1
|
Shi X, Qin T, Qu Y, Zhang J, Hao G, Zhao N, Gao Y, Ren A. Infection by Endophytic Epichloë sibirica Was Associated with Activation of Defense Hormone Signal Transduction Pathways and Enhanced Pathogen Resistance in the Grass Achnatherum sibiricum. PHYTOPATHOLOGY 2022; 112:2310-2320. [PMID: 35704677 DOI: 10.1094/phyto-12-21-0521-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epichloë endophytes can improve the resistance of host grasses to pathogenic fungi, but the underlying mechanisms remain largely unknown. Here, we used phytohormone quantifications, gene expression analysis, and pathogenicity experiments to investigate the effect of Epichloë sibirica on the resistance of Achnatherum sibiricum to Curvularia lunata pathogens. Comparison of gene expression patterns between endophyte-infected and endophyte-free leaves revealed that endophyte infection was associated with significant induction of 1,758 and 765 differentially expressed genes in the host before and after pathogen inoculation, respectively. Functional analysis of the differentially expressed genes suggested that endophyte infection could activate the constitutive resistance of the host by increasing photosynthesis, enhancing the ability to scavenge reactive oxygen species, and actively regulating the expression of genes with function related to disease resistance. We found that endophyte infection was associated with induction of the expression of genes involved in the biosynthesis pathways of jasmonic acid, ethylene, and pipecolic acid and amplified the defense response of the jasmonic acid/ethylene co-regulated EIN/ERF1 transduction pathway and Pip-mediated TGA transduction pathway. Phytohormone quantifications showed that endophyte infection was associated with significant accumulation of jasmonic acid, ethylene, and pipecolic acid after pathogen inoculation. Exogenous phytohormone treatments confirmed that the disease index of plants was negatively related to both jasmonic acid and ethylene concentrations. Our results demonstrate that endophyte infection can not only improve the constitutive resistance of the host to phytopathogens before pathogen inoculation but also be associated with enhanced systemic resistance of the host to necrotrophs after C. lunata inoculation.
Collapse
Affiliation(s)
- Xinjian Shi
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tianzi Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaobing Qu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Junzhen Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Hao
- College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science & Engineering, Nankai University, Tianjin 300071, China
| | - Nianxi Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Zhang W, Li H, Wang L, Xie S, Zhang Y, Kang R, Zhang M, Zhang P, Li Y, Hu Y, Wang M, Chen L, Yuan H, Ding S, Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:218-236. [PMID: 34741560 PMCID: PMC8743017 DOI: 10.1111/mpp.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host-pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Haiyang Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Limin Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shunpei Xie
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Ruijiao Kang
- Department of Landscape Architecture and Food EngineeringXuchang Vocational Technical CollegeXuchangChina
| | - Mengjuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Panpan Zhang
- Agriculture and Rural Affairs BureauXuchangChina
| | - Yonghui Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Min Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Linlin Chen
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Hongxia Yuan
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shengli Ding
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Honglian Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| |
Collapse
|
3
|
Zhang H, Xu X, Wang M, Wang H, Deng P, Zhang Y, Wang Y, Wang C, Wang Y, Ji W. A dominant spotted leaf gene TaSpl1 activates endocytosis and defense-related genes causing cell death in the absence of dominant inhibitors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110982. [PMID: 34315598 DOI: 10.1016/j.plantsci.2021.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The spotted leaf lesion mimic trait simulates cell death in a plant responding to pathogen infection. Some spotted leaf genes are recessive, while others are dominant. A small number of plants with a lesion mimic phenotype appeared in a segregating population obtained by crossing two normal green wheat strains, XN509 and N07216. Here, we clarified the genetic model and its breeding value. Phenotyping of the consecutive progeny populations over six cropping seasons showed that the spotted leaf lesion mimic phenotype was controlled by a dominant gene designated TaSpl1, which was inhibited by two other dominant genes, designated TaSpl1-I1 and TaSpl1-I2. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed KASP-PCR markers, the TaSpl1 and TaSpl1-I1 loci in N07216 were mapped to the end of chromosomes 3DS and 3BS, respectively. Plants with the spotted phenotype showed lower levels of stripe rust and powdery mildew than those with the normal green phenotype. Compared with normal leaves, the differentially expressed genes in spotted leaves were significantly enriched in plant-pathogen interaction and endocytosis pathways. There were no differences in the yield parameters of the F5 and F6 sister lines, N13039S with TaSpl1 and N13039 N without TaSpl1. These results provide a greater understanding of spotted leaf phenotyping and the breeding value of the lesion mimic allele in developing disease-resistance varieties.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; China-Australia Joint Research Center for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xiaomin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengmeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaoyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
4
|
Ha CM, Rao X, Saxena G, Dixon RA. Growth-defense trade-offs and yield loss in plants with engineered cell walls. THE NEW PHYTOLOGIST 2021; 231:60-74. [PMID: 33811329 DOI: 10.1111/nph.17383] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 05/18/2023]
Abstract
As a major component of plant secondary cell walls, lignin provides structural integrity and rigidity, and contributes to primary defense by providing a physical barrier to pathogen ingress. Genetic modification of lignin biosynthesis has been adopted to reduce the recalcitrance of lignified cell walls to improve biofuel production, tree pulping properties and forage digestibility. However, lignin-modification is often, but unpredictably, associated with dwarf phenotypes. Hypotheses suggested to explain this include: collapsed vessels leading to defects in water and solute transport; accumulation of molecule(s) that are inhibitory to plant growth or deficiency of metabolites that are critical for plant growth; activation of defense pathways linked to cell wall integrity sensing. However, there is still no commonly accepted underlying mechanism for the growth defects. Here, we discuss recent data on transcriptional reprogramming in plants with modified lignin content and their corresponding suppressor mutants, and evaluate growth-defense trade-offs as a factor underlying the growth phenotypes. New approaches will be necessary to estimate how gross changes in transcriptional reprogramming may quantitatively affect growth. Better understanding of the basis for yield drag following cell wall engineering is important for the biotechnological exploitation of plants as factories for fuels and chemicals.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaolan Rao
- College of Life Sciences, Hubei University, No. 28 Nanli Road, Hong-shan District, Wuchang, Wuhan, Hubei Province, 430068, China
| | - Garima Saxena
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
5
|
Shah A, Tyagi S, Saratale GD, Guzik U, Hu A, Sreevathsa R, Reddy VD, Rai V, Mulla SI. A comprehensive review on the influence of light on signaling cross-talk and molecular communication against phyto-microbiome interactions. Crit Rev Biotechnol 2021; 41:370-393. [PMID: 33550862 DOI: 10.1080/07388551.2020.1869686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Generally, plant growth, development, and their productivity are mainly affected by their growth rate and also depend on environmental factors such as temperature, pH, humidity, and light. The interaction between plants and pathogens are highly specific. Such specificity is well characterized by plants and pathogenic microbes in the form of a molecular signature such as pattern-recognition receptors (PRRs) and microbes-associated molecular patterns (MAMPs), which in turn trigger systemic acquired immunity in plants. A number of Arabidopsis mutant collections are available to investigate molecular and physiological changes in plants under the presence of different light conditions. Over the past decade(s), several studies have been performed by selecting Arabidopsis thaliana under the influence of red, green, blue, far/far-red, and white light. However, only few phenotypic and molecular based studies represent the modulatory effects in plants under the influence of green and blue lights. Apart from this, red light (RL) actively participates in defense mechanisms against several pathogenic infections. This evolutionary pattern of light sensitizes the pathologist to analyze a series of events in plants during various stress conditions of the natural and/or the artificial environment. This review scrutinizes the literature where red, blue, white, and green light (GL) act as sensory systems that affects physiological parameters in plants. Generally, white and RL are responsible for regulating various defense mechanisms, but, GL also participates in this process with a robust impact! In addition to this, we also focus on the activation of signaling pathways (salicylic acid and jasmonic acid) and their influence on plant immune systems against phytopathogen(s).
Collapse
Affiliation(s)
- Anshuman Shah
- CP College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, Dantiwada, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Katowice, Poland
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment Chinese Academy of Sciences, Xiamen, China
| | | | - Vaddi Damodara Reddy
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, India
| |
Collapse
|
6
|
Liu R, Lu J, Zheng S, Du M, Zhang C, Wang M, Li Y, Xing J, Wu Y, Zhang L. Molecular mapping of a novel lesion mimic gene (lm4) associated with enhanced resistance to stripe rust in bread wheat. BMC Genom Data 2021; 22:1. [PMID: 33568061 PMCID: PMC7853307 DOI: 10.1186/s12863-021-00963-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lesion mimics (LMs) are disease-like symptoms that occur randomly on plant green leaves in the absence of pathogens. A previous study showed that LMs are related to enhanced resistance to a broad spectrum of diverse pathogen races and programmed cell death (PCD). Stripe rust is a globally epidemic fungal disease that can substantially reduce the quality and yield of crops. The development of resistant cultivars is an economical and environmentally friendly way to enhance the adaptability and yield stability of crops instead of the use of fungicide applications. RESULTS In this study, a novel LM gene affording Pst resistance was identified and mapped with molecular markers developed for marker-assisted selection (MAS)-based wheat breeding. In this study, a novel LM gene named lm4, which is closely linked (8.06 cM) to SSR markers Xgwm210 and Xgwm455, was identified by using a Yanzhan 1/Neixiang 188 RIL population. The genetic distance of lm4 was then narrowed such that it was flanked by SSR markers with 0.51 cM and 0.77 cM intervals. Two SSR markers, lm4_01_cib and lm4_02_cib, were developed based on the content in the Chinese Spring genome database and wheat 660 K SNP results; these markers can be used to conduct MAS of LMs in wheat. The results also showed that lm4 significantly improved the resistance of stripe rust in wheat. CONCLUSIONS Therefore, lm4 is associated with stripe rust resistance, which may provide theoretical support for future crop disease-resistance breeding and for understanding the plant apoptosis mechanism.
Collapse
Affiliation(s)
- Rong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Mei Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chihong Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Minxiu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jiayi Xing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Dinh HX, Singh D, Periyannan S, Park RF, Pourkheirandish M. Molecular genetics of leaf rust resistance in wheat and barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2035-2050. [PMID: 32128617 DOI: 10.1007/s00122-020-03570-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The demand for cereal grains as a main source of energy continues to increase due to the rapid increase in world population. The leaf rust diseases of cereals cause significant yield losses, posing challenges for global food security. The deployment of resistance genes has long been considered as the most effective and sustainable way to control cereal leaf rust diseases. While genetic resistance has reduced the impact of these diseases in agriculture, losses still occur due to the ability of the respective rust pathogens to change and render resistance genes ineffective plus the slow pace at which resistance genes are discovered and characterized. This article highlights novel recently developed strategies based on advances in genome sequencing that have accelerated gene isolation by overcoming the complexity of cereal genomes. The leaf rust resistance genes cloned so far from wheat and barley belong to various protein families, including nucleotide binding site/leucine-rich repeat receptors and transporters. We review recent studies that are beginning to reveal the defense mechanisms conferred by the leaf rust resistance genes identified to date in cereals and their roles in either pattern-triggered immunity or effector-triggered immunity.
Collapse
Affiliation(s)
- Hoan X Dinh
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Davinder Singh
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Sambasivam Periyannan
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, 2601, Australia
| | - Robert F Park
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia.
| | | |
Collapse
|
8
|
Al Amin GM, Kong K, Sharmin RA, Kong J, Bhat JA, Zhao T. Characterization and Rapid Gene-Mapping of Leaf Lesion Mimic Phenotype of spl-1 Mutant in Soybean ( Glycine max (L.) Merr.). Int J Mol Sci 2019; 20:E2193. [PMID: 31058828 PMCID: PMC6539437 DOI: 10.3390/ijms20092193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
In plants, lesion mimic mutants (LMMs) reveal spontaneous disease-like lesions in the absence of pathogen that constitutes powerful genetic material to unravel genes underlying programmed cell death (PCD), particularly the hypersensitive response (HR). However, only a few LMMs are reported in soybean, and no related gene has been cloned until now. In the present study, we isolated a new LMM named spotted leaf-1 (spl-1) from NN1138-2 cultivar through ethyl methanesulfonate (EMS) treatment. The present study revealed that lesion formation might result from PCD and excessive reactive oxygen species (ROS) accumulation. The chlorophyll content was significantly reduced but antioxidant activities, viz., superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), as well as the malondialdehyde (MDA) contents, were detected higher in spl-1 than in the wild-type. According to segregation analysis of mutant phenotype in two genetic populations, viz., W82×spl-1 and PI378692×spl-1, the spotted leaf phenotype of spl-1 is controlled by a single recessive gene named lm1. The lm1 locus governing mutant phenotype of spl-1 was first identified in 3.15 Mb genomic region on chromosome 04 through MutMap analysis, which was further verified and fine mapped by simple sequence repeat (SSR) marker-based genetic mapping. Genetic linkage analysis narrowed the genomic region (lm1 locus) for mutant phenotype to a physical distance of ~76.23 kb. By searching against the Phytozome database, eight annotated candidate genes were found within the lm1 region. qRT-PCR expression analysis revealed that, among these eight genes, only Glyma.04g242300 showed highly significant expression levels in wild-type relative to the spl-1 mutant. However, sequencing data of the CDS region showed no nucleotide difference between spl-1 and its wild type within the coding regions of these genes but might be in the non-coding regions such as 5' or 3' UTR. Hence, the data of the present study are in favor of Glyma.04g242300 being the possible candidate genes regulating the mutant phenotype of spl-1. However, further validation is needed to prove this function of the gene as well as its role in PCD, which in turn would be helpful to understand the mechanism and pathways involved in HR disease resistance of soybean.
Collapse
Affiliation(s)
- G M Al Amin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh.
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ripa Akter Sharmin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiejie Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Sarowar S, Alam ST, Makandar R, Lee H, Trick HN, Dong Y, Shah J. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2019; 20:626-640. [PMID: 30597698 PMCID: PMC6637896 DOI: 10.1111/mpp.12781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis-F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.
Collapse
Affiliation(s)
- Sujon Sarowar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Present address:
Botanical GeneticsBuffaloNYUSA
| | - Syeda T. Alam
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| | - Ragiba Makandar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Department of Plant SciencesUniversity of HyderabadGachibowliHyderabad 500046India
| | - Hyeonju Lee
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Harold N. Trick
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Yanhong Dong
- Department of Plant PathologyUniversity of MinnesotaSt. PaulMN 55108USA
| | - Jyoti Shah
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| |
Collapse
|
10
|
Boccardo NA, Segretin ME, Hernandez I, Mirkin FG, Chacón O, Lopez Y, Borrás-Hidalgo O, Bravo-Almonacid FF. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci Rep 2019; 9:2791. [PMID: 30808937 PMCID: PMC6391382 DOI: 10.1038/s41598-019-39568-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/25/2019] [Indexed: 01/18/2023] Open
Abstract
Plants are continuously challenged by pathogens, affecting most staple crops compromising food security. They have evolved different mechanisms to counterattack pathogen infection, including the accumulation of pathogenesis-related (PR) proteins. These proteins have been implicated in active defense, and their overexpression has led to enhanced resistance in nuclear transgenic plants, although in many cases constitutive expression resulted in lesion-mimic phenotypes. We decided to evaluate plastid transformation as an alternative to overcome limitations observed for nuclear transgenic technologies. The advantages include the possibilities to express polycistronic RNAs, to obtain higher protein expression levels, and the impeded gene flow due to the maternal inheritance of the plastome. We transformed Nicotiana tabacum plastids to co-express the tobacco PR proteins AP24 and β-1,3-glucanase. Transplastomic tobacco lines were characterized and subsequently challenged with Rhizoctonia solani, Peronospora hyoscyami f.sp. tabacina and Phytophthora nicotianae. Results showed that transplastomic plants expressing AP24 and β-1,3-glucanase are resistant to R. solani in greenhouse conditions and, furthermore, they are protected against P.hyoscyami f.sp. tabacina and P. nicotianae in field conditions under high inoculum pressure. Our results suggest that plastid co- expression of PR proteins AP24 and β-1,3-glucanase resulted in enhanced resistance against filamentous pathogens.
Collapse
Affiliation(s)
- Noelia Ayelen Boccardo
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ingrid Hernandez
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Federico Gabriel Mirkin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Osmani Chacón
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Yunior Lopez
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Orlando Borrás-Hidalgo
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, (250353), P.R. China
| | - Fernando Félix Bravo-Almonacid
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, (B1876BXD), Argentina.
| |
Collapse
|
11
|
Hao Q, Wang W, Han X, Wu J, Lyu B, Chen F, Caplan A, Li C, Wu J, Wang W, Xu Q, Fu D. Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. MOLECULAR PLANT PATHOLOGY 2018; 19:1995-2010. [PMID: 29517854 PMCID: PMC6638154 DOI: 10.1111/mpp.12675] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) plays an important role in signal transduction and disease resistance. In Arabidopsis, SA can be made by either of two biosynthetic branches, one involving isochorismate synthase (ICS) and the other involving phenylalanine ammonia-lyase (PAL). However, the biosynthetic pathway and the importance of SA remain largely unknown in Triticeae. Here, we cloned one ICS and seven PAL genes from barley, and studied their functions by their overexpression and suppression in that plant. Suppression of the ICS gene significantly delayed plant growth, whereas PAL genes, both overexpressed and suppressed, had no significant effect on plant growth. Similarly, suppression of ICS compromised plant resistance to Fusarium graminearum, whereas similar suppression of PAL genes had no significant effect. We then focused on transgenic plants with ICS. In a leaf-based test with F. graminearum, transgenic plants with an up-regulated ICS were comparable with wild-type control plants. By contrast, transgenic plants with a suppressed ICS lost the ability to accumulate SA during pathogen infection and were also more susceptible to Fusarium than the wild-type controls. This suggests that ICS plays a unique role in SA biosynthesis in barley, which, in turn, confers a basal resistance to F. graminearum by modulating the accumulation of H2 O2 , O2- and reactive oxygen-associated enzymatic activities. Although SA mediates systemic acquired resistance (SAR) in dicots, there was no comparable SAR response to F. graminearum in barley. This study expands our knowledge about SA biosynthesis in barley and proves that SA confers basal resistance to fungal pathogens.
Collapse
Affiliation(s)
- Qunqun Hao
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Wenqiang Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Xiuli Han
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
- Present address:
College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jingzheng Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Bo Lyu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Fengjuan Chen
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
| | - Allan Caplan
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Caixia Li
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Jiajie Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Wei Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Qian Xu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Daolin Fu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
- Center for Reproductive BiologyWashington State UniversityPullmanWA99164USA
| |
Collapse
|
12
|
Characterization and Identification of a woody lesion mimic mutant lmd, showing defence response and resistance to Alternaria alternate in birch. Sci Rep 2017; 7:11308. [PMID: 28900274 PMCID: PMC5595973 DOI: 10.1038/s41598-017-11748-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/29/2017] [Indexed: 01/28/2023] Open
Abstract
Lesion mimic mutants (LMM) usually show spontaneous cell death and enhanced defence responses similar to hypersensitive response (HR) in plants. Many LMM have been reported in rice, wheat, maize, barley, Arabidopsis, etc., but little was reported in xylophyta. BpGH3.5 is an early auxin-response factor which regulates root elongation in birch. Here, we found a T-DNA insertion mutant in a BpGH3.5 transgenic line named lmd showing typical LMM characters and early leaf senescence in Betula platyphylla × B. pendula. lmd showed H2O2 accumulation, increased SA level and enhanced resistance to Alternaria alternate, compared with oe21 (another BpGH3.5 transgenic line) and NT (non-transgenic line). Cellular structure observation showed that programmed cell death occurred in lmd leaves. Stereomicroscope observation and Evans’ blue staining indicated that lmd is a member of initiation class of LMM. Transcriptome analysis indicated that defence response-related pathways were enriched. Southern-blot indicated that there were two insertion sites in lmd genome. Genome re-sequencing and thermal asymmetric interlaced PCR (TAIL-PCR) confirmed the two insertion sites, one of which is a T-DNA insertion in the promoter of BpEIL1 that may account for the lesion mimic phenotype. This study will benefit future research on programmed cell death, HR and disease resistance in woody plants.
Collapse
|
13
|
Li L, Shi X, Zheng F, Li C, Wu D, Bai G, Gao D, Wu J, Li T. A novel nitrogen-dependent gene associates with the lesion mimic trait in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2075-2084. [PMID: 27460590 DOI: 10.1007/s00122-016-2758-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/22/2016] [Indexed: 05/24/2023]
Abstract
Using bulk segregant analysis (BSA) coupling with RNA-seq and DNA markers identified a potentially novel nitrogen-dependent lesion mimic gene Ndhrl1 on 2BS in wheat. Lesion mimic (LM) refers to hypersensitive reaction-like (HRL) traits that appear on leaf tissue in the absence of plant pathogens. In a wheat line P7001, LM showed up on the leaves under the 0 g nitrogen (N) treatment, but disappeared when sufficient N was supplied, suggesting that LM is N-responsive and N dosage dependent. Using BSA strategy together with RNA-seq and DNA markers, we identified an N-dependent LM gene (Ndhrl1) and mapped it to the short arm of chromosome 2B using an F5 recombinant inbred population developed from the cross of P7001 × P216. The putative gene was delimited into an interval of 8.1 cM flanked by the CAPS/dCAPS markers 7hrC9 and 7hr2dc14, and co-segregated with the dCAPS marker 7hrdc2. This gene is most likely a novel gene for LM in wheat based on its chromosomal location. Further analysis of RNA-seq data showed that plant-pathogen interaction, nitrogen metabolism, zeatin biosynthesis and plant hormone signal transduction pathways were significantly differentially expressed between LM and non-LM lines.
Collapse
Affiliation(s)
- Lei Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Shi
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fei Zheng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Changcheng Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Di Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guihua Bai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225000, China
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Derong Gao
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Jincai Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Tao Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
14
|
Nalam VJ, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, Trick HN, Sarowar S, Makandar R, Shah J. Facilitation of Fusarium graminearum Infection by 9-Lipoxygenases in Arabidopsis and Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1142-52. [PMID: 26075826 DOI: 10.1094/mpmi-04-15-0096-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium graminearum causes Fusarium head blight, an important disease of wheat. F. graminearum can also cause disease in Arabidopsis thaliana. Here, we show that the Arabidopsis LOX1 and LOX5 genes, which encode 9-lipoxygenases (9-LOXs), are targeted during this interaction to facilitate infection. LOX1 and LOX5 expression were upregulated in F. graminearum-inoculated plants and loss of LOX1 or LOX5 function resulted in enhanced disease resistance in the corresponding mutant plants. The enhanced resistance to F. graminearum infection in the lox1 and lox5 mutants was accompanied by more robust induction of salicylic acid (SA) accumulation and signaling and attenuation of jasmonic acid (JA) signaling in response to infection. The lox1- and lox5-conferred resistance was diminished in plants expressing the SA-degrading salicylate hydroxylase or by the application of methyl-JA. Results presented here suggest that plant 9-LOXs are engaged during infection to control the balance between SA and JA signaling to facilitate infection. Furthermore, since silencing of TaLpx-1 encoding a 9-LOX with homology to LOX1 and LOX5, resulted in enhanced resistance against F. graminearum in wheat, we suggest that 9-LOXs have a conserved role as susceptibility factors in disease caused by this important fungus in Arabidopsis and wheat.
Collapse
Affiliation(s)
- Vamsi J Nalam
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 2 Department of Biology, Indiana University-Purdue University, Fort Wayne, IN 46805, U.S.A
| | - Syeda Alam
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Jantana Keereetaweep
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Barney Venables
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Dehlia Burdan
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Hyeonju Lee
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Harold N Trick
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Sujon Sarowar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Ragiba Makandar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 4 Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Jyoti Shah
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| |
Collapse
|
15
|
Guo R, Shen W, Qian H, Zhang M, Liu L, Wang Q. Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5707-19. [PMID: 24151308 PMCID: PMC3871825 DOI: 10.1093/jxb/ert348] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The interplay of plant hormones and glucose (Glu) in regulating glucosinolate accumulation in Arabidopsis thaliana was investigated in this study. Glucose-induced glucosinolate biosynthesis was enhanced significantly by the addition of jasmonic acid (JA), whereas the synergistic effect of salicylic acid (SA) and Glu was less obvious. The enhanced glucosinolate accumulation is associated with elevated expression of genes in glucosinolate biosynthetic pathway, as well as the transcription factors involved in their regulation, such as MYB28, MYB29, MYB34, and MYB122. The induction of indolic and aliphatic glucosinolates after treatment with JA and Glu in JA-insensitive mutants, coi1, jar1, and jin1, was compromised. Moreover, the effect of JA and Glu on glucosinolate contents was dramatically reduced in Glu-insensitive mutants, rgs1-2 and abi5-7. These results indicate a crosstalk between JA and Glu signalling in the regulation of glucosinolate biosynthesis. JA signalling, RGS1 (the putative membrane receptor of Glu signalling), and ABI5, are involved in the synergistic effect of JA and Glu on glucosinolate accumulation.
Collapse
Affiliation(s)
- Rongfang Guo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Wangshu Shen
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Hongmei Qian
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lihong Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
16
|
Li T, Bai G, Gu S. A combination of leaf rust resistance gene Lr34 and lesion mimic gene lm significantly enhances adult plant resistance to Puccinia triticina in wheat. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Risk JM, Selter LL, Krattinger SG, Viccars LA, Richardson TM, Buesing G, Herren G, Lagudah ES, Keller B. Functional variability of the Lr34 durable resistance gene in transgenic wheat. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:477-87. [PMID: 22321563 DOI: 10.1111/j.1467-7652.2012.00683.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Breeding for durable disease resistance is challenging, yet essential to improve crops for sustainable agriculture. The wheat Lr34 gene is one of the few cloned, durable resistance genes in plants. It encodes an ATP binding cassette transporter and has been a source of resistance against biotrophic pathogens, such as leaf rust (Puccinina triticina), for over 100 years. As endogenous Lr34 confers quantitative resistance, we wanted to determine the effects of transgenic Lr34 with specific reference to how expression levels affect resistance. Transgenic Lr34 wheat lines were made in two different, susceptible genetic backgrounds. We found that the introduction of the Lr34 resistance allele was sufficient to provide comparable levels of leaf rust resistance as the endogenous Lr34 gene. As with the endogenous gene, we observed resistance in seedlings after cold treatment and in flag leaves of adult plants, as well as Lr34-associated leaf tip necrosis. The transgene-based Lr34 resistance did not involve a hypersensitive response, altered callose deposition or up-regulation of PR genes. Higher expression levels compared to endogenous Lr34 were observed in the transgenic lines both at seedling as well as adult stage and some improvement of resistance was seen in the flag leaf. Interestingly, in one genetic background the transgenic Lr34-based resistance resulted in improved seedling resistance without cold treatment. These data indicate that functional variability in Lr34-based resistance can be created using a transgenic approach.
Collapse
|
18
|
Makandar R, Nalam VJ, Lee H, Trick HN, Dong Y, Shah J. Salicylic acid regulates basal resistance to Fusarium head blight in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:431-9. [PMID: 22112217 DOI: 10.1094/mpmi-09-11-0232] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.
Collapse
Affiliation(s)
- Ragiba Makandar
- Department of Biological Sciences, University of North Texas, Denton 76230, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kumar V, Parkhi V, Joshi SG, Christensen S, Jayaprakasha GK, Patil BS, Kolomiets MV, Rathore KS. A novel, conditional, lesion mimic phenotype in cotton cotyledons due to the expression of an endochitinase gene from Trichoderma virens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:86-95. [PMID: 22195581 DOI: 10.1016/j.plantsci.2011.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/31/2023]
Abstract
We have observed a novel, lesion mimic phenotype (LMP) in the cotyledons of cotton seedlings expressing an endochitinase gene from Trichoderma virens. This phenotype, however, is conditional and is elicited only when the transgenic seedlings are germinating on a medium that is devoid of mineral nutrients. The LMP manifests itself around the 5th day in the form of scattered, dry necrotic lesions on the cotyledons. The severity of the LMP is correlated with the level of transgene activity. Production of reactive oxygen species and activities of certain defense related enzymes and genes were substantially higher in the cotyledons of seedlings that were growing under mineral nutrient stress. Molecular and biochemical analyses indicated significantly higher-level activities of certain defense-related genes/enzymes at the onset of the phenotype. Treatment with methyl jasmonate can induce LMP in the cotyledons of wild-type (WT) seedlings similar to that observed in the endochitinase-expressing seedlings grown on nutrient-free medium. On the other hand, salicylic acid (SA), its functional analog, benzo(1,2,3) thiadiazole-7-carbothioic acid (BTH), and ibuprofen can rescue the LMP induced by the seedling-growth on nutrient-deficient medium. Nutrient deficiency-induced activation of a defense response appears to be the contributing factor in the development of LMP in endochitinase-expressing cotton seedlings.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Satoh K, Shimizu T, Kondoh H, Hiraguri A, Sasaya T, Choi IR, Omura T, Kikuchi S. Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PLoS One 2011; 6:e18094. [PMID: 21445363 PMCID: PMC3062569 DOI: 10.1371/journal.pone.0018094] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which often results in severe yield losses of rice in East Asian countries. The disease symptoms are stunted growth, chlorotic specks on leaves, and delayed and incomplete panicle exsertion. Three RDV strains, O, D84, and S, were reported. RDV-S causes the most severe symptoms, whereas RDV-O causes the mildest. Twenty amino acid substitutions were found in 10 of 12 virus proteins among three RDV strains. Methodology/Principal Findings We analyzed the gene expression of rice in response to infection with the three RDV strains using a 60-mer oligonucleotide microarray to examine the relationship between symptom severity and gene responses. The number of differentially expressed genes (DEGs) upon the infection of RDV-O, -D84, and -S was 1985, 3782, and 6726, respectively, showing a correlation between the number of DEGs and symptom severity. Many DEGs were related to defense, stress response, and development and morphogenesis processes. For defense and stress response processes, gene silencing-related genes were activated by RDV infection and the degree of activation was similar among plants infected with the three RDV strains. Genes for hormone-regulated defense systems were also activated by RDV infection, and the degree of activation seemed to be correlated with the concentration of RDV in plants. Some development and morphogenesis processes were suppressed by RDV infection, but the degree of suppression was not correlated well with the RDV concentration. Conclusions/Significance Gene responses to RDV infection were regulated differently depending on the gene groups regulated and the strains infecting. It seems that symptom severity is associated with the degree of gene response in defense-related and development- and morphogenesis-related processes. The titer levels of RDV in plants and the amino acid substitutions in RDV proteins could be involved in regulating such gene responses.
Collapse
Affiliation(s)
- Kouji Satoh
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takumi Shimizu
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroaki Kondoh
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akihiro Hiraguri
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Takahide Sasaya
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Il-Ryong Choi
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Metro Manila, Philippines
| | - Toshihiro Omura
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Shoshi Kikuchi
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
21
|
Gaudet DA, Wang Y, Penniket C, Lu ZX, Bakkeren G, Laroche A. Morphological and molecular analyses of host and nonhost interactions involving barley and wheat and the covered smut pathogen Ustilago hordei. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1619-1634. [PMID: 20822422 DOI: 10.1094/mpmi-11-09-0271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ustilago hordei interactions on coleoptiles of barley host cultivars Odessa (compatible), Hannchen (incompatible, carrying the Ruh1 resistance gene), and on nonhost Neepawa wheat were studied using light and fluorescent microscopy. Autofluorescence, mainly caused by callose accumulation, was more rapidly expressed in nonhost wheat at 30 to 72 h compared with the incompatible reaction between 72 and 144 h. Microarray results demonstrated that more than half of the 893 differentially regulated genes were observed in Neepawa; of these genes, 45% fell into the defense- and stress-related classes in Neepawa compared with 25 and 37% in Odessa and Hannchen, respectively. Their expression coincided with the early morphological defense responses observed and were associated with the jasmonic acid and ethylene (JA/ET) signaling pathway. Expression patterns in Odessa and Hannchen were similar, involving fewer genes and coinciding with later morphological defense responses of these varieties. Although no visible hypersensitive response was apparent in Hannchen or Neepawa, specific upregulation of hypersensitivity-related proteins was observed, such as beta-VPE at 48 h. Expression levels of the callose synthase gene were closely associated with callose accumulation. Differential responses in defense-gene expression among disease reaction types included upregulation of PR-1.1b and downregulation of a nonspecific lipid transfer protein in the incompatible and compatible interactions, respectively. Transcript levels of EDS1 and PAD4, involved in both basal resistance and R-mediated resistance to avirulent pathogens, were up-regulated during both nonhost and Ruh1-mediated resistance. Application of methyl-jasmonate, salicylic acid and ET to leaves revealed that only PR1.1b is strongly up-regulated by all three compounds, while the majority of the defense-related genes are only slightly up-regulated by these signaling compounds.
Collapse
Affiliation(s)
- Denis A Gaudet
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:861-70. [PMID: 20521949 PMCID: PMC4164197 DOI: 10.1094/mpmi-23-7-0861] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fusarium graminearum is the principal causative agent of Fusarium head blight (FHB), a devastating disease of wheat and barley. This fungus can also colonize Arabidopsis thaliana. Disease resistance was enhanced in transgenic wheat and Arabidopsis plants that constitutively overexpress the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) gene, which regulates salicylic acid (SA) signaling and modulates the activation of jasmonic acid (JA)-dependent defenses. Here, we provide several lines of evidence that reveal an important role for SA and JA signaling in Arabidopsis defense against F. graminearum. SA level was elevated in fungus-inoculated leaves, and SA application and biologically activated systemic acquired resistance enhanced resistance. Furthermore, the disruption of SA accumulation and signaling in the sid2 mutant and NahG transgenic plant, and the npr1 and wrky18 mutants, respectively, resulted in heightened susceptibility to this fungus in leaves and inflorescence. JA signaling was activated in parallel with SA signaling in the fungus-challenged plants. However, the hyperresistance of the JA pathway mutants opr3, coi1, and jar1 indicates that this pathway contributes to susceptibility. Genetic and biochemical experiments indicate that the JA pathway promotes disease by attenuating the activation of SA signaling in fungus-inoculated plants. However, the hypersusceptibility of the jar1 npr1 double mutant compared with the npr1 mutant suggests that JAR1 also contributes to defense, signifying a dichotomous role of JA and a JAR1-dependent mechanism in this interaction.
Collapse
Affiliation(s)
- Ragiba Makandar
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vamsi Nalam
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Richard Jeannotte
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Alexis A. Sparks
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
23
|
Li T, Bai G. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:13-21. [PMID: 19330313 DOI: 10.1007/s00122-009-1012-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/08/2009] [Indexed: 05/27/2023]
Abstract
Lesion mimics (LM) that resemble plant disease symptoms in the absence of plant pathogens may confer enhanced plant disease resistance to a wide range of pathogens. Wheat line Ning7840 has adult plant resistance (APR) to leaf rust (Puccinia triticina) and shows LM symptoms at heading. A recessive gene (lm) was found to be responsible for LM in Ning7840 and located near the proximal region of chromosome 1BL using a population of 179 recombinant inbred lines (RIL) derived from the cross Ning7840/Chokwang. Genomic in situ hybridization showed that Ning7840 carries the short arm of 1R chromosome from rye (Secale cereale L.), on which the race-specific gene Lr26 resides. The RILs were infected with the isolate PRTUS 55, an isolate virulent to Lr26, at anthesis in two greenhouse experiments. The result showed that the lines with LM phenotype had a significantly higher rust resistance than the non-LM lines. Composite interval mapping consistently detected a QTL, Qlr.pser.1BL, for APR on chromosome 1BL. Qlr.pser.1BL peaked at lm and explained up to 60.8% of phenotypic variation for leaf rust resistance in two greenhouse experiments, therefore, lm from Ning7840 may have pleiotropic effects on APR to leaf rust.
Collapse
Affiliation(s)
- Tao Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
24
|
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:177-206. [PMID: 19400653 DOI: 10.1146/annurev.phyto.050908.135202] [Citation(s) in RCA: 1366] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For more than 200 years, the plant hormone salicylic acid (SA) has been studied for its medicinal use in humans. However, its extensive signaling role in plants, particularly in defense against pathogens, has only become evident during the past 20 years. This review surveys how SA in plants regulates both local disease resistance mechanisms, including host cell death and defense gene expression, and systemic acquired resistance (SAR). Genetic studies reveal an increasingly complex network of proteins required for SA-mediated defense signaling, and this process is amplified by several regulatory feedback loops. The interaction between the SA signaling pathway and those regulated by other plant hormones and/or defense signals is also discussed.
Collapse
Affiliation(s)
- A Corina Vlot
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | | | | |
Collapse
|
25
|
de las Mercedes Dana M, Pintor-Toro JA, Cubero B. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. PLANT PHYSIOLOGY 2006; 142:722-30. [PMID: 16891545 PMCID: PMC1586035 DOI: 10.1104/pp.106.086140] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/19/2006] [Indexed: 05/11/2023]
Abstract
Genes encoding defense-related proteins have been used to alter the resistance of plants to pathogens and other environmental challenges, but no single fungal gene overexpression has produced broad-spectrum stress resistance in transgenic lines. We have generated transgenic tobacco (Nicotiana tabacum) lines that overexpress the endochitinases CHIT33 and CHIT42 from the mycoparasitic fungus Trichoderma harzianum and have evaluated their tolerance to biotic and abiotic stress. Both CHIT33 and CHIT42, individually, conferred broad resistance to fungal and bacterial pathogens, salinity, and heavy metals. Such broad-range protective effects came off with no obvious detrimental effect on the growth of tobacco plants.
Collapse
Affiliation(s)
- María de las Mercedes Dana
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, 41012-Seville, Spain
| | | | | |
Collapse
|
26
|
Ladyzhenskaya EP, Korableva NP. The effect of thaumatin gene overexpression on the properties of H+-ATPase from the plasmalemma of potato tuber cells. APPL BIOCHEM MICRO+ 2006. [DOI: 10.1134/s0003683806040120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:123-9. [PMID: 16529374 DOI: 10.1094/mpmi-19-0123] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat and barley which causes extensive losses worldwide. Monogenic, gene-for-gene resistance to FHB has not been reported. The best source of resistance to FHB is a complex, quantitative trait derived from the wheat cv. Sumai 3. Here, we show that the Arabidopsis thaliana NPR1 gene (AtNPR1), which regulates the activation of systemic acquired resistance, when expressed in the FHB-susceptible wheat cv. Bobwhite, confers a heritable, type II resistance to FHB caused by Fusarium graminearum. The heightened FHB resistance in the transgenic AtNPRI -expressing wheat is associated with the faster activation of defense response when challenged by the fungus. PR1 expression is induced rapidly to a high level in the fungus-challenged spikes of the AtNPR1-expressing wheat. Furthermore, benzothiadiazole, a functional analog of salicylic acid, induced PR1 expression faster and to a higher level in the AtNPR1-expressing wheat than in the nontransgenic plants. We suggest that FHB resistance in the AtNPR1-expressing wheat is a result of these plants being more responsive to an endogenous activator of plant defense. Our results demonstrate that NPR1 is an effective candidate for controlling FHB.
Collapse
Affiliation(s)
- Ragiba Makandar
- Division of Biology, Kansas State University, Manhattan 66506, USA
| | | | | | | | | |
Collapse
|
28
|
Anderson JP, Thatcher LF, Singh KB. Plant defence responses: conservation between models and crops. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:21-34. [PMID: 32689108 DOI: 10.1071/fp04136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/19/2004] [Indexed: 06/11/2023]
Abstract
Diseases of plants are a major problem for agriculture world wide. Understanding the mechanisms employed by plants to defend themselves against pathogens may lead to novel strategies to enhance disease resistance in crop plants. Much of the research in this area has been conducted with Arabidopsis as a model system, and this review focuses on how relevant the knowledge generated from this model system will be for increasing resistance in crop plants. In addition, the progress made using other model plant species is discussed. While there appears to be substantial similarity between the defence responses of Arabidopsis and other plants, there are also areas where significant differences are evident. For this reason it is also necessary to increase our understanding of the specific aspects of the defence response that cannot be studied using Arabidopsis as a model.
Collapse
Affiliation(s)
- Jonathan P Anderson
- CSIRO Plant Industry, Centre for environment and life sciences, Private bag 5, Wembley, WA 6913, Australia
| | - Louise F Thatcher
- CSIRO Plant Industry, Centre for environment and life sciences, Private bag 5, Wembley, WA 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Centre for environment and life sciences, Private bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
29
|
Anand A, Lei Z, Sumner LW, Mysore KS, Arakane Y, Bockus WW, Muthukrishnan S. Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1306-17. [PMID: 15597736 DOI: 10.1094/mpmi.2004.17.12.1306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A transgenic wheat line constitutively expressing genes encoding a class IV acidic chitinase and an acidic beta-1,3-glucanase, showed significant delay in spread of Fusarium head blight (scab) disease under greenhouse conditions. In an earlier work, we observed a lesion-mimic phenotype in this transgenic line when homozygous for transgene loci. Apoplastic fluid (AF) extracted from the lesion-mimic plants had pathogenesis-related (PR) proteins belonging to families of beta-1,3-glucanases, chitinases, and thaumatin-like proteins (TLPs). AF had growth inhibitory activity against certain fungal pathogens, including Fusarium graminearum and Gaeumannomyces graminis var. tritici. Through a two-step ion-exchange chromatography protocol, we recovered many PR proteins and a few uncharacterized proteins. Three individual protein bands corresponding to a TLP (molecular mass, 16 kDa) and two beta-1,3-glucanases (molecular mass, 32 kDa each) were purified and identified by tandem mass spectrometry. We measured the in vitro antifungal activity of the three purified enzymes and a barley class II chitinase (purified earlier in our laboratory) in microtiter plate assays with macroconidia or conidiophores of F. graminearum and Pyrenophora tritici-repentis. Mixtures of proteins revealed synergistic or additive inhibitory activity against F. graminearum and P. tritici-repentis hyphae. The concentrations of PR proteins at which these effects were observed are likely to be those reached in AF of cells exhibiting a hypersensitive response. Our results suggest that apoplastic PR proteins are antifungal and their antimicrobial potency is dependent on concentrations and combinations that are effectively reached in plants following microbial attack.
Collapse
Affiliation(s)
- Ajith Anand
- Department of Biochemistry, Kansas State University, Manhattan 66506, USA.
| | | | | | | | | | | | | |
Collapse
|