1
|
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System. Int J Mol Sci 2023; 24:ijms24032800. [PMID: 36769110 PMCID: PMC9917363 DOI: 10.3390/ijms24032800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host's immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current research suggests that the plant immune system has also been employed in the legume-rhizobia symbiosis as a means of monitoring different rhizobia strains and that successful rhizobia have evolved to overcome this system to infect the roots and initiate nodulation. With clear implications for host-specificity, the immune system has the potential to be an important target for engineering versatile crops for effective nodulation in the field. However, current knowledge of the interacting components governing this pathway is limited, and further research is required to build on what is currently known to improve our understanding. This review provides a general overview of the plant immune system's role in nodulation. With a focus on the cycles of microbe-associated molecular pattern-triggered immunity (MTI) and effector-triggered immunity (ETI), we highlight key molecular players and recent findings while addressing the current knowledge gaps in this area.
Collapse
|
2
|
Skiada V, Avramidou M, Bonfante P, Genre A, Papadopoulou KK. An endophytic Fusarium-legume association is partially dependent on the common symbiotic signalling pathway. THE NEW PHYTOLOGIST 2020; 226:1429-1444. [PMID: 31997356 DOI: 10.1111/nph.16457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Legumes interact with a wide range of microbes in their root systems, ranging from beneficial symbionts to pathogens. Symbiotic rhizobia and arbuscular mycorrhizal glomeromycetes trigger a so-called common symbiotic signalling pathway (CSSP), including the induction of nuclear calcium spiking in the root epidermis. By combining gene expression analysis, mutant phenotypic screening and analysis of nuclear calcium elevations, we demonstrate that recognition of an endophytic Fusarium solani strain K (FsK) in model legumes is initiated via perception of chitooligosaccharidic molecules and is, at least partially, CSSP-dependent. FsK induced the expression of Lysin-motif receptors for chitin-based molecules, CSSP members and CSSP-dependent genes in Lotus japonicus. In LysM and CSSP mutant/RNAi lines, root penetration and fungal intraradical progression was either stimulated or limited, whereas FsK exudates triggered CSSP-dependent nuclear calcium spiking, in epidermal cells of Medicago truncatula root organ cultures. Our results corroborate CSSP being involved in the perception of signals from other microbes beyond the restricted group of symbiotic interactions sensu stricto.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| |
Collapse
|
3
|
Vaz Martins T, Livina VN. What Drives Symbiotic Calcium Signalling in Legumes? Insights and Challenges of Imaging. Int J Mol Sci 2019; 20:ijms20092245. [PMID: 31067698 PMCID: PMC6539980 DOI: 10.3390/ijms20092245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
We review the contribution of bioimaging in building a coherent understanding of Ca 2 + signalling during legume-bacteria symbiosis. Currently, two different calcium signals are believed to control key steps of the symbiosis: a Ca 2 + gradient at the tip of the legume root hair is involved in the development of an infection thread, while nuclear Ca 2 + oscillations, the hallmark signal of this symbiosis, control the formation of the root nodule, where bacteria fix nitrogen. Additionally, different Ca 2 + spiking signatures have been associated with specific infection stages. Bioimaging is intrinsically a cross-disciplinary area that requires integration of image recording, processing and analysis. We used experimental examples to critically evaluate previously-established conclusions and draw attention to challenges caused by the varying nature of the signal-to-noise ratio in live imaging. We hypothesise that nuclear Ca 2 + spiking is a wide-range signal involving the entire root hair and that the Ca 2 + signature may be related to cytoplasmic streaming.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Valerie N Livina
- Data Science Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK.
| |
Collapse
|
4
|
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:1531. [PMID: 30405668 PMCID: PMC6207691 DOI: 10.3389/fpls.2018.01531] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Members of plant specific families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), containing 3 extracellular LysMs have been shown to directly bind and/or to be involved in perception of lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), and peptidoglycan (PGN), three types of GlcNAc-containing molecules produced by microorganisms. These receptors are involved in microorganism perception by plants and can activate different plant responses leading either to symbiosis establishment or to defense responses against pathogens. LysM-RLK/Ps belong to multigenic families. Here, we provide a phylogeny of these families in eight plant species, including dicotyledons and monocotyledons, and we discuss known or putative biological roles of the members in each of the identified phylogenetic groups. We also report and discuss known biochemical properties of the LysM-RLK/Ps.
Collapse
|
5
|
Chiasson DM, Haage K, Sollweck K, Brachmann A, Dietrich P, Parniske M. A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. eLife 2017; 6:25012. [PMID: 28933692 PMCID: PMC5716663 DOI: 10.7554/elife.25012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The coordinated control of Ca2+ signaling is essential for development in eukaryotes. Cyclic nucleotide-gated channel (CNGC) family members mediate Ca2+ influx from cellular stores in plants (Charpentier et al., 2016; Gao et al., 2016; Frietsch et al., 2007; Urquhart et al., 2007). Here, we report the unusual genetic behavior of a quantitative gain-of-function CNGC mutation (brush) in Lotus japonicus resulting in a leaky tetrameric channel. brush resides in a cluster of redundant CNGCs encoding subunits which resemble metazoan voltage-gated potassium (Kv1-Kv4) channels in assembly and gating properties. The recessive mongenic brush mutation impaired root development and infection by nitrogen-fixing rhizobia. The brush allele exhibited quantitative behavior since overexpression of the cluster subunits was required to suppress the brush phenotype. The results reveal a mechanism by which quantitative competition between channel subunits for tetramer assembly can impact the phenotype of the mutation carrier.
Collapse
Affiliation(s)
- David M Chiasson
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kristina Haage
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Sollweck
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Brachmann
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
6
|
Granqvist E, Sun J, Op den Camp R, Pujic P, Hill L, Normand P, Morris RJ, Downie JA, Geurts R, Oldroyd GED. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. THE NEW PHYTOLOGIST 2015; 207:551-8. [PMID: 26010117 PMCID: PMC4736677 DOI: 10.1111/nph.13464] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/25/2015] [Indexed: 05/03/2023]
Abstract
Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade.
Collapse
Affiliation(s)
| | - Jongho Sun
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rik Op den Camp
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Petar Pujic
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | - Lionel Hill
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Philippe Normand
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | | | | | - Rene Geurts
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | | |
Collapse
|
7
|
Larkan NJ, Ruzicka DR, Edmonds-Tibbett T, Durkin JMH, Jackson LE, Smith FA, Schachtman DP, Smith SE, Barker SJ. The reduced mycorrhizal colonisation (rmc) mutation of tomato disrupts five gene sequences including the CYCLOPS/IPD3 homologue. MYCORRHIZA 2013; 23:573-584. [PMID: 23572326 DOI: 10.1007/s00572-013-0498-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis in vascular plant roots is an ancient mutualistic interaction that evolved with land plants. More recently evolved root mutualisms have recruited components of the AM signalling pathway as identified with molecular approaches in model legume research. Earlier we reported that the reduced mycorrhizal colonisation (rmc) mutation of tomato mapped to chromosome 8. Here we report additional functional characterisation of the rmc mutation using genotype grafts and proteomic and transcriptomic analyses. Our results led to identification of the precise genome location of the Rmc locus from which we identified the mutation by sequencing. The rmc phenotype results from a deletion that disrupts five predicted gene sequences, one of which has close sequence match to the CYCLOPS/IPD3 gene identified in legumes as an essential intracellular regulator of both AM and rhizobial symbioses. Identification of two other genes not located at the rmc locus but with altered expression in the rmc genotype is also described. Possible roles of the other four disrupted genes in the deleted region are discussed. Our results support the identification of CYCLOPS/IPD3 in legumes and rice as a key gene required for AM symbiosis. The extensive characterisation of rmc in comparison with its 'parent' 76R, which has a normal mycorrhizal phenotype, has validated these lines as an important comparative model for glasshouse and field studies of AM and non-mycorrhizal plants with respect to plant competition and microbial interactions with vascular plant roots.
Collapse
Affiliation(s)
- Nicholas J Larkan
- School of Plant Biology M090, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:181-92. [PMID: 21910770 DOI: 10.1111/j.1365-313x.2011.04780.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temporally and spatially defined calcium signatures are integral parts of numerous signalling pathways. Monitoring calcium dynamics with high spatial and temporal resolution is therefore critically important to understand how this ubiquitous second messenger can control diverse cellular responses. Yellow cameleons (YCs) are fluorescence resonance energy transfer (FRET)-based genetically encoded Ca(2+) -sensors that provide a powerful tool to monitor the spatio-temporal dynamics of Ca(2+) fluxes. Here we present an advanced set of vectors and transgenic lines for live cell Ca(2+) imaging in plants. Transgene silencing mediated by the cauliflower mosaic virus (CaMV) 35S promoter has severely limited the application of nanosensors for ions and metabolites and we have thus used the UBQ10 promoter from Arabidopsis and show here that this results in constitutive and stable expression of YCs in transgenic plants. To improve the spatial resolution, our vector repertoire includes versions of YCs that can be targeted to defined locations. Using this toolkit, we identified temporally distinct responses to external ATP at the plasma membrane, in the cytosol and in the nucleus of neighbouring root cells. Moreover analysis of Ca(2+) dynamics in Lotus japonicus revealed distinct Nod factor induced Ca(2+) spiking patterns in the nucleus and the cytosol. Consequently, the constructs and transgenic lines introduced here enable a detailed analysis of Ca(2+) dynamics in different cellular compartments and in different plant species and will foster novel approaches to decipher the temporal and spatial characteristics of calcium signatures.
Collapse
Affiliation(s)
- Melanie Krebs
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Osipova MA, Dolgikh EA, Lutova LA. Peculiarities of meristem-specific WOX5 gene expression during nodule organogenesis in legumes. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411010085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Oliveira LR, Marcelino FC, Barcellos FG, Rodrigues EP, Megías M, Hungria M. The nodC, nodG, and glgX genes of Rhizobium tropici strain PRF 81. Funct Integr Genomics 2009; 10:425-31. [DOI: 10.1007/s10142-009-0151-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/15/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
|
11
|
|
12
|
|
13
|
Townsend GE, Keating DH. Identification and characterization of KpsS, a novel polysaccharide sulphotransferase in Mesorhizobium loti. Mol Microbiol 2008; 68:1149-64. [PMID: 18430142 DOI: 10.1111/j.1365-2958.2008.06215.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants enter into symbiotic relationships with bacteria that allow survival in nutrient-limiting environments. The bacterium Mesorhizobium loti enters into a symbiosis with the legume host, Lotus japonicus, which results in the formation of novel plant structures called root nodules. The bacteria colonize the nodules, and are internalized into the cytoplasm of the plant cells, where they reduce molecular dinitrogen for the plant. Symbiosis between M. loti and L. japonicus requires bacterial synthesis of secreted and cell-surface polysaccharides. We previously reported the identification of an unusual sulphate-modified form of capsular polysaccharide (KPS) in M. loti. To better understand the physiological function of sulphated KPS, we isolated the sulphotransferase responsible for KPS sulphation from M. loti extracts, determined its amino acid sequence and identified the corresponding M. loti open reading frame, mll7563 (which we have named kpsS). We demonstrated that partially purified KpsS functions as a fucosyl sulphotransferase in vitro. Furthermore, mutants deficient for this gene exhibit a lack of KPS sulphation and a decreased rate of nodule formation on L. japonicus. Interestingly, the kpsS gene product shares no significant amino acid similarity with previously identified sulphotransferases, but exhibited sequence identity to open reading frames of unknown function in diverse bacteria that interact with eukaryotes.
Collapse
Affiliation(s)
- Guy E Townsend
- Department of Microbiology and Immunology, Loyola University, Chicago, IL, USA
| | | |
Collapse
|
14
|
Abstract
Rhizobial bacteria colonize legume roots for the purpose of biological nitrogen fixation. A complex series of events, coordinated by host and bacterial signal molecules, underlie the development of this symbiotic interaction. Rhizobia elicit de novo formation of a novel root organ within which they establish a chronic intracellular infection. Legumes permit rhizobia to invade these root tissues while exerting control over the infection process. Once rhizobia gain intracellular access to their host, legumes also strongly influence the process of bacterial differentiation that is required for nitrogen fixation. Even so, symbiotic rhizobia play an active role in promoting their goal of host invasion and chronic persistence by producing a variety of signal molecules that elicit changes in host gene expression. In particular, rhizobia appear to advocate for their access to the host by producing a variety of signal molecules capable of suppressing a general pathogen defense response.
Collapse
Affiliation(s)
- Katherine E. Gibson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
15
|
Edwards A, Heckmann AB, Yousafzai F, Duc G, Downie JA. Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1183-91. [PMID: 17918620 DOI: 10.1094/mpmi-20-10-1183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Pisum sativum SYM8 gene plays an essential part in both rhizobial and mycorrhizal symbioses. Mutation of sym8 in the original type line R25 blocks nodulation, mycorrhization, and Nod-factor-induced calcium spiking, an early component of the nodulation signaling pathway. We describe four new sym8 alleles of pea, which fall into the same complementation group as R25. The sym8 mutants are phenotypically similar to Medicago truncatula dmi1 mutants and map to a syntenic location. We used sequence homology to isolate the pea ortholog of M. truncatula DMI1 and have shown that the cloned pea ortholog can complement a M. truncatula dmi1 mutant for nodulation. Each of the five pea sym8 mutants carries a mutation in the DMI1 ortholog, confirming that the pea SYM8 is the DMI1 ortholog. Based on predicted structural similarities with an archaebacterial ion channel, we propose that SYM8 forms a tetrameric calcium-gated channel of a predicted structure similar to the archaebacterial potassium channel but containing a filter region that is different. The predicted structure identifies four aspartate residues (one from each subunit) forming the channel opening. We made a mutation changing the aspartate to valine and identified a missense mutation (changing alanine to valine adjacent to the aspartate residues) in this predicted filter region; both mutations caused a loss of function. We also identified a loss-of-function missense mutation (changing arginine to isoleucine) in a domain proposed to link the predicted channel and the gating ring domains, indicating that this mutation may block function by preventing a protein conformational change being transmitted from the gating-ring domain to the pore domain.
Collapse
Affiliation(s)
- Anne Edwards
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, NR4 7UH, Norwich, UK.
| | | | | | | | | |
Collapse
|
16
|
Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. PLANT PHYSIOLOGY 2007; 144:673-81. [PMID: 17142489 PMCID: PMC1914206 DOI: 10.1104/pp.106.086959] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 11/21/2006] [Indexed: 05/12/2023]
Abstract
The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca(2+) indicator aequorin to detect intracellular Ca(2+) changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca(2+) were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca(2+)-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca(2+) transient were constitutively released in the medium, and the induced Ca(2+) signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca(2+) response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis.
Collapse
Affiliation(s)
- Lorella Navazio
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lee A, Lum MR, Hirsch AM. ENOD40 Gene Expression and Cytokinin Responses in the Nonnodulating, Nonmycorrhizal (NodMyc) Mutant, Masym3, of Melilotus alba Desr. PLANT SIGNALING & BEHAVIOR 2007; 2:33-42. [PMID: 19516966 PMCID: PMC2633896 DOI: 10.4161/psb.2.1.3734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 12/20/2006] [Indexed: 05/16/2023]
Abstract
Several nonnodulating, nonmycorrhizal (Nod(-)Myc(-)) mutants of Melilotus alba Desr. (white sweetclover) have been described. However, the details of their responses to Sinorhizobium meliloti have not been fully elucidated. We investigated rhizobial entry and colonization using Confocal Scanning Laser Microscopy on the Masym1-5 mutants and isolated an early nodulin (ENOD40) gene from wild-type M. alba. We focused on Masym3, the least responsive of the mutants to S. meliloti and VA-fungi, to determine its response to cytokinin. Cytokinin appears to be a downstream signal in the nodule developmental pathway based not only on our previous observations whereby Nod(-)Myc(-) alfalfa roots treated with cytokinin accumulated several ENOD gene transcripts, but also on recent reports showing the importance of cytokinin receptors for nodulation. Here we show that applying 10(-6) M 6-benzylaminopurine to uninoculated Masym3 roots elicited ENOD40 transcript accumulation. In addition, Masym3 root hairs inoculated with either wild-type S. meliloti or Nod(-)S. meliloti expressing the trans-zeatin synthase gene of Agrobacterium tumefaciens exhibited tip swelling, suggesting that cytokinin mediated this response. However, Masym3 root hair tips swelled following inoculation with Nod(-)S. meliloti or after mock-inoculation, a response resembling the phenotype of root hairs, after handling, of the Medicago truncatula mutant, dmi2. Mtdmi2 is Nod(-)Myc(-) due to a defect in a gene encoding a Nodule Receptor Kinase (NORK). Like Mtdmi2, the root hair swelling response appears in part to be mediated by touch because Masym3 root hairs not contacted by either bacteria or drops of water or buffer remain elongated and do not exhibit tip swelling.
Collapse
Affiliation(s)
- Angie Lee
- Department of Molecular, Cellular and Developmental Biology; University of California, Los Angeles; Los Angeles, California USA
| | | | | |
Collapse
|
18
|
Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. PLANT PHYSIOLOGY 2006; 142:1739-50. [PMID: 17071642 PMCID: PMC1676053 DOI: 10.1104/pp.106.089508] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/19/2006] [Indexed: 05/12/2023]
Abstract
A new nodulation-defective mutant of Lotus japonicus does not initiate nodule cortical cell division in response to Mesorhizobium loti, but induces root hair deformation, Nod factor-induced calcium spiking, and mycorrhization. This phenotype, together with mapping data, suggested that the mutation could be in the ortholog of the Medicago truncatula NSP1 gene (MtNSP1). The sequence of the orthologous gene (LjNSP1) in the L. japonicus mutant (Ljnsp1-1) revealed a mutation causing a premature stop resulting in loss of the C-terminal 23 amino acids. We also sequenced the NSP2 gene from L. japonicus (LjNSP2). A mutant (Ljnsp2-3) with a premature stop codon was identified by TILLING showing a similar phenotype to Ljnsp1-1. Both LjNSP1 and LjNSP2 are predicted GRAS (GAI, RGA, SCR) domain transcriptional regulators. Transcript steady-state levels of LjNSP1 and LjNSP2 initially decreased and then increased following infection by M. loti. In hairy root transformations, LjNSP1 and MtNSP1 complemented both Mtnsp1-1 and Ljnsp1-1 mutants, demonstrating that these orthologous proteins have a conserved biochemical function. A Nicotiana benthamiana NSP1-like gene (NbNSP1) was shown to restore nodule formation in both Ljnsp1-1 and Mtnsp1-1 mutants, indicating that NSP1 regulators from legumes and non-legumes can propagate the Nod factor-induced signal, activating appropriate downstream targets. The L. japonicus nodules complemented with NbNSP1 contained some cells with abnormal bacteroids and could fix nitrogen. However, the NbNSP1-complemented M. truncatula nodules did not fix nitrogen and contained very few bacteria released from infection threads. These observations suggest that NSP1 is also involved in infection, bacterial release, and normal bacteroid formation in nodule cells.
Collapse
Affiliation(s)
- Anne B Heckmann
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lombardo F, Heckmann AB, Miwa H, Perry JA, Yano K, Hayashi M, Parniske M, Wang TL, Downie JA. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1444-50. [PMID: 17153928 DOI: 10.1094/mpmi-19-1444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itdl, itd3, and itd4 mutations identified novel loci. Bacterial release into host cells did occur occasionally in the itdl, itd2, and itd3 mutants suggesting that some infections may succeed after a long period and that infection of nodule cells could occur normally if the few abnormal infection threads that were formed reached the appropriate nodule cells.
Collapse
|
20
|
Miwa H, Sun J, Oldroyd GED, Downie JA. Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:883-94. [PMID: 17227545 DOI: 10.1111/j.1365-313x.2006.02926.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rhizobium-made Nod factors induce rapid changes in both Ca(2+) and gene expression. Mutations and inhibitors that abolish Nod-factor-induced Ca(2+) spiking block gene induction, indicating a specific role for Ca(2+) spiking in signal transduction. We used transgenic Medicago truncatula expressing a "cameleon" Ca(2+) sensor to assess the relationship between Nod-factor-induced Ca(2+) spiking and the activation of downstream gene expression. In contrast to ENOD11 induction, Ca(2+) spiking is activated in all root-hair cells and in epidermal or pre-emergent root hairs cells in the root tip region. Furthermore, cortical cells immediately below the epidermal layer also show slow Ca(2+) spiking and these cells lack Nod-factor-induced ENOD11 expression. This indicates a specialization in nodulation gene induction downstream of Nod-factor perception and signal transduction. There was a gradient in the frequency of Ca(2+) spiking along the root, with younger root-hair cells having a longer period between spikes than older root hairs. Using a Ca(2+)-pump inhibitor to block Ca(2+) spiking at various times after addition of Nod factor, we conclude that about 36 consecutive Ca(2+) spikes are sufficient to induce ENOD11-GUS expression in root hairs. To determine if the length of time of Ca(2+) spiking or the number of Ca(2+) spikes is more critical for Nod-factor-induced ENOD11 expression, jasmonic acid (JA) was added to reduce the rate of Nod-factor-induced Ca(2+) spiking. This revealed that even when the period between Ca(2+) spikes was extended, an equivalent number of Ca(2+) spikes were required for the induction of ENOD11. However, this JA treatment did not affect the spatial patterning of ENOD11-GUS expression suggesting that although a minimal number of Ca(2+) spikes are required for Nod-factor-induced gene expression, other factors restrict the expression of ENOD11 to a subset of responding cells.
Collapse
Affiliation(s)
- Hiroki Miwa
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
21
|
Miwa H, Sun J, Oldroyd GED, Downie JA. Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:914-23. [PMID: 16903357 DOI: 10.1094/mpmi-19-0914] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nodulation (Nod)-factor signaling molecules are essential for rhizobia to initiate the nitrogen-fixing symbiotic interaction with legumes. Using a dual dye ratiometric calcium imaging technique, we have shown that 10 nM Nod factor added to roots of Lotus japonicus seedlings induces an intracellular calcium increase (calcium flux) that precedes oscillations in intracellular calcium (calcium spiking). The calcium flux was not observed with 1 or 0.1 nM Nod factor, which did induce calcium spiking. The calcium flux was variable in timing of initiation and duration and was observed in approximately half of the root hairs examined. Representatives from 11 complementation groups of symbiotically defective mutants were analyzed for the calcium flux. Mutants from four groups (sym6, ccamk, sym35, and nin) which retained calcium spiking all showed a normal calcium flux. Two classes of mutants (nfr1 and nfr5) lacked both calcium influx and calcium spiking, whereas five classes of mutants (symRK, castor, pollux, nup133, and sym24) defective for calcium spiking retained a calcium flux. There was no correlation between calcium spiking and induction of root hair deformation by Nod factor. We propose that increased bacterial numbers within infection foci in root hairs leads to accumulation of Nod factor to sufficient levels to activate the calcium flux, and this may drive infection thread growth.
Collapse
Affiliation(s)
- Hiroki Miwa
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
22
|
Lee A, Hirsch AM. Signals and Responses: Choreographing the Complex Interaction between Legumes and alpha- and beta-Rhizobia. PLANT SIGNALING & BEHAVIOR 2006; 1:161-8. [PMID: 19521481 PMCID: PMC2634022 DOI: 10.4161/psb.1.4.3143] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 06/16/2006] [Indexed: 05/20/2023]
Abstract
The nitrogen-fixing symbiosis between bacteria in the family Rhizobiaceae and members of the legume family (Fabaceae) has been well studied, particularly from the perspective of the early signaling and recognition events. Recent studies of non-nodulating legume mutants have resulted in the identification of a number of genes that are responsive to signal molecules from the bacteria. However, a second group of nodule-forming bacteria, completely unrelated to the Rhizobiaceae, which are alpha-Proteobacteria, has been discovered. These bacteria belong to the beta-Proteobacteria and have been designated beta-rhizobia to distinguish them from the better-known alpha-rhizobia. Here, we review what is known in this economically important symbiosis about the interaction between legumes and alpha-rhizobia, and we incorporate information, where known, about the beta-rhizobia.
Collapse
Affiliation(s)
- Angie Lee
- Department of Molecular, Cellular and Developmental Biology; University of California-Los Angeles; Los Angeles, California USA
| | | |
Collapse
|
23
|
Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM. Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:961-70. [PMID: 16805730 DOI: 10.1111/j.1365-313x.2006.02751.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant hormones interact at many different levels to form a network of signaling pathways connected by antagonistic and synergistic interactions. Ethylene and jasmonic acid both act to regulate the plant's responsiveness to a common set of biotic stimuli. In addition ethylene has been shown to negatively regulate the plant's response to the rhizobial bacterial signal, Nod factor. This regulation occurs at an early step in the Nod factor signal transduction pathway, at or above Nod factor-induced calcium spiking. Here we show that jasmonic acid also inhibits the plant's responses to rhizobial bacteria, with direct effects on Nod factor-induced calcium spiking. However, unlike ethylene, jasmonic acid not only inhibits spiking but also suppresses the frequency of calcium oscillations when applied at lower concentrations. This effect of jasmonic acid is amplified in the ethylene-insensitive mutant skl, indicating an antagonistic interaction between these two hormones for regulation of Nod factor signaling. The rapidity of the effects of ethylene and jasmonic acid on Nod factor signaling suggests direct crosstalk between these three signal transduction pathways. This work provides a model by which crosstalk between signaling pathways can rapidly integrate environmental, developmental and biotic stimuli to coordinate diverse plant responses.
Collapse
Affiliation(s)
- Jongho Sun
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
24
|
Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 2006; 103:359-64. [PMID: 16407163 PMCID: PMC1326171 DOI: 10.1073/pnas.0508883103] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear-cytoplasmic partitioning and traffic between cytoplasmic and nuclear compartments are fundamental processes in eukaryotic cells. Nuclear pore complexes mediate transport of proteins, RNAs and ribonucleoprotein particles in and out of the nucleus. Here we present positional cloning of a plant nucleoporin gene, Nup133, essential for a symbiotic signal transduction pathway shared by Rhizobium bacteria and mycorrhizal fungi. Mutation of Nup133 results in a temperature sensitive nodulation deficient phenotype and absence of mycorrhizal colonization. Root nodules developing with reduced frequency at permissive temperatures are ineffective and electron microscopy show that Rhizobium bacteria are not released from infection threads. Measurement of ion fluxes using a calcium-sensitive dye show that Nup133 is required for the Ca2+ spiking normally detectable within minutes after application of purified rhizobial Nod-factor signal molecules to root hairs. Localization of NUP133 in the nuclear envelope of root cells and root hair cells shown with enhanced yellow fluorescent protein fusion proteins suggests a novel role for NUP133 nucleoporins in a rapid nuclear-cytoplasmic communication after host-plant recognition of symbiotic microbes. Our results identify a component of an intriguing signal process requiring interaction at the cell plasma membrane and at intracellular nuclear and plastid organelle-membranes to induce a second messenger.
Collapse
Affiliation(s)
- Norihito Kanamori
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10 and C.F. Møllers Vej Bldg 130, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. THE PLANT CELL 2005; 17:2217-29. [PMID: 15980262 PMCID: PMC1182484 DOI: 10.1105/tpc.105.032714] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 05/19/2005] [Accepted: 05/31/2005] [Indexed: 05/03/2023]
Abstract
A combined genetic and transcriptome analysis was performed to study the molecular basis of the arbuscular mycorrhiza (AM) symbiosis. By testing the AM phenotype of nodulation-impaired mutants and complementation analysis, we defined seven Lotus japonicus common symbiosis genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and SYM24) that are required for both fungal and bacterial entry into root epidermal or cortical cells. To describe the phenotype of these mutants at the molecular level, we screened for differentiating transcriptional responses of mutant and wild-type roots by large-scale gene expression profiling using cDNA-amplified fragment length polymorphism. Two percent of root transcripts was found to increase in abundance during AM development, from which a set of AM-regulated marker genes was established. A Ser-protease (SbtS) and a Cys-protease (CysS) were also activated during root nodule development. AM-induced transcriptional activation was abolished in roots carrying mutations in common symbiosis genes, suggesting a central position of these genes in a pathway leading to the transcriptional activation of downstream genes. By contrast, AM fungus-induced gene repression appeared to be unaffected in mutant backgrounds, which indicates the presence of additional independent signaling pathways.
Collapse
Affiliation(s)
| | - Thilo Winzer
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | | | - Shusei Sato
- Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | | | | | - Niels Sandal
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Jens Stougaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - K. Judith Webb
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | |
Collapse
|
26
|
Bothwell JHF, Ng CKY. The evolution of Ca2+ signalling in photosynthetic eukaryotes. THE NEW PHYTOLOGIST 2005; 166:21-38. [PMID: 15760348 DOI: 10.1111/j.1469-8137.2004.01312.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is likely that cytosolic Ca2+ elevations have played a part in eukaryotic signal transduction for about the last 2 Gyr, being mediated by a group of molecules which are collectively known as the [Ca2+]cyt signalling toolkit. Different eukaryotes often display strikingly similar [Ca2+]cyt signalling elevations, which may reflect conservation of toolkit components (homology) or similar constraints acting on different toolkits (homoplasy). Certain toolkit components, which are presumably ancestral, are shared by plants and animals, but some components are unique to photosynthetic organisms. We propose that the structure of modern plant [Ca2+]cyt signalling toolkits may be explained by their modular adaptation from earlier pathways.
Collapse
Affiliation(s)
- John H F Bothwell
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
| | | |
Collapse
|
27
|
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 2004; 433:527-31. [PMID: 15616514 DOI: 10.1038/nature03237] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/29/2004] [Indexed: 11/09/2022]
Abstract
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.
Collapse
Affiliation(s)
- Haruko Imaizumi-Anraku
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Charron D, Pingret JL, Chabaud M, Journet EP, Barker DG. Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression. PLANT PHYSIOLOGY 2004; 136:3582-93. [PMID: 15489277 PMCID: PMC527157 DOI: 10.1104/pp.104.051110] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/26/2004] [Accepted: 08/26/2004] [Indexed: 05/18/2023]
Abstract
Rhizobium nodulation (Nod) factors are specific lipochito-oligosaccharide signals essential for initiating in root hairs of the host legume developmental responses that are required for controlled entry of the microsymbiont. In this article, we focus on the Nod factor signal transduction pathway leading to specific and cell autonomous gene activation in Medicago truncatula cv Jemalong in a study making use of the Nod factor-inducible MtENOD11 gene. First, we show that pharmacological antagonists that interfere with intracellular ion channel and Ca2+ pump activities are efficient blockers of Nod factor-elicited pMtENOD11-beta-glucuronidase (GUS) expression in root hairs of transgenic M. truncatula. These results indicate that intracellular Ca2+ release and recycling activities, essential for Ca2+ spiking, are also required for specific gene activation. Second, pharmacological effectors that inhibit phospholipase D and phosphoinositide-dependent phospholipase C activities are also able to block pMtENOD11-GUS activation, thus underlining a central role for multiple phospholipid signaling pathways in Nod factor signal transduction. Finally, pMtENOD11-GUS was introduced into all three Nod-/Myc- dmi M. truncatula mutant backgrounds, and gene expression was evaluated in response to the mastoparan peptide agonist Mas7. We found that Mas7 elicits root hair MtENOD11 expression in dmi1 and dmi2 mutants, but not in the dmi3 mutant, suggesting that the agonist acts downstream of DMI1/DMI2 and upstream of DMI3. In light of these results and the recently discovered identities of the DMI gene products, we propose an integrated cellular model for Nod factor signaling in legume root hairs in which phospholipids play a key role in linking the Nod factor perception apparatus to downstream components such as Ca2+ spiking and ENOD gene expression.
Collapse
Affiliation(s)
- Dorothée Charron
- Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
29
|
Oldroyd GED, Downie JA. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 2004; 5:566-76. [PMID: 15232574 DOI: 10.1038/nrm1424] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giles E D Oldroyd
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
30
|
Demchenko K, Winzer T, Stougaard J, Parniske M, Pawlowski K. Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. THE NEW PHYTOLOGIST 2004; 163:381-392. [PMID: 33873620 DOI: 10.1111/j.1469-8137.2004.01123.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The colonization of Lotus japonicus roots by the arbuscular mycorrhizal fungus Glomus intraradices was analysed in plant mutants affected in the symbiosis genes, SYM15 or SYMRK. SYMRK encodes an LRR receptor-like kinase that is, like the SYM15 gene, essential for both mycorrhizal and rhizobial symbioses. • Different colonization patterns were observed in growing vs meristematically arrested roots. • Three steps in the interaction were differentially impaired in the mutants: surface opening, where the anticlinal cell walls of two adjacent epidermal cells separate from each other in the vicinity of fungal hyphae; intracellular passage of hyphae through an exodermal cell and an adjacent cell of the outermost cortical layer; and arbuscule formation in cells of the two innermost cortical layers. • The combined results indicate that LjSYMRK is required for the intracellular passage through exodermis and outermost cortical cell layer whereas LjSYM15 is required for surface opening and arbuscule formation.
Collapse
Affiliation(s)
- Kirill Demchenko
- Albrecht von Haller Institute for Plant Sciences, Plant Biochemistry, Göttingen University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Komarov Botanical Institute RAS, Prof. Popov St. 2, 197376, St.-Petersburg, Russia
| | - Thilo Winzer
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Jens Stougaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Martin Parniske
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Katharina Pawlowski
- Albrecht von Haller Institute for Plant Sciences, Plant Biochemistry, Göttingen University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
31
|
Patriarca EJ, Tatè R, Ferraioli S, Iaccarino M. Organogenesis of legume root nodules. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:201-62. [PMID: 15066376 DOI: 10.1016/s0074-7696(04)34005-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The N(2)-fixing nodules elicited by rhizobia on legume roots represent a useful model for studying plant development. Nodule formation implies a complex progression of temporally and spatially regulated events of cell differentiation/dedifferentiation involving several root tissues. In this review we describe the morphogenetic events leading to the development of these histologically well-structured organs. These events include (1) root hair deformation, (2) development and growth of infection threads, (3) induction of the nodule primordium, and (4) induction, activity, and persistence of the nodular meristem and/or of foci of meristematic activities. Particular attention is given to specific aspects of the symbiosis, such as the early stages of intracellular invasion and to differentiation of the intracellular form of rhizobia, called symbiosomes. These developmental aspects were correlated with (1) the regulatory signals exchanged, (2) the plant genes expressed in specific cell types, and (3) the staining procedures that allow the recognition of some cell types. When strictly linked with morphogenesis, the nodulation phenotypes of plant and bacterial mutants such as the developmental consequence of the treatment with metabolic inhibitors, metabolic intermediates, or the variation of physical parameters are described. Finally, some aspects of nodule senescence and of regulation of nodulation are discussed.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy
| | | | | | | |
Collapse
|