1
|
Hossain MM, Sultana F, Rubayet MT, Khan S, Mostafa M, Mishu NJ, Sabbir MAA, Akter N, Kabir A, Mostofa MG. White Mold: A Global Threat to Crops and Key Strategies for Its Sustainable Management. Microorganisms 2024; 13:4. [PMID: 39858772 PMCID: PMC11767943 DOI: 10.3390/microorganisms13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
White mold, caused by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, is a significant biotic stress impacting horticultural and field crops worldwide. This disease causes plants to wilt and ultimately die, resulting in considerable yield losses. This monocyclic disease progresses through a single infection cycle involving basal infections from myceliogenically germinated sclerotia or aerial infections initiated by ascospores from carpogenically germinated sclerotia. The pathogen has a homothallic mating system with a weak population structure. Relatively cool temperatures and extended wetness are typical conditions for spreading the disease. Each stage of infection triggers a cascade of molecular and physiological events that underpin defense responses against S. sclerotiorum. Molecular markers can help rapid diagnosis of this disease in plants. Effective management strategies encompass altering the crop microclimate, applying fungicides, reducing inoculum sources, and developing resistant plant varieties. Integrated approaches combining those strategies often yield the best results. This review discusses the latest insights into the biology, epidemiology, infection mechanisms, and early detection of white mold. This review also aims to provide comprehensive guidelines for sustainable management of this destructive disease while reducing the use of excessive pesticides in crop fields.
Collapse
Affiliation(s)
- Md. Motaher Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.H.); (M.T.R.); (M.M.); (N.J.M.); (M.A.A.S.); (N.A.)
| | - Farjana Sultana
- College of Agricultural Sciences, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Md. Tanbir Rubayet
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.H.); (M.T.R.); (M.M.); (N.J.M.); (M.A.A.S.); (N.A.)
| | - Sabia Khan
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Mahabuba Mostafa
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.H.); (M.T.R.); (M.M.); (N.J.M.); (M.A.A.S.); (N.A.)
| | - Nusrat Jahan Mishu
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.H.); (M.T.R.); (M.M.); (N.J.M.); (M.A.A.S.); (N.A.)
| | - Md. Abdullah Al Sabbir
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.H.); (M.T.R.); (M.M.); (N.J.M.); (M.A.A.S.); (N.A.)
| | - Nabela Akter
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.H.); (M.T.R.); (M.M.); (N.J.M.); (M.A.A.S.); (N.A.)
| | - Ahmad Kabir
- Department of Biology, College of Arts, Education & Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Mohammad Golam Mostofa
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Khan MA, You MP, Norton SL, Barbetti MJ. Screening of Diverse Lupinus spp. Highlights New Resistances to Sclerotinia sclerotiorum. PLANT DISEASE 2024; 108:2542-2549. [PMID: 38568787 DOI: 10.1094/pdis-03-24-0506-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Stem rot caused by Sclerotinia sclerotiorum is a serious and sometimes devastating disease of lupin (Lupinus spp.). A total of 236 lupin accessions from across 12 Lupinus species were screened against the prevalent S. sclerotiorum isolate MBRS-1 (pathotype 76). L. angustifolius accession 21655 and L. albus var. albus accession 20589 showed immune and "near-immune" responses, respectively. Thirteen accessions of L. angustifolius, three accessions each of L. albus and L. albus var. albus, and a single accession each of L. albus var. graecus, L. mutabilis, L. palaestinus, and L. pilosus (totaling ∼4%) showed a highly resistant (HR) response. A further 19 accessions of L. angustifolius, 2 accessions each of L. albus and L. pilosus, and a single accession of L. mutabilis (totaling ∼10%) showed a resistant (R) response. The reactions of 16 (15 L. angustifolius, 1 L. digitatus) of these 236 accessions were also compared with their reactions to a different isolate, Walkaway-3 (WW-3; pathotype 10). Against this isolate, five L. angustifolius accessions showed an HR response and four showed an R response, and the L. digitatus accession showed a moderate resistance response. Overall, isolate WW-3 caused significantly (P < 0.05) smaller lesions than MBRS-1 across tested accessions in common. In addition, 328 plants in a "wild" naturalized field population of L. cosentinii were screened in situ in the field against isolate MBRS-1. Five (∼1.5%) of the 328 plants of wild lupin showed an immune response, 63 (∼19%) showed an HR response, and 146 (∼45%) showed an R response. We believe this is the first examination of diverse Lupinus spp. germplasm responses to a prevalent pathotype of S. sclerotiorum. Lupin genotypes exhibiting high-level resistance to Sclerotinia stem rot identified in this study can be used as parental lines for crosses in lupin breeding programs and/or directly as improved cultivars to reduce the adverse impact of this disease on lupin crops.
Collapse
Affiliation(s)
- Muhammad Azam Khan
- School of Agriculture and Environment and the UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ming Pei You
- School of Agriculture and Environment and the UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Sally L Norton
- Australian Grains Genebank, Horsham, VIC 3400, Australia
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Mwape VW, Khoo KHP, Chen K, Khentry Y, Newman TE, Derbyshire MC, Mather DE, Kamphuis LG. Identification of Sclerotinia stem rot resistance quantitative trait loci in a chickpea ( Cicer arietinum) recombinant inbred line population. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:634-646. [PMID: 35339205 DOI: 10.1071/fp21216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum , is one of the most economically devastating diseases in chickpea (Cicer arietinum L.). No complete resistance is available in chickpea to this disease, and the inheritance of partial resistance is not understood. Two hundred F7 recombinant inbred lines (RILs) derived from a cross between a partially resistant variety PBA HatTrick, and a highly susceptible variety Kyabra were characterised for their responses to SSR inoculation. Quantitative trait locus (QTL) analysis was conducted for the area under the disease progress curve (AUDPC) after RIL infection with S. sclerotiorum . Four QTLs on chromosomes, Ca4 (qSSR4-1, qSSR4-2), Ca6 (qSSR6-1) and Ca7 (qSSR7-1), individually accounted for between 4.2 and 15.8% of the total estimated phenotypic variation for the response to SSR inoculation. Candidate genes located in these QTL regions are predicted to be involved in a wide range of processes, including phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction. This is the first study investigating the inheritance of resistance to S. sclerotiorum in chickpea. Markers associated with the identified QTLs could be employed for marker-assisted selection in chickpea breeding.
Collapse
Affiliation(s)
- Virginia W Mwape
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia; and Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA 6913, Australia
| | - Kelvin H P Khoo
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Kefei Chen
- Statistics for the Australian Grains Industry - West, Curtin University, Bentley, WA 6102, Australia
| | - Yuphin Khentry
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Toby E Newman
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Mark C Derbyshire
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Lars G Kamphuis
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia; and Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA 6913, Australia
| |
Collapse
|
4
|
Mwape VW, Mobegi FM, Regmi R, Newman TE, Kamphuis LG, Derbyshire MC. Analysis of differentially expressed Sclerotinia sclerotiorum genes during the interaction with moderately resistant and highly susceptible chickpea lines. BMC Genomics 2021; 22:333. [PMID: 33964897 PMCID: PMC8106195 DOI: 10.1186/s12864-021-07655-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR), is a host generalist necrotrophic fungus that can cause major yield losses in chickpea (Cicer arietinum) production. This study used RNA sequencing to conduct a time course transcriptional analysis of S. sclerotiorum gene expression during chickpea infection. It explores pathogenicity and developmental factors employed by S. sclerotiorum during interaction with chickpea. RESULTS During infection of moderately resistant (PBA HatTrick) and highly susceptible chickpea (Kyabra) lines, 9491 and 10,487 S. sclerotiorum genes, respectively, were significantly differentially expressed relative to in vitro. Analysis of the upregulated genes revealed enrichment of Gene Ontology biological processes, such as oxidation-reduction process, metabolic process, carbohydrate metabolic process, response to stimulus, and signal transduction. Several gene functional categories were upregulated in planta, including carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, transcription factors and candidate secreted effectors. Differences in expression of four S. sclerotiorum genes on varieties with different levels of susceptibility were also observed. CONCLUSION These findings provide a framework for a better understanding of S. sclerotiorum interactions with hosts of varying susceptibility levels. Here, we report for the first time on the S. sclerotiorum transcriptome during chickpea infection, which could be important for further studies on this pathogen's molecular biology.
Collapse
Affiliation(s)
- Virginia W Mwape
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia. .,Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA, Australia.
| | - Fredrick M Mobegi
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Roshan Regmi
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia.,Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA, Australia
| | - Toby E Newman
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia. .,Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA, Australia.
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
5
|
O’Sullivan CA, Belt K, Thatcher LF. Tackling Control of a Cosmopolitan Phytopathogen: Sclerotinia. FRONTIERS IN PLANT SCIENCE 2021; 12:707509. [PMID: 34490008 PMCID: PMC8417578 DOI: 10.3389/fpls.2021.707509] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/27/2021] [Indexed: 05/14/2023]
Abstract
Phytopathogenic members of the Sclerotinia genus cause widespread disease across a broad range of economically important crops. In particular, Sclerotinia sclerotiorum is considered one of the most destructive and cosmopolitan of plant pathogens. Here, were review the epidemiology of the pathogen, its economic impact on agricultural production, and measures employed toward control of disease. We review the broad approaches required to tackle Sclerotinia diseases and include cultural practices, crop genetic resistance, chemical fungicides, and biological controls. We highlight the benefits and drawbacks of each approach along with recent advances within these controls and future strategies.
Collapse
Affiliation(s)
| | | | - Louise F. Thatcher
- CSIRO Agriculture and Food, Acton, ACT, Australia
- *Correspondence: Louise F. Thatcher,
| |
Collapse
|