1
|
Kumar A, Verma R, Sharma VP, Kumar S, Kamal S, Goyanka J, Sharma S, Sharma P. Antifungal, growth-promoting, and lignocellulose degrading-bacteria from compost and casing soil of button mushroom (Agaricus bisporus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9747-9758. [PMID: 40153125 DOI: 10.1007/s11356-025-36325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/20/2025] [Indexed: 03/30/2025]
Abstract
Eleven dominant mesophilic and thermophilic bacteria were identified from the phase-1 compost and casing of button mushroom (Agaricus bisporus). During phase 1 (at 45-48 °C), Bacillus subtilis (BSB1, BSB3, BSB5, and BSB13), Paenibacillus polymyxa (PPB6), Bacillus sp. (BB7), B. cereus (BCB8 and BCB12), and Acinetobacter johnsonii (AJB15/B) were identified as useful bacterial species by 16S rRNA sequencing. Whereas, in casing soil (at 22-25 °C) Alcaligenes faecalis (AFB11) and Pseudomonas aeruginosa (PAB16/P) were identified as useful mesophiles. PAB16/P showed the strongest antagonistic activities against M. perniciosa (wet bubble disease) with the highest mycelial growth inhibition (91.89%), followed by BB-7 (76.39%). The other isolates, BSB1, BSB3, BSB5, PPB6, BCB8, and BSB13, also inhibited the growth of M. perniciosa by 61.11 to 72.55%. The degradation of wheat straw via six microbe complexes (MC-1 to MC-6) was monitored based on CO2 release. The highest CO2 release (174666.70 ppm) was recorded in MC-3 (a combination of PAB16/P, AJB15/B, AFB11, and BSB5) compared with the lowest in control (43166.60 ppm). Compost inoculated with MC-3 produced the highest crop yield (16.20 kg/100 kg substrate) whereas lowest in control (12.84 kg/100 kg substrate). MC-3 may be recommended for button mushroom compost, to manage wet bubble disease and increase crop yield.
Collapse
Affiliation(s)
- Anil Kumar
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India.
| | - Reetu Verma
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India
| | - Ved Prakash Sharma
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India
| | - Satish Kumar
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India
| | - Shwet Kamal
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India
| | - Jagdish Goyanka
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India
| | - Shweta Sharma
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India
| | - Pratibha Sharma
- ICAR- Directorate of Mushroom Research, Chambaghat, Solan, HP, 173213, India
| |
Collapse
|
2
|
Liu Z, Cong Y, Sossah FL, Sheng H, Li Y. Identification of bacterial communities associated with needle mushroom ( Flammulina filiformis) and its production environment. Front Microbiol 2024; 15:1429213. [PMID: 39741595 PMCID: PMC11685130 DOI: 10.3389/fmicb.2024.1429213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Flammulina filiformis is an important edible and medicinal mushroom widely cultivated in East Asia, with its quality and health strongly influenced by associated microbial communities. However, limited data exist on the bacterial communities associated with F. filiformis cultivation in Chinese farms. This study investigated bacterial communities associated with F. filiformis and its production environment using high-throughput 16S rRNA gene amplicon sequencing and culture-dependent methods. A total of 42 samples were collected from farms in Jilin and Guizhou provinces, China, for microbial community profiling. The analysis revealed diverse bacterial phyla, including Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria. Genera such as Pseudomonas, Lactobacillus, Acinetobacter, Flavobacterium, and Phyllobacterium were identified, with notable regional variations in the relative abundance of Pseudomonas and Lactobacillus. Pathogenic species, including Pseudomonas tolaasii, Ewingella americana, Stenotrophomonas maltophilia, Pseudomonas sp., Lelliottia amnigena, and Janthinobacterium lividum, were identified through phenotypic, biochemical, and molecular analyses. Pathogenicity tests confirmed the disease-causing potential of P. tolaasii, E. americana, and J. lividum in F. filiformis. These findings highlight regional differences in bacterial community composition and emphasize the need for tailored management practices. This study contributes to safe, high-quality mushroom cultivation and provides insights into improved cultivation practices, including Mushroom Good Agricultural Practices (MGAP).
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Institute of Edible Fungi, Guizhou University, Guiyang, China
| | - Yunlong Cong
- Research Institute of Science and Technology, Guizhou University, Guiyang, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana
| | - Hongyan Sheng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
O'Connor E, Vieira FR, Di Tomassi I, Richardson R, Hockett KL, Bull CT, Pecchia JA. Manipulating button mushroom casing affects the disease dynamics of blotch and green mold disease. Fungal Biol 2024; 128:2266-2273. [PMID: 39643393 DOI: 10.1016/j.funbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Productive cultivation of the button mushroom (Agaricus bisporus) relies on the use of selective substrates and effective disease management. In extending our previous work on manipulating the developmental microbiome (devome), this study employs the strategy of substrate passaging to explore its effects on crop outcomes and disease dynamics. Here we subjected the casing substrate to ten cycles of passaging. This manipulated substrate stimulated early pinning (primordia formation) by at least three days. Passaged casing also altered disease dynamics when challenged with two commercially important A. bisporus pathogens, Pseudomonas tolaasii (causing bacterial blotch) and Trichoderma aggressivum f. aggressivum (responsible for green mold). Passaged casing had a suppressive effect on blotch disease and a conducive effect on green mold disease. Blotch suppression resulted in a significantly higher yield of asymptomatic mushrooms in all three mushroom harvests (flushes) and in the overall crop yield. Blotch severity was also significantly reduced in passaged casing compared to standard casing due to a lower yield of mushrooms with the highest degree of blotch disease expression. Green mold disease expression was markedly higher in passaged casing, leading to lower numbers of asymptomatic mushrooms. Zones where no growth of hyphae or mushrooms were also observed in passaged casing due to green mold disease pressure. The stimulating effect of passaged casing on mushroom development and the dynamic outcomes for disease challenge from two distinct, commercially damaging diseases, demonstrates the potential for passaged casing to be used as material to study more sustainable mushroom production and disease management practices.
Collapse
Affiliation(s)
- Eoin O'Connor
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| | - Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Isako Di Tomassi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Rachel Richardson
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - John A Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA
| |
Collapse
|
4
|
Moallem M, Hamidizade M, Taghavi SM, Aeini M, Abachi H, Haghighi S, Soleimani A, Hockett KL, Bull CT, Osdaghi E. Rarity of Pseudomonas agarici on Edible Mushrooms Associated with Susceptibility to Biological Competition. PLANT DISEASE 2024; 108:2778-2787. [PMID: 38679595 DOI: 10.1094/pdis-02-24-0374-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Taxonomically diverse Pseudomonas species induce bacterial blotch of edible mushrooms around the world. Pseudomonas tolaasii, [P. gingeri], and P. agarici are dominant mycopathogenic pseudomonads in mushroom production farms. In this study, among 216 mycopathogenic bacterial strains isolated from edible mushrooms in Iran, 96 strains were identified as Pseudomonas spp., while only three strains were preliminarily identified as P. agarici. Multilocus sequence analysis showed that only one strain (FH2) authentically belonged to P. agarici, while the other two strains either belonged to [P. gingeri] or represented a unique phylogenetic clade. The three strains also differed from each other in phenotypic characteristics, for example, production of fluorescent pigment and the reaction to tolaasin produced by P. tolaasii. Pathogenicity assays under a controlled environment showed that the symptoms induced by authentic P. agarici were far less severe than those caused by the predominant species P. tolaasii. Furthermore, coinoculation of P. agarici with three bacterial pathogens that are prevalent in Iran on mushroom caps, that is, P. tolaasii, Ewingella americana, and Mycetocola sp., resulted in the development of combined symptoms representing characteristics of both pathogens. The antibiosis assay showed that tolaasin-producing strains of P. tolaasii could inhibit the growth of P. agarici, while tolaasin-negative strains of the same species were unable to do so. This led us to the hypothesis that the inhibitory effect of P. tolaasii on P. agarici is driven by tolaasin production in the former species. This inhibitory effect is also associated with the rarity of P. agarici in natural conditions.
Collapse
Affiliation(s)
- Mahsa Moallem
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Mozhde Hamidizade
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Milad Aeini
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Shahrad Haghighi
- Shiraz University of Applied Sciences and Technology, Sadra, Shiraz, Iran
| | - Ardavan Soleimani
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Kevin L Hockett
- Plant Pathology and Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Carolee T Bull
- Plant Pathology and Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
5
|
Huang Z, Nie Y, Huang Y, Liu L, Liu B. Elucidating the role of monoacetylphlorogulcinol in the pathogenicity of Pseudomonas 'gingeri' against Agaricus bisporus. PEST MANAGEMENT SCIENCE 2024; 80:3526-3539. [PMID: 38446123 DOI: 10.1002/ps.8057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Agaricus bisporus is a globally important edible fungus. The occurrence of ginger blotch caused by Pseudomonas 'gingeri' during A. bisporus growth and post-harvest stages results in significant economic losses. The biotoxin monoacetylphloroglucinol (MAPG) produced by P. 'gingeri' is responsible for inducing ginger blotch on A. bisporus. However, the understanding of the toxic mechanisms of MAPG on A. bisporus remains limited, which hinders the precise control of ginger blotch disease in A. bisporus and the breeding of disease-resistant varieties. RESULTS Integrating transcriptomic, metabolomic, and physiological data revealed that MAPG led to an increase in intracellular superoxide anion (O2 -) levels and lipid peroxidation in A. bisporus. MAPG changed the cellular membrane composition of A. bisporus, causing to damage membrane permeability. MAPG inhibited the expression of genes associated with the 19s subunit of the proteasome, thereby impeding cellular waste degradation in A. bisporus. Unlike melanin, MAPG stimulated the synthesis of flavonoids in A. bisporus, which might explain the manifestation of ginger-colored symptoms rather than browning. Meanwhile, the glutathione metabolism pathway in A. bisporus played a pivotal role in counteracting the cytotoxic effects of MAPG. Additionally, enhanced catalase activity and up-regulation of defense-related genes, including cytochrome P450s, Major Facilitator Superfamily (MFS), and ABC transporters, were observed. CONCLUSION This study provides comprehensive insights into MAPG toxicity in A. bisporus and uncovers the detoxification strategies of A. bisporus against MAPG. The findings offer valuable evidence for precise control and breeding of resistant varieties against ginger blotch in A. bisporus. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zaixing Huang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Yulu Nie
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Yiyun Huang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Lizhen Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, China
| |
Collapse
|
6
|
Baukova A, Bogun A, Sushkova S, Minkina T, Mandzhieva S, Alliluev I, Jatav HS, Kalinitchenko V, Rajput VD, Delegan Y. New Insights into Pseudomonas spp.-Produced Antibiotics: Genetic Regulation of Biosynthesis and Implementation in Biotechnology. Antibiotics (Basel) 2024; 13:597. [PMID: 39061279 PMCID: PMC11273644 DOI: 10.3390/antibiotics13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology. Although the interest in antibiotics of Pseudomonas bacteria has persisted over the past century, many uncertainties still surround the regulation of the biosynthetic pathways of these compounds. Thus, the present review comprehensively studies the genetic organization and regulation of the biosynthesis of these antibiotics and provides a comprehensive summary of the genetic organization of antibiotic biosynthesis pathways in pseudomonas strains, appealing to both molecular biologists and biotechnologists. In addition, attention is also paid to the application of antibiotics in plant protection.
Collapse
Affiliation(s)
- Alexandra Baukova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Ilya Alliluev
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Hanuman Singh Jatav
- Soil Science & Agricultural Chemistry, S.K.N. Agriculture University-Jobner, Jaipur 303329, Rajasthan, India;
| | - Valery Kalinitchenko
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Rostov Region, Russia;
- All-Russian Research Institute for Phytopathology of the Russian Academy of Sciences, Institute St., 5, 143050 Big Vyazyomy, Moscow Region, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| |
Collapse
|
7
|
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024; 13:1554. [PMID: 38790854 PMCID: PMC11120273 DOI: 10.3390/foods13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.
Collapse
Affiliation(s)
- Yuping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Kexin Yi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
8
|
Murgia M, Pani SM, Sanna A, Marras L, Manis C, Banchiero A, Coroneo V. Antimicrobial Activity of Grapefruit Seed Extract on Edible Mushrooms Contaminations: Efficacy in Preventing Pseudomonas spp. in Pleurotus eryngii. Foods 2024; 13:1161. [PMID: 38672835 PMCID: PMC11049546 DOI: 10.3390/foods13081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pleurotus eryngii is an edible mushroom that suffers significant losses due to fungal contamination and bacteriosis. The Pseudomonadaceae family represents one of the most frequent etiologic agents. Grapefruit seed extract (GSE) is a plant extract that contains different bioactive components, such as naringin, and exhibits a strong antibacterial and antioxidant activity. Over the last decade, GSE use as an alternative to chemical treatments in the food sector has been tested. However, to our knowledge, its application on mushroom crops has never been investigated. This study focuses on evaluating GSE efficacy in preventing P. eryngii yellowing. GSE antibiotic activity, inhibitory and bactericidal concentrations, and antibiofilm activity against several microorganisms were tested with the Kirby-Bauer disk diffusion assay, the broth microdilution susceptibility test, and the Crystal violet assay, respectively. In vitro, the extract exhibited antimicrobial and antibiofilm activity against Staphylococcus aureus 6538 and MRSA (wild type), Escherichia coli ATCC 8739, and Pseudomonas spp. (Pseudomonas aeruginosa 9027, P. fluorescens (wild type)). GSE application in vivo, in pre- and post-sprouting stages, effectively prevented bacterial infections and subsequent degradation in the mushroom crops: none of the P. eryngii treated manifested bacteriosis. Our findings support the use of GSE as an eco-friendly and sustainable alternative to chemical treatments for protecting P. eryngii crops from bacterial contamination, consequently ensuring food safety and preventing financial losses due to spoilage. Furthermore, GSE's potential health benefits due to its content in naringin and other bioactive components present new possibilities for its use as a nutraceutical in food fortification and supplementation.
Collapse
Affiliation(s)
- Marcello Murgia
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Sara Maria Pani
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Adriana Sanna
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Luisa Marras
- Analysis Laboratory, ASL Cagliari, Via Piero della Francesca, 1, 09047 Su Planu, CA, Italy
| | - Cristina Manis
- Department of Life and Environmental Sciences, Blocco A, Room 13, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Alessandro Banchiero
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Valentina Coroneo
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| |
Collapse
|
9
|
Hamidizade M, Taghavi SM, Soleimani A, Bouazar M, Abachi H, Portier P, Osdaghi E. Wild mushrooms as potential reservoirs of plant pathogenic bacteria: a case study on Burkholderia gladioli. Microbiol Spectr 2024; 12:e0339523. [PMID: 38380912 PMCID: PMC10986547 DOI: 10.1128/spectrum.03395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - S. Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ardavan Soleimani
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Mohammad Bouazar
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Perrine Portier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Center for International Scientific Studies and Collaborations (CISSC) of Iran, Tehran, Iran
| |
Collapse
|
10
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Song R, Wang X, Jiao L, Jiang H, Yuan S, Zhang L, Shi Z, Fan Z, Meng D. Epsilon-poly-l-lysine alleviates brown blotch disease of postharvest Agaricus bisporus mushrooms by directly inhibiting Pseudomonas tolaasii and inducing mushroom disease resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105759. [PMID: 38458662 DOI: 10.1016/j.pestbp.2023.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 03/10/2024]
Abstract
The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.
Collapse
Affiliation(s)
- Rui Song
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Lu Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zixuan Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhenchuan Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
12
|
Vieira FR, Di Tomassi I, O'Connor E, Bull CT, Pecchia JA, Hockett KL. Manipulating Agaricus bisporus developmental patterns by passaging microbial communities in complex substrates. Microbiol Spectr 2023; 11:e0197823. [PMID: 37831469 PMCID: PMC10714785 DOI: 10.1128/spectrum.01978-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Agaricus bisporus is an economically important edible mushroom and manipulating its developmental patterns is crucial for maximizing yield and quality. One of the potential strategies for achieving such a goal is passaging microbial communities in compost or casing. The current study demonstrated that passaging substrates develop enriched microbial communities, and after a few passages, certain levels of changes in mushroom developmental patterns (the timing of fruiting bodies formation) were observed as well as shifts in the bacterial communities. Overall, a better understanding of the complex interactions between microorganisms present in the cultivation system may help farmers and researchers to develop more efficient and sustainable cultivation practices that can both benefit the environment and human health.
Collapse
Affiliation(s)
- Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - Isako Di Tomassi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - Eoin O'Connor
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - Carolee T. Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - John A. Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Huang Z, Liang X, Wang Y, Mo M, Qiu Y, Liu B. Ginger blotches on Agaricus bisporus due to monoacetylphloroglucinol production by the pathogen Pseudomonas 'gingeri'. PEST MANAGEMENT SCIENCE 2023; 79:5197-5207. [PMID: 37591799 DOI: 10.1002/ps.7725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Agaricus bisporus is the most widely cultivated and consumed mushroom worldwide. Pseudomonas 'gingeri' is the only pathogenic causative agent of ginger blotch in A. bisporus. Current research on mushroom pathogenic biotoxins is limited to P. tolaasii, which causes brown blotch, while understanding of P. 'gingeri' is lacking, therefore identifying the toxins produced by P. 'gingeri' and evaluating their toxicity on A. bisporus is essential for understanding its pathogenic mechanisms. RESULTS A pathogenic bacterium isolated from fruiting bodies of A. bisporus with ginger blotch was identified as P. 'gingeri', and its main toxin identified as 2', 4', 6'-trihydroxyacetophenone monohydrate, also known as monoacetylphloroglucinol (MAPG). Its first known extraction from a mushroom pathogen is reported here. MAPG at 250 μg/mL significantly inhibited the host's mycelial growth, increased branching, caused the structure to become dense and resulted in folds appearing on the surface. An MAPG concentration of 750 μg/mL MAPG led to mycelial death. P. 'gingeri' had high MAPG production in medium containing 0.1 mol/L of either glucose or mannitol (4.30 and 1.85 μg/mL, respectively), and mycelia were inhibited by 69.6% and 41.1%, respectively. The MAPG content was significantly lower in other carbon source media. CONCLUSION This work provides a detailed description of the structure and virulence of the P. 'gingeri' biotoxin, which has implications for understanding its pathogenic mechanism and for exploring precise control strategies for A. bisporus ginger blotch disease, such as the development of MAPG inhibitory factors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zaixing Huang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Xishen Liang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Yifan Wang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Minqi Mo
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Ying Qiu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, China
| |
Collapse
|
14
|
Abstract
A major source of pseudomonad-specialized metabolites is the nonribosomal peptide synthetases (NRPSs) assembling siderophores and lipopeptides. Cyclic lipopeptides (CLPs) of the Mycin and Peptin families are frequently associated with, but not restricted to, phytopathogenic species. We conducted an in silico analysis of the NRPSs encoded by lipopeptide biosynthetic gene clusters in nonpathogenic Pseudomonas genomes, covering 13 chemically diversified families. This global assessment of lipopeptide production capacity revealed it to be confined to the Pseudomonas fluorescens lineage, with most strains synthesizing a single type of CLP. Whereas certain lipopeptide families are specific for a taxonomic subgroup, others are found in distant groups. NRPS activation domain-guided peptide predictions enabled reliable family assignments, including identification of novel members. Focusing on the two most abundant lipopeptide families (Viscosin and Amphisin), a portion of their uncharted diversity was mapped, including characterization of two novel Amphisin family members (nepenthesin and oakridgin). Using NMR fingerprint matching, known Viscosin-family lipopeptides were identified in 15 (type) species spread across different taxonomic groups. A bifurcate genomic organization predominates among Viscosin-family producers and typifies Xantholysin-, Entolysin-, and Poaeamide-family producers but most families feature a single NRPS gene cluster embedded between cognate regulator and transporter genes. The strong correlation observed between NRPS system phylogeny and rpoD-based taxonomic affiliation indicates that much of the structural diversity is linked to speciation, providing few indications of horizontal gene transfer. The grouping of most NRPS systems in four superfamilies based on activation domain homology suggests extensive module dynamics driven by domain deletions, duplications, and exchanges. IMPORTANCE Pseudomonas species are prominent producers of lipopeptides that support proliferation in a multitude of environments and foster varied lifestyles. By genome mining of biosynthetic gene clusters (BGCs) with lipopeptide-specific organization, we mapped the global Pseudomonas lipopeptidome and linked its staggering diversity to taxonomy of the producers, belonging to different groups within the major Pseudomonas fluorescens lineage. Activation domain phylogeny of newly mined lipopeptide synthetases combined with previously characterized enzymes enabled assignment of predicted BGC products to specific lipopeptide families. In addition, novel peptide sequences were detected, showing the value of substrate specificity analysis for prioritization of BGCs for further characterization. NMR fingerprint matching proved an excellent tool to unequivocally identify multiple lipopeptides bioinformatically assigned to the Viscosin family, by far the most abundant one in Pseudomonas and with stereochemistry of all its current members elucidated. In-depth analysis of activation domains provided insight into mechanisms driving lipopeptide structural diversification.
Collapse
|
15
|
Hamidizade M, Taghavi SM, Moallem M, Aeini M, Fazliarab A, Abachi H, Herschlag RA, Hockett KL, Bull CT, Osdaghi E. Ewingella americana: An Emerging Multifaceted Pathogen of Edible Mushrooms. PHYTOPATHOLOGY 2023; 113:150-159. [PMID: 36131391 DOI: 10.1094/phyto-08-22-0299-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mycopathogenic bacteria play a pivotal role in the productivity of edible mushrooms grown under controlled conditions. In this study, we carried out a comprehensive farm survey and sampling (2018 to 2021) on button mushroom (Agaricus bisporus) farms in 15 provinces in Iran to monitor the status of bacterial pathogens infecting the crop. Mycopathogenic bacterial strains were isolated from pins, stems, and caps, as well as the casing layer on 38 mushroom farms. The bacterial strains incited symptoms on mushroom caps ranging from faint discoloration to dark brown and blotch of the inoculated surfaces. Among the bacterial strains inciting disease symptoms on bottom mushroom, 40 were identified as Ewingella americana based on biochemical assays and phylogeny of 16S rRNA and the gyrB gene. E. americana strains differed in their aggressiveness on mushroom caps and stipes, where the corresponding symptoms ranged from deep yellow to dark brown. In the phylogenetic analyses, all E. americana strains isolated in this study were clustered in a monophyletic clade closely related to the nonpathogenic and environmental strains of the species. BOX-PCR-based fingerprinting revealed intraspecific diversity. Using the cutoff level of 73 to 76% similarity, the strains formed six clusters. A chronological pattern was observed, where the strains isolated in 2018 were differentiated from those isolated in 2020 and 2021. Taken together, due to the multifaceted nature of the pathogen, such a widespread occurrence of E. americana on mushroom farms in Iran could be an emerging threat for the mushroom industry in the country.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mahsa Moallem
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Milad Aeini
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amal Fazliarab
- Iranian Sugarcane Research and Training Institute (ISCRTI), Ahvaz, Khuzestan, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Rachel A Herschlag
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Kevin L Hockett
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Carolee T Bull
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
16
|
Vieira FR, Pecchia JA. Bacterial Community Patterns in the Agaricus bisporus Cultivation System, from Compost Raw Materials to Mushroom Caps. MICROBIAL ECOLOGY 2022; 84:20-32. [PMID: 34383127 DOI: 10.1007/s00248-021-01833-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Different from other fungal species that can be largely cultivated in 'axenic conditions' using plant material (e.g., species of Lentinula and Pleurotus in 'sterile' straw-based substrate), the commercial Agaricus bisporus cultivation system relies heavily on ecological relationships with a broad range of microorganisms present in the system (compost and casing). Since the A. bisporus cultivation system consists of a microbial manipulation process, it is important to know the microbial community dynamics during the entire cultivation cycle to design further studies and/or crop management strategies to optimize this system. To capture the bacterial community 'flow' from compost raw materials to the casing to the formation and maturation of mushroom caps, community snapshots were generated by direct DNA recovery (amplicon sequencing). The 'bacterial community flow' revealed that compost, casing and mushrooms represent different niches for bacteria present in the cultivation system, but at the same time, a bacterial exchange between microenvironments can occur for a portion of the community. Within each microenvironment, compost showed intense bacterial populational dynamics, probably due to the environmental changes imposed by composting conditions. In casing, the colonization of A. bisporus appeared, to reshape the native bacterial community which later, with some other members present in compost, becomes the core community in mushroom caps. The current bacterial survey along with previous results provides more cues of specific bacteria groups that can be in association with A. bisporus development and health.
Collapse
Affiliation(s)
- Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - John Andrew Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
17
|
Bacterial Infection Induces Ultrastructural and Transcriptional Changes in the King Oyster Mushroom ( Pleurotus eryngii). Microbiol Spectr 2022; 10:e0144522. [PMID: 35616396 PMCID: PMC9241817 DOI: 10.1128/spectrum.01445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleurotus eryngii (king oyster mushroom) is a commercially important mushroom with high nutritional and economic value. However, soft rot disease, caused by the pathogenic bacterium Erwinia beijingensis, poses a threat to its quality and production. Morphological and ultrastructural observations of P. eryngii were conducted at early, middle, and late stages of infection. At 2 days postinoculation (dpi), small yellow spots on the fruiting body were observed. The infected tissue displayed hyphal deformations and breaks at 5 dpi. At 9 dpi, damage to cell wall integrity and absence of intact cellular organelles were observed and the diseased fruiting bodies were unable to grow normally. Transcriptome analysis identified 4,296 differentially expressed genes in the fruiting body following infection. In fact, broad transcriptional reprogramming was observed in infected fruiting bodies compared to controls. The affected pathways included antioxidant systems, peroxisome biogenesis, autophagy, and oxidation-reduction. More specifically, pex genes were downregulated during infection, indicating impaired peroxisome homeostasis and redox balance. Additionally, genes encoding chitinase, β-1,3-glucanase, and proteases associated with cell wall degradation were upregulated in infected P. eryngii. This study provides insights into the responses of P. eryngii during soft rot disease and facilitates the understanding of the pathogenic process of bacteriosis in mushrooms. IMPORTANCEPleurotus eryngii (king oyster mushroom) is a popular and economically valuable edible mushroom; however, it suffers from various bacterial diseases, including soft rot disease caused by the bacterium Erwinia beijingensis. Here, we examined bacterial infection of the mushroom through morphological and ultrastructural observations as well as transcriptome analysis. Pathogen attack damaged the cell structure of P. eryngii, including the cell wall, and also induced high levels of reactive oxygen species. These results were reflected in differential gene expression in P. eryngii as a response to the pathogenic bacteria, including genes involved in antioxidant systems, peroxisome biogenesis, autophagy, oxidation-reduction, ribosome biogenesis, and cell-wall degradation, among others. This study provides insights into the structural and molecular responses of P. eryngii during soft rot disease, improving our understanding and the potential control of the pathogenic process of bacteriosis in mushrooms.
Collapse
|
18
|
Hamidizade M, Taghavi SM, Mafakheri H, Herschlag RA, Martins SJ, Hockett KL, Bull CT, Osdaghi E. First Report of Brown Spot on White Button Mushroom ( Agaricus bisporus) Caused by Cedecea neteri in Iran. PLANT DISEASE 2022; 106:1291. [PMID: 34597152 DOI: 10.1094/pdis-06-21-1305-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Hamzeh Mafakheri
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Rachel A Herschlag
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Samuel J Martins
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Kevin L Hockett
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Carolee T Bull
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
19
|
Liu Z, Zhao Y, Sossah FL, Okorley BA, Amoako DG, Liu P, Sheng H, Li D, Li Y. Characterization, Pathogenicity, Phylogeny, and Comparative Genomic Analysis of Pseudomonas tolaasii Strains Isolated from Various Mushrooms in China. PHYTOPATHOLOGY 2022; 112:521-534. [PMID: 34293910 DOI: 10.1094/phyto-12-20-0550-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since 2016, devastating bacterial blotch affecting the fruiting bodies of Agaricus bisporus, Cordyceps militaris, Flammulina filiformis, and Pleurotus ostreatus in China has caused severe economic losses. We isolated 102 bacterial strains and characterized them polyphasically. We identified the causal agent as Pseudomonas tolaasii and confirmed the pathogenicity of the strains. A host range test further confirmed the pathogen's ability to infect multiple hosts. This is the first report in China of bacterial blotch in C. militaris caused by P. tolaasii. Whole-genome sequences were generated for three strains: Pt11 (6.48 Mb), Pt51 (6.63 Mb), and Pt53 (6.80 Mb), and pangenome analysis was performed with 13 other publicly accessible P. tolaasii genomes to determine their genetic diversity, virulence, antibiotic resistance, and mobile genetic elements. The pangenome of P. tolaasii is open, and many more gene families are likely to emerge with further genome sequencing. Multilocus sequence analysis using the sequences of four common housekeeping genes (glns, gyrB, rpoB, and rpoD) showed high genetic variability among the P. tolaasii strains, with 115 strains clustered into a monophyletic group. The P. tolaasii strains possess various genes for secretion systems, virulence factors, carbohydrate-active enzymes, toxins, secondary metabolites, and antimicrobial resistance genes that are associated with pathogenesis and adapted to different environments. The myriad of insertion sequences, integrons, prophages, and genome islands encoded in the strains may contribute to genome plasticity, virulence, and antibiotic resistance. These findings advance understanding of the determinants of virulence, which can be targeted for the effective control of bacterial blotch disease.
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yitong Zhao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Frederick L Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Benjamin A Okorley
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Crop Science Department, University of Ghana, Legon, Accra, Ghana
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Peibin Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Sheng
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
20
|
Braat N, Koster MC, Wösten HA. Beneficial interactions between bacteria and edible mushrooms. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Taparia T, Hendrix E, Hendriks M, Krijger M, de Boer W, van der Wolf J. Comparative Studies on the Disease Prevalence and Population Dynamics of Ginger Blotch and Brown Blotch Pathogens of Button Mushrooms. PLANT DISEASE 2021; 105:542-547. [PMID: 33021904 DOI: 10.1094/pdis-06-20-1260-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial blotch is one of the most economically important diseases of button 'mushroom. Knowledge of mechanisms of disease expression, inoculum thresholds, and disease management is limited to the most well-known pathogen, Pseudomonas tolaasii. Recent outbreaks in Europe have been attributed to 'P. gingeri' and P. salomonii for ginger and brown blotch, respectively. Information about their identity, infection dynamics, and pathogenicity is largely lacking. The disease pressure in an experimental mushroom cultivation facility was evaluated for 'P. gingeri' and P. salomonii over varying inoculation densities, casing soil types, environmental humidity, and cultivation cycles. The pathogen population structures in the casing soils were simultaneously tracked across the cropping cycle using highly specific and sensitive TaqMan-quantitative PCR assays. 'P. gingeri' caused disease outbreaks at lower inoculum thresholds (104 CFU/g) in the soil than P. salomonii (105 CFU/g). Ginger blotch generically declined in later harvest cycles, although brown blotch did not. Casing soils were differentially suppressive to blotch diseases, based on their composition and supplementation. Endemic pathogen populations increased across the cultivation cycle although the inoculated pathogen populations were consistent between the first and second flush. In conclusion, 'P. gingeri' and P. salomonii have unique infection and population dynamics that vary over soil types. Their endemic populations are also differently abundant in peat-based casing soils. This knowledge is essential for interpreting diagnostic results from screening mushroom farms and designing localized disease control strategies.
Collapse
Affiliation(s)
- Tanvi Taparia
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen 6708PB, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen 6708PB, The Netherlands
| | - Ed Hendrix
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Marc Hendriks
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Marjon Krijger
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Wietse de Boer
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen 6708PB, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen 6708PB, The Netherlands
| | - Jan van der Wolf
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| |
Collapse
|
22
|
Storey N, Rabiey M, Neuman BW, Jackson RW, Mulley G. Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages. Viruses 2020; 12:E1286. [PMID: 33182769 PMCID: PMC7696170 DOI: 10.3390/v12111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023] Open
Abstract
Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonastolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonasagarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance. Three novel bacteriophages, NV1, ϕNV3, and NV6, were isolated from environmental samples. Bacteriophage NV1 and ϕNV3 had a narrow host range for specific mushroom pathogens, whereas phage NV6 was able to infect both mushroom pathogens. ϕNV3 and NV6 genomes were almost identical and differentiated within their T7-like tail fiber protein, indicating this is likely the major host specificity determinant. Our findings provide the foundations for future comparative analyses to study mushroom disease and phage resistance.
Collapse
Affiliation(s)
- Nathaniel Storey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| | - Mojgan Rabiey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin W. Neuman
- Biology Department, College of Arts, Sciences and Education, TAMUT, Texarkana, TX 75503, USA;
| | - Robert W. Jackson
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Geraldine Mulley
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| |
Collapse
|
23
|
Taparia T, Krijger M, Haynes E, Elphinstone JG, Noble R, van der Wolf J. Molecular characterization of Pseudomonas from Agaricus bisporus caps reveal novel blotch pathogens in Western Europe. BMC Genomics 2020; 21:505. [PMID: 32698767 PMCID: PMC7374911 DOI: 10.1186/s12864-020-06905-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/04/2022] Open
Abstract
Background Bacterial blotch is a group of economically important diseases affecting the cultivation of common button mushroom, Agaricus bisporus. Despite being studied for more than a century, the identity and nomenclature of blotch-causing Pseudomonas species is still unclear. This study aims to molecularly characterize the phylogenetic and phenotypic diversity of blotch pathogens in Western Europe. Methods In this study, blotched mushrooms were sampled from farms across the Netherlands, United Kingdom and Belgium. Bacteria were isolated from symptomatic cap tissue and tested in pathogenicity assays on fresh caps and in pots. Whole genome sequences of pathogenic and non-pathogenic isolates were used to establish phylogeny via multi-locus sequence alignment (MLSA), average nucleotide identity (ANI) and in-silico DNA:DNA hybridization (DDH) analyses. Results The known pathogens “Pseudomonas gingeri”, P. tolaasii, “P. reactans” and P. costantinii were recovered from blotched mushroom caps. Seven novel pathogens were also identified, namely, P. yamanorum, P. edaphica, P. salomonii and strains that clustered with Pseudomonas sp. NC02 in one genomic species, and three non-pseudomonads, i.e. Serratia liquefaciens, S. proteamaculans and a Pantoea sp. Insights on the pathogenicity and symptom severity of these blotch pathogens were also generated. Conclusion A detailed overview of genetic and regional diversity and the virulence of blotch pathogens in Western Europe, was obtained via the phylogenetic and phenotypic analyses. This information has implications in the study of symptomatic disease expression, development of diagnostic tools and design of localized strategies for disease management.
Collapse
Affiliation(s)
- Tanvi Taparia
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.
| | - Marjon Krijger
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands
| | - Edward Haynes
- Department of Plant Protection, Fera Science Limited, York, UK
| | | | - Ralph Noble
- Pershore College, Warwickshire College Group, Worcestershire, UK
| | - Jan van der Wolf
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands.
| |
Collapse
|
24
|
Taparia T, Krijger M, Hodgetts J, Hendriks M, Elphinstone JG, van der Wolf J. Six Multiplex TaqMan TM-qPCR Assays for Quantitative Diagnostics of Pseudomonas Species Causative of Bacterial Blotch Diseases of Mushrooms. Front Microbiol 2020; 11:989. [PMID: 32523566 PMCID: PMC7261844 DOI: 10.3389/fmicb.2020.00989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 11/29/2022] Open
Abstract
Bacterial blotch is a group of economically important diseases of the common button mushroom (Agaricus bisporus). Once the pathogens are introduced to a farm, mesophilic growing conditions (that are optimum for mushroom production) result in severe and widespread secondary infections. Efficient, timely and quantitative detection of the pathogens is hence critical for the design of localized control strategies and prediction of disease risk. This study describes the development of real-time TaqManTM assays that allow molecular diagnosis of three currently prevalent bacterial blotch pathogens: "Pseudomonas gingeri," Pseudomonas tolaasii and (as yet uncharacterized) Pseudomonas strains (belonging to Pseudomonas salomonii and Pseudomonas edaphica). For each pathogen, assays targeting specific DNA markers on two different loci, were developed for primary detection and secondary verification. All six developed assays showed high diagnostic specificity and sensitivity when tested against a panel of 63 Pseudomonas strains and 40 other plant pathogenic bacteria. The assays demonstrated good analytical performance indicated by linearity across calibration curve (>0.95), amplification efficiency (>90%) and magnitude of amplification signal (>2.1). The limits of detection were optimized for efficient quantification in bacterial cultures, symptomatic tissue, infected casing soil and water samples from mushroom farms. Each target assay was multiplexed with two additional assays. Xanthomonas campestris was detected as an extraction control, to account for loss of DNA during sample processing. And the total Pseudomonas population was detected, to quantify the proportion of pathogenic to beneficial Pseudomonas in the soil. This ratio is speculated to be an indicator for blotch outbreaks. The multiplexed assays were successfully validated and applied by routine testing of diseased mushrooms, peat sources, casing soils, and water from commercial production units.
Collapse
Affiliation(s)
- Tanvi Taparia
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - Marjon Krijger
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands
| | - Jennifer Hodgetts
- Department of Plant Protection, Fera Science Limited, York, United Kingdom
| | - Marc Hendriks
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands
| | | | - Jan van der Wolf
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Hamidizade M, Taghavi SM, Martins SJ, Herschlag RA, Hockett KL, Bull CT, Osdaghi E. Bacterial Brown Pit, a New Disease of Edible Mushrooms Caused by Mycetocola sp. PLANT DISEASE 2020; 104:1445-1454. [PMID: 32181723 DOI: 10.1094/pdis-10-19-2176-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From September to December 2018, commercial button mushroom (Agaricus bisporus) farms in central Iran were surveyed to monitor the causal agent(s) of browning and blotch symptoms on mushroom caps. In addition to dozens of pseudomonads (i.e., Pseudomonas tolaasii and Pseudomonas reactans), six slow-growing gram-positive bacterial strains were isolated from blotched mushroom caps. These bacteria presented as creamy white, circular, smooth, nonfluorescent, and shiny colonies with whole margins resembling members of Microbacteriaceae (Actinobacteria). All of the actinobacterial strains were aggressively pathogenic on cut cap surface of two edible mushrooms (i.e., A. bisporus and Pleurotus eryngii), inducing brown pit symptoms 48 h postinoculation. The strains did not induce symptoms on the vegetables tested (i.e., carrot, cucumber, and potato), and they did not affect the growth of mycelium of tested plant-pathogenic fungi (i.e., Acremonium sp., Fusarium spp., and Phytopythium sp.). Phylogeny of 16S ribosomal RNA and multilocus sequence analysis of six housekeeping genes (i.e., atpD, dnaK, gyrB, ppK, recA, and rpoB) revealed that the bacterial strains belong to the actinobacterial genus Mycetocola spp., whereas the species status of the strains remains undetermined. Mushroom-associated Mycetocola species were previously reported to be capable of detoxifying tolaasin, a toxin produced by P. tolaasii, whereas the strains isolated in this study did not show tolaasin detoxification activities. Altogether, this is the first report of a mushroom disease caused by an actinobacterial species, and "bacterial brown pit" was assigned as the common name of the disease.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Samuel J Martins
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rachel A Herschlag
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Kevin L Hockett
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Carolee T Bull
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| |
Collapse
|
26
|
Draft Genome Sequence of Pseudomonas aeruginosa Strain LMG 1272, an Atypical White Line Reaction Producer. Microbiol Resour Announc 2020; 9:9/7/e01363-19. [PMID: 32054708 PMCID: PMC7019063 DOI: 10.1128/mra.01363-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of Pseudomonas aeruginosa LMG 1272, isolated from mushroom, is reported here. This strain triggers formation of a precipitate (“white line”) when cocultured with Pseudomonas tolaasii. However, LMG 1272 lacks the capacity to produce a cyclic lipopeptide that is typically associated with white line formation, suggesting the involvement of a different diffusible factor. The draft genome sequence of Pseudomonas aeruginosa LMG 1272, isolated from mushroom, is reported here. This strain triggers formation of a precipitate (“white line”) when cocultured with Pseudomonas tolaasii. However, LMG 1272 lacks the capacity to produce a cyclic lipopeptide that is typically associated with white line formation, suggesting the involvement of a different diffusible factor.
Collapse
|
27
|
Tomita S, Hirayasu A, Kajikawa A, Igimi S, Shinohara H, Yokota K. Adsorption of Tolaasins, the Toxins Behind Mushroom Bacterial Blotch, by Microbacterium spp. is Insufficient for Its Detoxification. Curr Microbiol 2020; 77:910-917. [PMID: 31965226 DOI: 10.1007/s00284-020-01884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 02/03/2023]
Abstract
Tolaasins are lipodepsipeptides secreted by Pseudomonas tolaasii, the causal agent of bacterial blotch on several kinds of cultivated mushrooms. Our previous study reported on tolaasin detoxification by Microbacterium sp. K3-5 as a potential biocontrol of the disease. In this study, the tolaasin-detoxifying activities of various type strains of Microbacterium spp. were evaluated through chemical and biological assays. The bacterial cells of all tested strains of Microbacterium spp. showed tolaasin I-elimination from liquid phase. However, the toxin activities of tolaasins were still retained on the tolaasin-treated bacterial cells of all Microbacterium strains except M. foliorum NBRC 103072T. Furthermore, intact tolaasin I was recovered from the tolaasin-treated bacterial cells of all tested strains except M. foliorum NBRC 103072T. Our data reveal that Microbacterium spp. can be characterized as effective tolaasin I-eliminating bacteria through cell adsorption, but that this adsorption alone is insufficient for actual tolaasin detoxification. The biological degradation process must be needed to carry out the detoxification.
Collapse
Affiliation(s)
- Shun Tomita
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Anna Hirayasu
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Akinobu Kajikawa
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Shizunobu Igimi
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hirosuke Shinohara
- Department of Agriculture, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan
| | - Kenji Yokota
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|