1
|
Lauman P, Dennis JJ. Prophylactic phage biocontrol prevents Burkholderia gladioli infection in a quantitative ex planta model of bacterial virulence. Appl Environ Microbiol 2024; 90:e0131724. [PMID: 39240081 PMCID: PMC11497830 DOI: 10.1128/aem.01317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Agricultural crop yield losses and food destruction due to infections by phytopathogenic bacteria such as Burkholderia gladioli, which causes devastating diseases in onion, mushroom, corn, and rice crops, pose major threats to worldwide food security and cause enormous damage to the global economy. Biocontrol using bacteriophages has emerged as a promising strategy against a number of phytopathogenic species but has never been attempted against B. gladioli due to a lack of quantitative infection models and a scarcity of phages targeting this specific pathogen. In this study, we present a novel, procedurally straightforward, and highly generalizable fully quantitative ex planta maceration model and an accompanying quantitative metric, the ex planta maceration index (xPMI). In utilizing this model to test the ex planta virulence of a panel of 12 strains of B. gladioli in Allium cepa and Agaricus bisporus, we uncover substantial temperature-, host-, and strain-dependent diversity in the virulence of this fascinating pathogenic species. Crucially, we demonstrate that Burkholderia phages KS12 and AH2, respectively, prevent and reduce infection-associated onion tissue destruction, measured through significant (P < 0.0001) reductions in xPMI, by phytopathogenic strains of B. gladioli, thereby demonstrating the potential of agricultural phage biocontrol targeting this problematic microorganism.IMPORTANCEAgricultural crop destruction is increasing due to infections caused by bacteria such as Burkholderia gladioli, which causes plant tissue diseases in onion, mushroom, corn, and rice crops. These bacteria pose a major threat to worldwide food production, which, in turn, damages the global economy. One potential solution being investigated to prevent bacterial infections of plants is "biocontrol" using bacteriophages (or phages), which are bacterial viruses that readily infect and destroy bacterial cells. In this article, we demonstrate that Burkholderia phages KS12 and AH2 prevent or reduce infection-associated plant tissue destruction caused by strains of B. gladioli, thereby demonstrating the inherent potential of agricultural phage biocontrol.
Collapse
Affiliation(s)
- Philip Lauman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Pujasatria GC, Miura C, Yamaguchi K, Shigenobu S, Kaminaka H. Colonization by orchid mycorrhizal fungi primes induced systemic resistance against necrotrophic pathogen. FRONTIERS IN PLANT SCIENCE 2024; 15:1447050. [PMID: 39145195 PMCID: PMC11322130 DOI: 10.3389/fpls.2024.1447050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Orchids and arbuscular mycorrhiza (AM) plants evolved independently and have different structures and fungal partners, but they both facilitate nutrient uptake. Orchid mycorrhiza (OM) supports orchid seed germination, but unlike AM, its role in disease resistance of mature plants is largely unknown. Here, we examined whether OM induces systemic disease resistance against a necrotrophic pathogen in a similar fashion to AM. We investigated the priming effect of mycorrhizal fungi inoculation on resistance of a terrestrial orchid, Bletilla striata, to soft rot caused by Dickeya fangzhongdai. We found that root colonization by a compatible OM fungus primed B. striata seedlings and induced systemic resistance against the infection. Transcriptome analysis showed that priming was mediated by the downregulation of jasmonate and ethylene pathways and that these pathways are upregulated once infection occurs. Comparison with the reported transcriptome of AM fungus-colonized rice leaves revealed similar mechanisms in B. striata and in rice. These findings highlight a novel aspect of commonality between OM and AM plants in terms of induced systemic resistance.
Collapse
Affiliation(s)
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Zheng J, Liu L, Li X, Xu Z, Gai Z, Zhang X, Lei H, Shen X. Rapid and Simple Detection of Burkholderia gladioli in Food Matrices Using RPA-CRISPR/Cas12a Method. Foods 2023; 12:foods12091760. [PMID: 37174300 PMCID: PMC10178126 DOI: 10.3390/foods12091760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Pathogenic variants of Burkholderia gladioli pose a serious threat to human health and food safety, but there is a lack of rapid and sensitive field detection methods for Burkholderia gladioli. In this study, the CRISPR/Cas12a system combined with recombinant enzyme polymerase amplification (RPA) was used to detect Burkholderia gladioli in food. The optimized RPA-CRISPR/Cas12a assay was able to specifically and stably detect Burkholderia gladioli at a constant 37 °C without the assistance of large equipment. The detection limit of the method was evaluated at two aspects, the genomic DNA (gDNA) level and bacterial quantity, of which there were 10-3 ng/μL and 101 CFU/mL, respectively. Three kinds of real food samples were tested. The detection limit for rice noodles, fresh white noodles, and glutinous rice flour samples was 101 CFU/mL, 102 CFU/mL, and 102 CFU/mL, respectively, without any enrichment steps. The whole detection process, including sample pretreatment and DNA extraction, did not exceed one hour. Compared with the qPCR method, the established RPA-CRISPR /Cas12a method was simpler and even more sensitive. Using this method, a visual detection of Burkholderia gladioli that is suitable for field detection can be achieved quickly and easily.
Collapse
Affiliation(s)
- Jiale Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Zuoqi Gai
- Guangzhou Editgene Co., Ltd., Guangzhou 510630, China
| | - Xu Zhang
- Guangzhou Editgene Co., Ltd., Guangzhou 510630, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Gutierrez Yanez D, Martin D, Emanuel IB, Peduto Hand F. Confirmation of Burkholderia gladioli as the Causal Agent of Bacterial Scab on Gladiolus ( Gladiolus spp.) in Ohio. PLANT DISEASE 2022; 107:1937. [PMID: 36366832 DOI: 10.1094/pdis-10-22-2309-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ohio is one of the top five floriculture producers in the United States, grossing over $200 million annually (NASS 2019). Within the international floriculture trade, gladiolus cut flowers represent the fifth highest grossing crop (Ahmed et al. 2002). In September 2021, the Ornamental Crops Pathology Lab at the Ohio State University received a gladiolus (Gladiolus spp.) sample of an unknown cultivar from a home garden in Franklin Co., OH where several plants had failed to grow from planted corms or were stunted and displaying symptoms of disease. Bleached, water-soaked spots with necrotic margins along the flowering stems, stunted flowers with partial necrosis, and necrotic bracts were observed on the submitted sample. Bacterial isolations were performed by surface disinfesting small sections of bract tissue from the border of a lesion by soaking in 10% bleach for 30 sec and rinsing twice in sterile water, macerating the tissue in sterile water, and streaking the suspension on nutrient agar (NA) plates. Plates were incubated at 28°C for 48 hours and the resulting colonies were purified by re-streaking a single colony on NA twice. Bacterial colony morphology on NA presented as cream-colored and shiny with an irregular form and undulate margin. Five in vitro tests were performed using one representative isolate to identify the bacterium to the genus level: (1) confirmed levan production, (2) confirmed pectinolytic activity, (3) confirmed ability to grow at 40°C, (4) inability to grow under anaerobic conditions, and (5) a negative oxidase test (Schaad et al. 2000). All test results identified the genus as Burkholderia. To identify to species level, gyrase subunit B (gyrB) and RNA polymerase subunit D (rpoD) markers were PCR amplified and sequenced using primers UP1-E/AprU, and 70F2/70R2, respectively (Maeda et al. 2006). NCBI GenBank BLASTn comparison showed that the gyrB sequence shared 99.33% identity to the type strain of B. gladioli (CP009323.1), while the rpoD sequence showed 99.53% identity (CP009322.1). Sequences were deposited in GenBank under accession numbers ON597852 (gyrB) and ON597853 (rpoD). To confirm pathogenicity, each of two Gladiolus communis 'Mini Elvira' potted plants were inoculated with two bacterial and two control treatments (3 leaves/treatment/plant) as follows: leaf infiltration with 1 mL of either (i) a distilled water-Tween 20 (0.03% v/v) bacterial suspension (106 cfu/mL) or (ii) a sterile water-Tween 20 suspension using a needle-less syringe; foliar spray with either (iii) the bacterial suspension or (iv) water-Tween suspension until run-off. Following inoculation, plants were covered for 24 hours with a plastic bag to increase humidity and favor infection and maintained in a greenhouse at an average temperature of 23°C. After 3 days, water-soaked, necrotic lesions were observed on the inoculated plants regardless of inoculation method, while control leaves remained asymptomatic. To fulfill Koch's postulates, bacteria were re-isolated from the lesions 7 days post-inoculation and confirmed to be identical to the original isolate based on rpoD gene sequencing. Bacterial scab of gladiolus was reported in Ohio in the late 1900s as caused by Pseudomonas gladioli (syn. P. marginata; Ellett, 1989). To the best of our knowledge, this report represents the first molecular identification of the causal agent as Burkholderia gladioli. In Ohio, the pathogen has also been observed causing slippery skin on onion but not officially reported in the peer-reviewed literature. Additionally, B. gladioli has been reported in other parts of the United States on orchid, corn, and rice (Keith et al. 2005; Lu et al. 2007; Nandakumar et al. 2009). Given the significant role of gladiolus within Ohio's floricultural trade, as well as the ability of this pathogen to infect other regional crops, monitoring of bacterial scab is important for floriculture and field crop growers alike.
Collapse
Affiliation(s)
| | - Dana Martin
- The Ohio State University, Plant Pathology, 2021 Coffey Rd., Columbus, Ohio, United States, 43210;
| | - Isabel Brooke Emanuel
- The Ohio State University, Plant Pathology, 4772 Cressingham Ct, Court B, Columbus, Ohio, United States, 43212;
| | - Francesca Peduto Hand
- The Ohio State University, Plant Pathology, 2021 Coffey Road, Columbus, Ohio, United States, 43210;
| |
Collapse
|
5
|
Md Zali AZ, Ja'afar Y, Paramisparan K, Ismail SI, Saad N, Mohd Hata E, Md Hatta MA, Ismail MR, Yusof MT, Zulperi D. First report of Burkholderia gladioli causing bacterial panicle blight of rice in Malaysia. PLANT DISEASE 2022; 107:551. [PMID: 35748735 DOI: 10.1094/pdis-03-22-0650-pdn] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa) is a staple food for most of the world's populations, particularly in Asia (Gumma et al. 2011). The rice sector provides Malaysians with a food supply, food sufficiency, and income for growers (Man et al. 2009). From January to February 2022, panicle samples showing symptoms of bacterial panicle blight (BPB) disease, including reddish-brown, linear lesions with indistinct margins on flag-leaf sheaths and blighted, upright, grayish straw-colored florets with sterile and aborted grains on panicles were collected in granary areas in Sekinchan, Selangor, Malaysia with 90% disease incidence in fields. Surface-sterilization of infected leaf tissue was performed using 75% ethanol and 1% sodium hypochlorite, followed by rinsing three times in sterilized water. Leaf tissue was macerated in sterilized water and aliquots were spread on King's B agar medium, then cultured for 24 h to 48 h at 35 °C. All isolated bacteria were Gram-negative rods, positive for catalase and gelatinase but negative for indole, oxidase and hydrogen sulfide (H2S), and utilized sucrose, inositol, mannitol, glucose, and citrate. Colonies were circular and smooth-margined, producing a diffusible yellowish-green pigment on King's B agar medium, which are characteristics of Burkholderia species (Keith et al. 2005). Five representative isolates (UPMBG7, UPMBG8, UPMBG9, UPMBG15, UPMBG17) were selected for molecular and pathogenicity tests. PCR using specific primers targeting the gyrB gene for molecular characterization was performed, and the ∼470 bp amplicons were sequenced (Maeda et al. 2006) and deposited in GenBank (OM824438 to OM824442). A BLASTn analysis revealed that the five isolates were 99% identical to the B. gladioli reference strains MAFF 302533, GRBB15041, and LMG19584 in GenBank (AB190628, KX638432, and AB220898). A phylogenetic tree using Maximum-likelihood analysis of the gyrB gene sequences showed that the five isolates were 99% identical to B. gladioli reference strains (AB190628, KX638432, and AB220898). To verify the identification of these isolates, the 16S rDNA gene was amplified using 16SF/16SR primers (Ramachandran et al. 2021), producing ~1,400 bp amplicons. The resulting sequences of the five isolates (OM869953 to OM869957) were 98% identical to the reference strains of B. gladioli (NR113629 and NR117553). To confirm pathogenicity, 10 ml suspensions of the five isolates at of 108 CFU/ml were inoculated into the panicles and crowns of 75-day-old rice seedlings of local rice varieties MR269 and MR219 grown in a glasshouse with temperatures ranging from 37 °C to 41 °C (Nandakumar et al. 2009). Control rice seedlings were inoculated with sterilized water. All isolates produced BPB disease symptoms like those originally found in the rice fields at four weeks after inoculation. Control seedlings remained asymptomatic. To fulfill Koch's postulates, the bacteria were reisolated from symptomatic panicles and were confirmed as B. gladioli by sequence analysis of the gyrB and 16S rDNA genes. To our knowledge, this is the first report of B. gladioli causing BPB disease of rice in Malaysia. Since BPB disease causes a significant threat to the rice industry, it is crucial to investigate the diversity of this destructive pathogen for effective disease management strategies in Malaysia.
Collapse
Affiliation(s)
- Adam Zafdri Md Zali
- Universiti Putra Malaysia, 37449, Department of Plant Protection, Serdang, Selangor, Malaysia;
| | - Yasmin Ja'afar
- Universiti Putra Malaysia, 37449, Department of Plant Protection, Serdang, Selangor, Malaysia;
| | - Karthik Paramisparan
- Universiti Putra Malaysia, 37449, Department of Plant Protection, Serdang, Selangor, Malaysia;
| | - Siti Izera Ismail
- Universiti Putra Malaysia, 37449, Department of Plant Protection, Faculty of Agriculture, 43400 UPM Serdang, Selangor Darul Ehsan, Serdang, Malaysia, 43400;
| | - Norsazilawati Saad
- Universiti Putra Malaysia Faculty of Agriculture, 119196, Plant Protection, Department of Plant Protection,, Faculty of Agriculture, UPM Serdang, Serdang, Selangor, Malaysia, 43400
- Universiti Putra Malaysia Faculty of Agriculture, 119196, Plant Protection, Department of Plant Protection,, Faculty of Agriculture, UPM Serdang, Serdang, Selangor, Malaysia, 43400;
| | - Erneeza Mohd Hata
- Universiti Putra Malaysia Fakulti Pertanian, 119196, Plant Protection, Dept. Of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, 43400;
| | - Muhammad Asyraf Md Hatta
- Universiti Putra Malaysia Fakulti Pertanian, 119196, Agriculture Technology, Serdang, Selangor, Malaysia;
| | - Mohd Razi Ismail
- Universiti Putra Malaysia, 37449, Department of Crop Science, Serdang, Selangor, Malaysia;
| | - Mohd Termizi Yusof
- Universiti Putra Malaysia, Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, 43400;
| | - Dzarifah Zulperi
- Universiti Putra Malaysia Fakulti Pertanian, 119196, Plant Protection, Faculty of Agriculture, UPM, 43400 Serdang Selangor, MALAYSIA, Serdang, Malaysia, 43400;
| |
Collapse
|
6
|
An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Burkholderia Spp. Metabolites 2021; 11:metabo11050321. [PMID: 34067834 PMCID: PMC8156019 DOI: 10.3390/metabo11050321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Burkholderia is an important bacterial species which has different beneficial effects, such as promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals, production of antibiotics, and siderophores. In addition, most of Burkholderia species have demonstrated promising biocontrol action against different phytopathogens for diverse crops. In particular, Burkholderia demonstrates significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. The current review is concerned with Burkholderia spp. covering the following aspects: discovering, classification, distribution, plant growth promoting effect, and antimicrobial activity of different species of Burkholderia, shedding light on the most important secondary metabolites, their pathogenic effects, and biochemical characterization of some important species of Burkholderia, such as B. cepacia, B. andropogonis, B. plantarii, B. rhizoxinica, B. glumae, B. caryophylli and B. gladioli.
Collapse
|
7
|
Functional Analysis of Phenazine Biosynthesis Genes in Burkholderia spp. Appl Environ Microbiol 2021; 87:AEM.02348-20. [PMID: 33741619 DOI: 10.1128/aem.02348-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Burkholderia encompasses a group of ubiquitous Gram-negative bacteria that includes numerous saprophytes as well as species that cause infections in animals, immunocompromised patients, and plants. Some species of Burkholderia produce colored, redox-active secondary metabolites called phenazines. Phenazines contribute to competitiveness, biofilm formation, and virulence in the opportunistic pathogen Pseudomonas aeruginosa, but knowledge of their diversity, biosynthesis, and biological functions in Burkholderia is lacking. In this study, we screened publicly accessible genome sequence databases and identified phenazine biosynthesis genes in multiple strains of the Burkholderia cepacia complex, some isolates of the B. pseudomallei clade, and the plant pathogen B. glumae We then focused on B. lata ATCC 17760 to reveal the organization and function of genes involved in the production of dimethyl 4,9-dihydroxy-1,6-phenazinedicarboxylate. Using a combination of isogenic mutants and plasmids carrying different segments of the phz locus, we characterized three novel genes involved in the modification of the phenazine tricycle. Our functional studies revealed a connection between the presence and amount of phenazines and the dynamics of biofilm growth in flow cell and static experimental systems but at the same time failed to link the production of phenazines with the capacity of Burkholderia to kill fruit flies and rot onions.IMPORTANCE Although the production of phenazines in Burkholderia was first reported almost 70 years ago, the role these metabolites play in the biology of these economically important microorganisms remains poorly understood. Our results revealed that the phenazine biosynthetic pathway in Burkholderia has a complex evolutionary history, which likely involved horizontal gene transfers among several distantly related groups of organisms. The contribution of phenazines to the formation of biofilms suggests that Burkholderia, like fluorescent pseudomonads, may benefit from the unique redox-cycling properties of these versatile secondary metabolites.
Collapse
|
8
|
Moon H, Park HJ, Jeong AR, Han SW, Park CJ. Isolation and identification of Burkholderia gladioli on Cymbidium orchids in Korea. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1268069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hyeran Moon
- Department of Bioresources Engineering and PERI, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hye-Jee Park
- Department of Integrative Plant Science, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Republic of Korea
| | - A-ram Jeong
- Department of Bioresources Engineering and PERI, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Republic of Korea
| | - Chang-Jin Park
- Department of Bioresources Engineering and PERI, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Araújo WL, Creason AL, Mano ET, Camargo-Neves AA, Minami SN, Chang JH, Loper JE. Genome Sequencing and Transposon Mutagenesis of Burkholderia seminalis TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by B. gladioli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:435-446. [PMID: 26959838 DOI: 10.1094/mpmi-02-16-0047-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
From a screen of 36 plant-associated strains of Burkholderia spp., we identified 24 strains that suppressed leaf and pseudobulb necrosis of orchid caused by B. gladioli. To gain insights into the mechanisms of disease suppression, we generated a draft genome sequence from one suppressive strain, TC3.4.2R3. The genome is an estimated 7.67 megabases in size, with three replicons, two chromosomes, and the plasmid pC3. Using a combination of multilocus sequence analysis and phylogenomics, we identified TC3.4.2R3 as B. seminalis, a species within the Burkholderia cepacia complex that includes opportunistic human pathogens and environmental strains. We generated and screened a library of 3,840 transposon mutants of strain TC3.4.2R3 on orchid leaves to identify genes contributing to plant disease suppression. Twelve mutants deficient in suppression of leaf necrosis were selected and the transposon insertions were mapped to eight loci. One gene is in a wcb cluster that is related to synthesis of extracellular polysaccharide, a key determinant in bacterial-host interactions in other systems, and the other seven are highly conserved among Burkholderia spp. The fundamental information developed in this study will serve as a resource for future research aiming to identify mechanisms contributing to biological control.
Collapse
Affiliation(s)
- Welington L Araújo
- 1 Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Allison L Creason
- 2 Department of Botany and Plant Pathology; and
- 3 Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, U.S.A
| | - Emy T Mano
- 1 Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Aline A Camargo-Neves
- 1 Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- 4 Interdisciplinary Center for Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Sonia N Minami
- 4 Interdisciplinary Center for Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Jeff H Chang
- 2 Department of Botany and Plant Pathology; and
- 3 Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, U.S.A
- 5 Center for Genome Research and Biocomputing, Oregon State University; and
| | - Joyce E Loper
- 2 Department of Botany and Plant Pathology; and
- 3 Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, U.S.A
- 6 USDA-Agricultural Research Service, Horticultural Crops Laboratory, Corvallis, Oregon, U.S.A
| |
Collapse
|
10
|
Zhu DW, Wu ZY, Luo AM, Gao H. Characterization and detection of toxoflavin-producingBurkholderiain rice straws andDaqufor Chinese Maotai-flavour liquor brewing. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- De-wen Zhu
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Zheng-yun Wu
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Ai-min Luo
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Hong Gao
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
11
|
Stoyanova M, Georgieva L, Moncheva P, Bogatzevska N. Burkholderia GladioliandPseudomonas MarginalisPathogens ofLeucojum Aestivum. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Stoyanova M, Pavlina I, Moncheva P, Bogatzevska N. Biodiversity and Incidence ofBurkholderiaSpecies. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2007.10817465] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|