Rhizobium leguminosarum bv. trifolii TA1 (RtTA1). The optimal Pi concentration in the bacterial growth medium for RtTA1 growth and exopolysaccharide production was in the range from 0.9 mM to 8.1 mM. Independently of Pi concentration, ammonium (NH4Cl) concentration above 8.1 mM in the culture medium significantly decreased EPS production, indicating a regulatory role of this nutrient on the EPS production in the RtTA1 strain. Pi availability has a beneficial effect on both partners of symbiosis. Pi concentration in the plant medium in the range from 1.7 mM to 5 mM was optimal for nodule formation, nodule occupancy and nitrogen fixation ability. Despite of T. pratense cv. Bryza tolerance on high Pi concentration, 20 mM Pi occurs to be nearly phytotoxic, which negatively affects almost all symbiotic parameters. Large amounts of starch were accumulated in the nodules formed by clover grown on medium containing high Pi concentration.
Collapse
Affiliation(s)
- J Wielbo
- Department of General Microbiology, M. Curie-Skłodowska University, Lublin, Poland.
| | | |
Collapse
|
16
|
Marczak M, Mazur A, Król JE, Gruszecki WI, Skorupska A. Lipoprotein PssN of Rhizobium leguminosarum bv. trifolii: subcellular localization and possible involvement in exopolysaccharide export. J Bacteriol 2006; 188:6943-52. [PMID: 16980497 PMCID: PMC1595502 DOI: 10.1128/jb.00651-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface expression of exopolysaccharides (EPS) in gram-negative bacteria depends on the activity of proteins found in the cytoplasmic membrane, the periplasmic space, and the outer membrane. pssTNOP genes identified in Rhizobium leguminosarum bv. trifolii strain TA1 encode proteins that might be components of the EPS polymerization and secretion system. In this study, we have characterized PssN protein. Employing pssN-phoA and pssN-lacZ gene fusions and in vivo acylation with [3H]palmitate, we demonstrated that PssN is a 43-kDa lipoprotein directed to the periplasm by an N-terminal signal sequence. Membrane detergent fractionation followed by sucrose gradient centrifugation showed that PssN is an outer membrane-associated protein. Indirect immunofluorescence with anti-PssN and fluorescein isothiocyanate-conjugated antibodies and protease digestion of spheroplasts and intact cells of TA1 provided evidence that PssN is oriented towards the periplasmic space. Chemical cross-linking of TA1 and E. coli cells overproducing PssN-His6 protein showed that PssN might exist as a homo-oligomer of at least two monomers. Investigation of the secondary structure of purified PssN-His6 protein by Fourier transform infrared spectroscopy revealed the predominant presence of beta-structure; however, alpha-helices were also detected. Influence of an increased amount of PssN protein on the TA1 phenotype was assessed and correlated with a moderate enhancement of EPS production.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of General Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | | | | | |
Collapse
|
17
|
Król JE, Mazur A, Marczak M, Skorupska A. Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum. Genomics 2006; 89:237-47. [PMID: 17014983 DOI: 10.1016/j.ygeno.2006.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/29/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
We applied a genomic approach in the identification of genes required for the biosynthesis of different polysaccharides in Rhizobium leguminosarum bv. trifolii TA1 (RtTA1). Pulsed-field gel electrophoresis analyses of undigested genomic DNA revealed that the RtTA1 genome is partitioned into a chromosome and four large plasmids. The combination of sequencing of RtTA1 library BAC clones and PCR amplification of polysaccharide genes from the RtTA1 genome led to the identification of five large regions and clusters, as well as many separate potential polysaccharide biosynthesis genes dispersed in the genome. We observed an apparent abundance of genes possibly linked to lipopolysaccharide biosynthesis. All RtTA1 polysaccharide biosynthesis regions showed a high degree of conserved synteny between R. leguminosarum bv. viciae and/or Rhizobium etli. A majority of the genes displaying a conserved order also showed high sequence identity levels.
Collapse
Affiliation(s)
- Jarosław E Król
- Department of General Microbiology, Institute of Microbiology and Biotechnology, University of Maria Curie Skłodowska, 19 Akademicka Street, 20-033 Lublin, Poland
| | | | | | | |
Collapse
|
18
|
Russo DM, Williams A, Edwards A, Posadas DM, Finnie C, Dankert M, Downie JA, Zorreguieta A. Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 2006; 188:4474-86. [PMID: 16740954 PMCID: PMC1482952 DOI: 10.1128/jb.00246-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria.
Collapse
Affiliation(s)
- Daniela M Russo
- Fundación Instituto Leloir, CONICET, and Inst. de Investigaciones Bioquímicas, FCEyN, University of Buenos Aires, Patricias Argentinas 435, (C1405BWE) Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 2006; 5:7. [PMID: 16483356 PMCID: PMC1403797 DOI: 10.1186/1475-2859-5-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/16/2006] [Indexed: 11/10/2022] Open
Abstract
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.
Collapse
Affiliation(s)
- Anna Skorupska
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Monika Janczarek
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Małgorzata Marczak
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Andrzej Mazur
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Jarosław Król
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| |
Collapse
|
20
|
Mazur A, Marczak M, Król JE, Skorupska A. Topological and transcriptional analysis of pssL gene product: a putative Wzx-like exopolysaccharide translocase in Rhizobium leguminosarum bv. trifolii TA1. Arch Microbiol 2005; 184:1-10. [PMID: 16044265 DOI: 10.1007/s00203-005-0018-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/29/2005] [Accepted: 04/04/2005] [Indexed: 11/30/2022]
Abstract
An identified pssL gene is yet another one, besides the pssT, pssN and pssP genes, encoding for a protein engaged in polysaccharide polymerization and export in Rhizobium leguminosarum bv. trifolii strain TA1 (RtTA1). Amino acid sequence similarity and hypothetical protein secondary structure placed the PssL protein within Wzx (RfbX) translocases with putative flippase function that belong to the polysaccharide specific transport (PST) family. The predicted secondary structure of the PssL membrane protein was examined with a series of PssL-PhoA and PssL-LacZ translational fusions. The results support the hypothesis of PssL being a member of PST protein family comprising transporters with 12 membrane spanning segments and amino and carboxyl termini located in the cytoplasm. Results of semi-quantitative RT-PCR showed that the initial abundance of mRNA encoding PssL protein was relatively lower when compared to the quantity of the previously identified PssT membrane protein. PssL might be a good candidate for Wzx-like protein that together with PssT (Wzy protein) could be responsible for Wzx/Wzy-like-dependent EPS polymerization and translocation in RtTA1.
Collapse
Affiliation(s)
- Andrzej Mazur
- Department of General Microbiology, Institute of Microbiology and Biotechnology, University of M. Curie-Skłodowska, 19 Akademicka St., 20-033, Lublin, Poland.
| | | | | | | |
Collapse
|
21
|
Wielbo J, Mazur A, Król J, Marczak M, Kutkowska J, Skorupska A. Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants. Arch Microbiol 2004; 182:331-6. [PMID: 15349716 DOI: 10.1007/s00203-004-0723-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 06/18/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Rhizobium leguminosarum biovar trifolii strain TA1 polysaccharide synthesis (pss) mutants in the pssD, pssP, pssT and pssO genes and altered in exopolysaccharide (EPS) synthesis were investigated. EPS-deficient mutants were also changed in lipopolysaccharide structure. All mutants exhibited varied sensitivities to detergents, ethanol and antibiotics, thus indicating changes in bacterial membrane integrity. Using pss mutants marked with the gusA gene, EPS-deficient mutants were found to have abnormalities in nodule development and to provoke severe plant defence reactions. The pss mutants that produced altered quantities of EPS with a changed degree of polymerisation generally occupied the younger developmental zones of the nodules and elicited moderate plant defence reactions.
Collapse
Affiliation(s)
- Jerzy Wielbo
- Department of General Microbiology, M. Curie-Sklodowska University, Akademicka 19 st., Lublin, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Wielbo J, Mazur A, Król JE, Marczak M, Skorupska A. Environmental modulation of the pssTNOP gene expression in Rhizobium leguminosarum bv. trifolii. Can J Microbiol 2004; 50:201-11. [PMID: 15105887 DOI: 10.1139/w04-004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exopolysaccharide production by Rhizobium leguminosarum bv. trifolii is required for successful establishment of nitrogen-fixing symbiosis with clover (Trifolium pratense L.). Using plasmid-borne transcriptional fusions of promoters of pss genes with promoterless lacZ the effect of root exudate, phosphate, and ammonia on expression of pssT, pssN, pssO, and pssP genes in wild-type strain RtTA1 background was determined. A stimulating effect of these environmental factors on pssO and pssP gene expression was observed. The putative pssO gene promoter was determined to be a strong promoter within which the divergent nod-box element was identified. The pssO promoter was slightly inducible in a flavonoid-dependent manner in wild-type R. leguminosarum bv. trifolii strains RtTA1 and ANU843 and very weakly active in a mutant of strain ANU843 that lacks the regulatory nodD gene. The expression of pssO and pssP genes in planta was investigated using plasmid-borne pssO-gusA and pssP-gusA fusions under different phosphate availability to clover. The level of pssO-gusA fusion expression was shown to be dependent on phosphate concentration in the plant growth medium.
Collapse
Affiliation(s)
- Jerzy Wielbo
- Department of General Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | |
Collapse
|
23
|
Patriarca EJ, Tatè R, Ferraioli S, Iaccarino M. Organogenesis of legume root nodules. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:201-62. [PMID: 15066376 DOI: 10.1016/s0074-7696(04)34005-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The N(2)-fixing nodules elicited by rhizobia on legume roots represent a useful model for studying plant development. Nodule formation implies a complex progression of temporally and spatially regulated events of cell differentiation/dedifferentiation involving several root tissues. In this review we describe the morphogenetic events leading to the development of these histologically well-structured organs. These events include (1) root hair deformation, (2) development and growth of infection threads, (3) induction of the nodule primordium, and (4) induction, activity, and persistence of the nodular meristem and/or of foci of meristematic activities. Particular attention is given to specific aspects of the symbiosis, such as the early stages of intracellular invasion and to differentiation of the intracellular form of rhizobia, called symbiosomes. These developmental aspects were correlated with (1) the regulatory signals exchanged, (2) the plant genes expressed in specific cell types, and (3) the staining procedures that allow the recognition of some cell types. When strictly linked with morphogenesis, the nodulation phenotypes of plant and bacterial mutants such as the developmental consequence of the treatment with metabolic inhibitors, metabolic intermediates, or the variation of physical parameters are described. Finally, some aspects of nodule senescence and of regulation of nodulation are discussed.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy
| | | | | | | |
Collapse
|
24
|
Janczarek M, Skorupska A. Exopolysaccharide synthesis in Rhizobium leguminosarum bv. trifolii is related to various metabolic pathways. Res Microbiol 2003; 154:433-42. [PMID: 12892850 DOI: 10.1016/s0923-2508(03)00113-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhizobium leguminosarum bv. trifolii synthesizes extracellular polysaccharide (EPS) that is postulated to be a biologically active signalling molecule in clover symbiosis. A group of seven exopolysaccharide-deficient (Exo), non-nitrogen-fixing mutants of R. leguminosarum bv. trifolii strain 24.1 isolated by transposon mutagenesis were complemented to mucoid phenotype by a low-copy plasmid carrying the pssA gene encoding the first glucosyl-IP-transferase. Some of these mutants were not corrected in their symbiotic defect by the pssA gene. Precise localization of Tn5 insertion sites by subcloning and sequencing the adjacent genomic DNA in the Exo mutants identified the disrupted genes and their possible functions. Only one mutant (Rt74) was mutated in pssA gene; others were mutated in diverse genes that were not directly involved in EPS biosynthesis. The suppression of EPS deficiency in these mutants by additional copies of pssA indicated a possible connection between exopolysaccharide biosynthesis and various metabolic pathways.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of General Microbiology, M. Curie-Sklodowska University, Akademicka 19 st., 20-033 Lublin, Poland
| | | |
Collapse
|
25
|
Mazur A, Król JE, Marczak M, Skorupska A. Membrane topology of PssT, the transmembrane protein component of the type I exopolysaccharide transport system in Rhizobium leguminosarum bv. trifolii strain TA1. J Bacteriol 2003; 185:2503-11. [PMID: 12670974 PMCID: PMC152602 DOI: 10.1128/jb.185.8.2503-2511.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 01/17/2003] [Indexed: 11/20/2022] Open
Abstract
The pssT gene was identified as the fourth gene located upstream of the pssNOP gene cluster possibly involved in the biosynthesis, polymerization, and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum bv. trifolii strain TA1. The hydropathy profile and homology searches indicated that PssT belongs to the polysaccharide-specific transport family of proteins, a component of the type I system of the polysaccharide transport. The predicted membrane topology of the PssT protein was examined with a series of PssT-PhoA fusion proteins and a complementary set of PssT-LacZ fusions. The results generally support a predicted topological model for PssT consisting of 12 transmembrane segments, with amino and carboxyl termini located in the cytoplasm. A mutant lacking the C-terminal part of PssT produced increased amounts of total EPS with an altered distribution of high- and low-molecular-weight forms in comparison to the wild-type RtTA1 strain. The PssT mutant produced an increased number of nitrogen fixing nodules on clover.
Collapse
Affiliation(s)
- Andrzej Mazur
- Department of General Microbiology, M. Curie-Skłodowska University, 20-033 Lublin, Poland
| | | | | | | |
Collapse
|