1
|
Wang S, Lu T, Xue Q, Xu K, Cheng G. Antioxidation and symbiotic nitrogen fixation function of prxA gene in Mesorhizobium huakuii. Microbiologyopen 2019; 8:e889. [PMID: 31177643 PMCID: PMC6813433 DOI: 10.1002/mbo3.889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxins (Prxs) play an essential role in the antioxidant activity and symbiotic capacity of Mesorhizobium huakuii. A mutation in the M. huakuii prxA gene (encoding a Prx5‐like peroxiredoxin) was generated by homologous recombination. The mutation of prxA did not affect M. huakuii growth, but the strain displayed decreased antioxidative capacity under organic cumene hydroperoxide (CUOOH) conditions. The higher resistance of the prxA mutant strain compared with the wild‐type strain to more than 1 mmol/L H2O2 was associated with a significantly higher level of glutathione reductase activity and a significantly lower level of intracellular hydrogen peroxide content. Real‐time quantitative PCR showed that under 1 mmol/L H2O2 conditions, expression of the stress‐responsive genes katG and katE was significantly upregulated in the prxA mutant. Although the prxA mutant can form nodules, the symbiotic ability was severely impaired, which led to an abnormal nodulation phenotype coupled to a 53.25% reduction in nitrogen fixation capacity. This phenotype was linked to an absence of bacteroid differentiation and deregulation of the transcription of the symbiotic genes nifH, nifD, and fdxN. Expression of the prxA gene was induced during symbiosis. Thus, the PrxA protein is essential for antioxidant capacity and symbiotic nitrogen fixation, playing independent roles in bacterial differentiation and cellular antioxidative systems.
Collapse
Affiliation(s)
- Sanjiao Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Tiantian Lu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Qiang Xue
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Ke Xu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Guojun Cheng
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.,Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| |
Collapse
|
2
|
Fliegmann J, Bono JJ. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 2015; 32:455-64. [PMID: 26233756 DOI: 10.1007/s10719-015-9609-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 02/03/2023]
Abstract
Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.
Collapse
Affiliation(s)
- Judith Fliegmann
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France.,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France. .,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France.
| |
Collapse
|
3
|
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 2013; 31:1786-95. [PMID: 24095741 DOI: 10.1016/j.biotechadv.2013.09.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed.
Collapse
Affiliation(s)
- Sina Adrangi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Hamel LP, Beaudoin N. Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. PLANTA 2010; 232:787-806. [PMID: 20635098 DOI: 10.1007/s00425-010-1215-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
In plants, short chitin oligosaccharides and chitosan fragments (collectively referred to as chitooligosaccharides) are well-known elicitors that trigger defense gene expression, synthesis of antimicrobial compounds, and cell wall strengthening. Recent findings have shed new light on chitin-sensing mechanisms and downstream activation of intracellular signaling networks that mediate plant defense responses. Interestingly, chitin receptors possess several lysin motif domains that are also found in several legume Nod factor receptors. Nod factors are chitin-related molecules produced by nitrogen-fixing rhizobia to induce root nodulation. The fact that chitin and Nod factor receptors share structural similarity suggests an evolutionary conserved relationship between mechanisms enabling recognition of both deleterious and beneficial microorganisms. Here, we will present an update on molecular events involved in chitooligosaccharide sensing and downstream signaling pathways in plants and will discuss how structurally related signals may lead to such contrasted outcomes during plant-microbe interactions.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Faculté des Sciences, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
5
|
Hogg BV, Cullimore JV, Ranjeva R, Bono JJ. The DMI1 and DMI2 early symbiotic genes of medicago truncatula are required for a high-affinity nodulation factor-binding site associated to a particulate fraction of roots. PLANT PHYSIOLOGY 2006; 140:365-73. [PMID: 16377749 PMCID: PMC1326057 DOI: 10.1104/pp.105.068981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
The establishment of the legume-rhizobia symbiosis between Medicago spp. and Sinorhizobium meliloti is dependent on the production of sulfated lipo-chitooligosaccharidic nodulation (Nod) factors by the bacterial partner. In this article, using a biochemical approach to characterize putative Nod factor receptors in the plant host, we describe a high-affinity binding site (Kd = 0.45 nm) for the major Nod factor produced by S. meliloti. This site is termed Nod factor-binding site 3 (NFBS3). NFBS3 is associated to a high-density fraction prepared from roots of Medicago truncatula and shows binding specificity for lipo-chitooligosaccharidic structures. As for the previously characterized binding sites (NFBS1 and NFBS2), NFBS3 does not recognize the sulfate group on the S. meliloti Nod factor. Studies of Nod factor binding in root extracts of early symbiotic mutants of M. truncatula reveals that the new site is present in Nod factor perception and does not make infections 3 (dmi3) mutants but is absent in dmi1 and dmi2 mutants. Roots and cell cultures of all these mutants still contain sites similar to NFBS1 and NFBS2, respectively. These results suggest that NFBS3 is different from NFBS2 and NFBS1 and is dependent on the common symbiotic genes DMI1 and DMI2 required for establishment of symbioses with both rhizobia and arbuscular mycorrhizal fungi. The potential role of this site in the establishment of root endosymbioses is discussed.
Collapse
Affiliation(s)
- Bridget V Hogg
- Surfaces Cellulaires et Signalisation chez les Végétaux, Unité Mixte de Recherche 5546 Centre National de la Recherche Scientifique-Université Paul Sabatier, Toulouse III, Pôle de Biotechnologie Végétale, 31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
6
|
Groves P, Offermann S, Rasmussen MO, Canada FJ, Bono JJ, Driguez H, Imberty A, Jimenez-Barbero J. The relative orientation of the lipid and carbohydrate moieties of lipochitooligosaccharides related to nodulation factors depends on lipid chain saturation. Org Biomol Chem 2005; 3:1381-6. [PMID: 15827632 DOI: 10.1039/b500104h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipochitooligosaccharides (LCOs) signal the symbiosis of rhizobia with legumes and the formation of nitrogen-fixing root nodules. LCOs 1 and 2 share identical tetrasaccharide scaffolds but different lipid moieties (1, LCO-IV(C16:1[9Z], SNa) and , LCO-IV(C16:2[2E,9Z], SNa)). The conformational behaviors of both LCOs were studied by molecular modeling and NMR. Modeling predicts that a small lipid modification would result in a different relative orientation of the lipid and tetrasaccharide moieties. Diffusion ordered spectroscopy reports that both LCOs form small aggregates above 1 mM. Nuclear Overhauser spectroscopy (NOESY) data, collected under monomeric conditions, reveals lipid-carbohydrate contacts only for 1, in agreement with the modeling data. The distinct molecular structures of 1 and 2 have the potential to contribute to their selective binding by legume proteins.
Collapse
Affiliation(s)
- Patrick Groves
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Navarro-Gochicoa MT, Camut S, Timmers ACJ, Niebel A, Herve C, Boutet E, Bono JJ, Imberty A, Cullimore JV. Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. PLANT PHYSIOLOGY 2003; 133:1893-910. [PMID: 14630957 PMCID: PMC300742 DOI: 10.1104/pp.103.027680] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/30/2003] [Accepted: 09/15/2003] [Indexed: 05/20/2023]
Abstract
To study the role of LecRK (lectin-like receptor kinase) genes in the legumerhizobia symbiosis, we have characterized the four Medicago truncatula Gaernt. LecRK genes that are most highly expressed in roots. Three of these genes, MtLecRK7;1, MtLecRK7;2, and MtLecRK7;3, encode proteins most closely related to the Class A LecRKs of Arabidopsis, whereas the protein encoded by the fourth gene, MtLecRK1;1, is most similar to a Class B Arabidopsis LecRK. All four genes show a strongly enhanced root expression, and detailed studies on MtLecRK1;1 and MtLecRK7;2 revealed that the levels of their mRNAs are increased by nitrogen starvation and transiently repressed after either rhizobial inoculation or addition of lipochitooligosaccharidic Nod factors. Studies of the MtLecRK1;1 and MtLecRK7;2 proteins, using green fluorescent protein fusions in transgenic M. truncatula roots, revealed that they are located in the plasma membrane and that their central transmembrane-spanning helix is required for correct sorting. Moreover, their lectin-like domains appear to be highly glycosylated. Of the four proteins, only MtLecRK1;1 shows a high conservation of key residues implicated in monosaccharide binding, and molecular modeling revealed that this protein may be capable of interacting with Nod factors. However, no increase in Nod factor binding was found in roots overexpressing a fusion in which the kinase domain of this protein had been replaced with green fluorescent protein. Roots expressing this fusion protein however showed an increase in nodule number, suggesting that expression of MtLecRK1;1 influences nodulation. The potential role of LecRKs in the legume-rhizobia symbiosis is discussed.
Collapse
Affiliation(s)
- Maria-Teresa Navarro-Gochicoa
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, Boite Postale 27, 31326 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Amor BB, Shaw SL, Oldroyd GED, Maillet F, Penmetsa RV, Cook D, Long SR, Dénarié J, Gough C. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:495-506. [PMID: 12753588 DOI: 10.1046/j.1365-313x.2003.01743.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.
Collapse
Affiliation(s)
- Besma Ben Amor
- Laboratoire des Interactions Plantes-Microorganismes, INRA-CNRS, BP 27, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI. MOLECULAR SIGNALS AND RECEPTORS: CONTROLLING RHIZOSPHERE INTERACTIONS BETWEEN PLANTS AND OTHER ORGANISMS. Ecology 2003. [DOI: 10.1890/0012-9658(2003)084[0858:msarcr]2.0.co;2] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|