1
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Xu C, Guo M, Han X, Ren C, Liu C, Fu W, Qi J, Ge Z, Ma Z, Chen Y. Fungal Pathogen Diversity and Fungicide Resistance Assessment in Fusarium Crown Rot of Wheat in the Huanghuai Region of China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2299-2311. [PMID: 39815893 DOI: 10.1021/acs.jafc.4c09274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Fusarium crown rot (FCR) poses a major threat to wheat production in the Huanghuai wheat region of China. This study aims to enhance understanding of pathogen populations causing FCR, focusing on their pathogenicity, trichothecene genotypes, and fungicide resistance. During the 2022-2023 growing seasons, we collected 1820 fungal isolates from 233 locations in this region. Our results identified Fusarium pseudograminearum, Fusarium graminearum, and Fusarium asiaticum as the primary pathogens, with F. pseudograminearum exhibiting the highest virulence. Three trichothecene genotypes were identified, including nivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol. No correlation was observed between trichothecene genotype and virulence, except in F. asiaticum. Antifungal assays demonstrated that all six tested fungicides effectively inhibited F. pseudograminearum, with fludioxonil being particularly effective. Field surveys identified isolates resistant to difenoconazole and pyraclostrobin. Laboratory analysis also revealed strains with FpSdhC1A83 V and FpSdhC1S80N mutations conferring resistance to cyclobutrifluram. These findings offer critical insights for developing effective control strategies to manage FCR.
Collapse
Affiliation(s)
- Chenghui Xu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Meiling Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chunjiang Ren
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chao Liu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weitao Fu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Junshan Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Su Y, Xu X, Wang Y, Wang T, Yu J, Yang J, Li J, Gao Y, Wang Y, Sang W, Li C, Wang X, Zheng Z, Xie C, Ma J, Ma J. Identification of genetic loci and candidate genes underlying Fusarium crown rot resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:23. [PMID: 39779539 DOI: 10.1007/s00122-025-04818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE A major locus Qfcr.cau-1B conferring resistance to Fusarium crown rot was identified and validated. The putative gene underlying this locus was pinpointed via virus-induced gene silencing. Fusarium crown rot (FCR), caused by various Fusarium pathogens such as Fusarium pseudograminearum and F. culmorum, is a severe soil-borne disease which significantly affected wheat (Triticum aestivum) production in many arid and semi-arid cropping regions of the world. In this study, a total of 5 QTLs associated with FCR resistance were detected on chromosomes 1B, 2B, 3A, 5A, and 7D using a population of 120 F8 recombinant inbred lines (RIL) derived from a cross between two Chinese germplasm 20828 and SY95-71. A major locus Qfcr.cau-1B, which accounted for up to 28.33% of the phenotypic variation with a LOD value of 10.99, was consistently detected across all three trials conducted. The effect of Qfcr.cau-1B on FCR resistance was further validated using a F5 RIL population between 20828 and BLS2. Integrated transcriptome and sequence variation analysis showed that three genes including TraesCS1B02G017700, TraesCS1B02G016400, and TraesCS1B02G022300 were potential candidate genes for Qfcr.cau-1B. Of these three genes, the virus-induced silencing of TraesCS1B02G022300 significantly promoted FCR severity, indicating its positive role in FCR resistance. Taken together, results from this study expand our understanding on genetic basis of FCR resistance in wheat and will be indicative for cloning genes conferring FCR resistance.
Collapse
Affiliation(s)
- Yuqing Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunqiao Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Tongzhu Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazheng Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiatian Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yixin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Sang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyi Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Chaudhary S, Ricardo RMN, Dubey M, Jensen DF, Grenville-Briggs L, Karlsson M. Genotypic variation in winter wheat for fusarium foot rot and its biocontrol using Clonostachys rosea. G3 (BETHESDA, MD.) 2024; 14:jkae240. [PMID: 39373570 PMCID: PMC11631536 DOI: 10.1093/g3journal/jkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Biological control to manage plant diseases is an environmentally friendly alternative to using chemical pesticides. However, little is known about the role of genetic variation in plants affecting the efficacy of biological control agents (BCAs). The aim of this study was to explore the genetic variation in winter wheat for disease susceptibility to fusarium foot rot caused by Fusarium graminearum and variation in biocontrol efficacy of the fungal BCA Clonostachys rosea to control the disease. In total, 190 winter wheat genotypes were evaluated under controlled conditions in two treatments, i.e. (i) F. graminearum (Fg) and (ii) F. graminearum infection on C. rosea treated seeds (FgCr). Alongside disease severity, plant growth-related traits such as shoot length and root length were also measured. Comparison of genotypes between the two treatments enabled the dissection of genotypic variation for disease resistance and C. rosea efficacy. The study revealed significant variation among plant genotypes for fusarium foot rot susceptibility and other growth traits in treatment Fg. Moreover, significant variation in C. rosea efficacy was also observed in genotype contrasts between the two treatments for all traits. Using a 20K marker array, a genome-wide association study was also performed. We identified a total of 18 significant marker-trait associations for disease resistance and C. rosea efficacy for all the traits. Moreover, the markers associated with disease resistance and C. rosea efficacy were not co-localized, highlighting the independent inheritance of these traits, which can facilitate simultaneous selection for cultivar improvement.
Collapse
Affiliation(s)
- Sidhant Chaudhary
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | | | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Laura Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma SE-23422, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
5
|
Yi Y, Luan P, Fan M, Wu X, Sun Z, Shang Z, Yang Y, Li C. Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides. Int J Food Microbiol 2024; 422:110821. [PMID: 38970998 DOI: 10.1016/j.ijfoodmicro.2024.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Fusarium graminearum is a destructive fungal pathogen that seriously threatens wheat production and quality. In the management of fungal infections, biological control is an environmentally friendly and sustainable approach. Here, the antagonistic strain ZK-9 with a broad antifungal activity was identified as Bacillus amyloliquefaciens. ZK-9 could produce extracellular enzymes such as pectinase, protease, cellulase, and amylase, as well as plant growth-promoting substances including IAA and siderophore. Lipopeptides extracted from strain ZK-9 had the high inhibitory effects on the mycelia of F. graminearum with the minimum inhibitory concentration (MIC) of 0.8 mg/mL. Investigation on the action mechanism of lipopeptides showed they could change the morphology of mycelia, damage the cell membrane, lower the content of ergosterol and increase the relative conductivity of membrane, cause nucleic acid and proteins leaking out from the cells, and disrupt the cell membrane permeability. Furthermore, metabolomic analysis of F. graminearum revealed the significant differences in the expression of 100 metabolites between the lipopeptides treatment group and the control group, which were associated with various metabolic pathways, mainly including amino acid biosynthesis, pentose, glucuronate and glycerophospholipid metabolism. In addition, strain ZK-9 inhibited Fusarium crown rot (FCR) with a biocontrol efficacy of 82.14 % and increased the plant height and root length by 24.23 % and 93.25 %, respectively. Moreover, the field control efficacy of strain ZK-9 on Fusarium head blight (FHB) was 71.76 %, and the DON content in wheat grains was significantly reduced by 69.9 %. This study puts valuable insights into the antifungal mechanism of lipopeptides against F. graminearum, and provides a promising biocontrol agent for controlling F. graminearum.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China.
| | - Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Minghao Fan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Xingquan Wu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zijun Shang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yuzhen Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Wang C, Sun M, Zhang P, Ren X, Zhao S, Li M, Ren Z, Yuan M, Ma L, Liu Z, Wang K, Chen F, Li Z, Wang X. Genome-Wide Association Studies on Chinese Wheat Cultivars Reveal a Novel Fusarium Crown Rot Resistance Quantitative Trait Locus on Chromosome 3BL. PLANTS (BASEL, SWITZERLAND) 2024; 13:856. [PMID: 38592894 PMCID: PMC10974656 DOI: 10.3390/plants13060856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, has emerged as a new threat to wheat production and quality in North China. Genetic enhancement of wheat resistance to FCR remains the most effective approach for disease control. In this study, we phenotyped 435 Chinese wheat cultivars through FCR inoculation at the seedling stage in a greenhouse. Our findings revealed that only approximately 10.8% of the wheat germplasms displayed moderate or high resistance to FCR. A genome-wide association study (GWAS) using high-density 660K SNP led to the discovery of a novel quantitative trait locus on the long arm of chromosome 3B, designated as Qfcr.hebau-3BL. A total of 12 significantly associated SNPs were closely clustered within a 1.05 Mb physical interval. SNP-based molecular markers were developed to facilitate the practical application of Qfcr.hebau-3BL. Among the five candidate FCR resistance genes within the Qfcr.hebau-3BL, we focused on TraesCS3B02G307700, which encodes a protein kinase, due to its expression pattern. Functional validation revealed two transcripts, TaSTK1.1 and TaSTK1.2, with opposing roles in plant resistance to fungal disease. These findings provide insights into the genetic basis of FCR resistance in wheat and offer valuable resources for breeding resistant varieties.
Collapse
Affiliation(s)
- Chuyuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Peipei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Zhuang Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Meng Yuan
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Linfei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Zihan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Kaixuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Feng Chen
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Henan Agricultural University, Zhengzhou 450002, China
| | - Zaifeng Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (C.W.); (M.S.); (P.Z.); (X.R.); (S.Z.); (M.L.); (Z.R.); (M.Y.); (L.M.); (Z.L.); (K.W.)
| |
Collapse
|
7
|
Xu X, Su Y, Yang J, Li J, Gao Y, Li C, Wang X, Gou L, Zheng Z, Xie C, Ma J, Ma J. A novel QTL conferring Fusarium crown rot resistance on chromosome 2A in a wheat EMS mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:49. [PMID: 38349579 DOI: 10.1007/s00122-024-04557-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
KEY MESSAGE A novel QTL on chromosome 2A for Fusarium crown rot resistance was identified and validated in wheat. Fusarium crown rot (FCR) is a fungal disease that causes significant yield losses in many cereal growing regions in the world. In this study, genetic analysis was conducted for a wheat EMS mutant C549 which showed stable resistance to FCR at seedling stage. A total of 10 QTL were detected on chromosomes 1A, 2A, 3B, 4A, 6B, and 7B using a population of 138 F7 recombinant inbred lines (RILs) derived from a cross between C549 and a Chinese germplasm 3642. A novel locus Qfcr.cau-2A, which accounted for up to 24.42% of the phenotypic variation with a LOD value of 12.78, was consistently detected across all six trials conducted. Furthermore, possible effects of heading date (HD) and plant height on FCR severity were also investigated in the mapping population. While plant height had no effects on FCR resistance, a weak and negative association between FCR resistance and HD was observed. A QTL for HD (Qhd.cau-2A.2) was coincident with Qfcr.cau-2A. Conditional QTL mapping indicated that although Qfcr.cau-2A and Qhd.cau-2A.2 had significant interactions, Qfcr.cau-2A remained significant after the effects of HD was removed. It is unlikely that genes underlying these two loci are same. Nevertheless, the stable expression of Qfcr.cau-2A in the validation population of 148 F7 RILs developed between C549 and its wild parent Chuannong 16 demonstrated the potential value of this locus in FCR resistance breeding programs.
Collapse
Affiliation(s)
- Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuqing Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiatian Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyi Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Lulu Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Li J, Zhai S, Xu X, Su Y, Yu J, Gao Y, Yang J, Zheng Z, Li B, Sun Q, Xie C, Ma J. Dissecting the genetic basis of Fusarium crown rot resistance in wheat by genome wide association study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:43. [PMID: 38321245 DOI: 10.1007/s00122-024-04553-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
KEY MESSAGE A locus conferring Fusarium crown rot resistance was identified on chromosome arm 3DL through genome wide association study and further validated in two recombinant inbred lines populations. Fusarium crown rot (FCR) is a severe soil borne disease in many wheat growing regions of the world. In this study, we attempted to detect loci conferring FCR resistance through a new seedling inoculation assay. A total of 223 wheat accessions from different geography origins were used to assemble an association panel for GWAS analysis. Four genotypes including Heng 4332, Luwanmai, Pingan 998 and Yannong 24 showed stable resistance to FCR. A total of 54 SNPs associated with FCR resistance were identified. Among the 10 putative QTLs represented by these SNPs, seven QTLs on chromosome 2B, 3A, 3D, 4A, 7A and 7B were novel and were consistently detected in at least two of the three trials conducted. Qfcr.cau.3D-3, which was targeted by 38 SNPs clustered within a genomic region of approximately 5.57 Mb (609.12-614.69 Mb) on chromosome arm 3DL, was consistently detected in all the three trials. The effects of Qfcr.cau.3D-3 were further validated in two recombinant inbred line populations. The presence of this locus reduced FCR severity up to 21.55%. Interestingly, the collinear positions of sequences containing the four SNPs associated with two FCR loci (Qfcr.cau.3A and Qfcr.cau.3B) were within the regions of Qfcr.cau.3D-3, suggesting that genes underlying these three loci may be homologous. Our results provide useful information for improving FCR resistance in wheat.
Collapse
Affiliation(s)
- Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shanshan Zhai
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuqing Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiazheng Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiatian Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Baoyun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Li Q, Hao X, Guo Z, Qu K, Gao M, Song G, Yin Z, Yuan Y, Dong C, Niu J, Yin G. Screening and Resistance Locus Identification of the Mutant fcrZ22 Resistant to Crown Rot Caused by Fusarium pseudograminearum. PLANT DISEASE 2024; 108:426-433. [PMID: 37578361 DOI: 10.1094/pdis-06-23-1195-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Crown rot caused by Fusarium pseudograminearum is a devastating wheat disease worldwide. In addition to yield losses, the fungi causing Fusarium crown rot (FCR) also deteriorate the quality and safety of food because of the production of mycotoxins. Planting resistant cultivars is an effective way to control FCR. However, most wheat cultivars are susceptible to FCR. Therefore, development of new sources and detection of loci for FCR resistance are necessary. In the present study, a resistant mutant, fcrZ22, was identified from an ethyl methane sulfonate (EMS)-mutagenized population of the cultivar Zhoumai 22, and then fcrZ22 was crossed with the wild type to produce an F2 population. Genetic analysis of the F2 population was carried out by the mixed inheritance model of major genes plus polygenes, and 20 resistant and 20 susceptible plants were selected to assemble mixed pools. Combining 660K SNP arrays, the resistance loci were detected by bulked segregant analysis. The resistance to FCR caused by F. pseudograminearum in the F2 population was in accordance with the "mixed model with two major genes of additive-epistasis effect + additive-dominant polygenes," and the heritability of the major gene was 0.92. Twenty-one loci were detected, which were located on 10 chromosomes, namely, 1B (1), 1D (1), 2A (3), 1B (1), 3A (3), 3B (3), 4A (2), 5A (2), 7A (3), and 7B (2). Among the 21 loci, eight were new loci for FCR resistance. This is the first report of detecting loci for FCR resistance from a mutant. The results of the present study provided excellent germplasm resources for breeding wheat cultivars with FCR resistance and laid the foundation for fine mapping of FCR resistance loci.
Collapse
Affiliation(s)
- Qiaoyun Li
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Xiaopeng Hao
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Zhenfeng Guo
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Kefei Qu
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Mingshuang Gao
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Gaili Song
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Zhao Yin
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Yuhao Yuan
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Chunhao Dong
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Jishan Niu
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Guihong Yin
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, P.R. China
| |
Collapse
|
10
|
Jin Y, Chen S, Xu X, Jiang C, He Z, Shen H, Ji W, Yang P. Host Specificity of Soilborne Pathogens in Hordeum Species and Their Relatives. PLANT DISEASE 2023; 107:1044-1053. [PMID: 36089682 DOI: 10.1094/pdis-04-22-0760-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soilborne pathogens destabilize the yields of Triticeae crops, including barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). Although genetic resistance derived from relatives of these species has been utilized to prevent rust diseases (i.e., in the wheat-rye 1BL-1RS translocation line), research on resistance against soilborne pathogens remains limited. Here, we performed field trials using 76 genotypes representing 28 Hordeum, six Triticum, and two Aegilops species to examine resistance against three soilborne bymoviruses: barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV), and wheat yellow mosaic virus (WYMV). We also performed greenhouse tests using the soilborne fungal pathogen Fusarium pseudograminearum, which causes Fusarium crown rot (FCR). Using RT-PCR, we detected BaMMV and BaYMV in several Hordeum species, whereas WYMV induced systemic infection in the Triticum and Aegilops species. The identification of FCR susceptibility in all species examined suggests that F. pseudograminearum is a facultative fungal pathogen in Triticeae. Intraspecies variation in FCR disease severity was observed for several species, pointing to the possibility of exploring host resistance mechanisms. Therefore, by unlocking the host specificity of four soilborne pathogens in Hordeum species and their relatives, we obtained insights for the further exploration of wild sources of soilborne pathogen resistance for future wheat and barley improvement programs.
Collapse
Affiliation(s)
- Yanlong Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shiqiang Chen
- Lixiahe Institute of Agriculture Sciences in Jiangsu Province, Yangzhou 225007, China
| | - Xiao Xu
- Institute of Agricultural Sciences of Coastal Area Jiangsu, Yancheng 224002, China
| | - Congcong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhentian He
- Lixiahe Institute of Agriculture Sciences in Jiangsu Province, Yangzhou 225007, China
| | - Huiquan Shen
- Institute of Agricultural Sciences of Coastal Area Jiangsu, Yancheng 224002, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem 2022; 66:571-580. [PMID: 35912968 PMCID: PMC9528086 DOI: 10.1042/ebc20210096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Adult-plant resistance (APR) is a type of genetic resistance in cereals that is effective during the later growth stages and can protect plants from a range of disease-causing pathogens. Our understanding of the functions of APR-associated genes stems from the well-studied wheat-rust pathosystem. Genes conferring APR can offer pathogen-specific resistance or multi-pathogen resistance, whereby resistance is activated following a molecular recognition event. The breeding community prefers APR to other types of resistance because it offers broad-spectrum protection that has proven to be more durable. In practice, however, deployment of new cultivars incorporating APR is challenging because there is a lack of well-characterised APRs in elite germplasm and multiple loci must be combined to achieve high levels of resistance. Genebanks provide an excellent source of genetic diversity that can be used to diversify resistance factors, but introgression of novel alleles into elite germplasm is a lengthy and challenging process. To overcome this bottleneck, new tools in breeding for resistance must be integrated to fast-track the discovery, introgression and pyramiding of APR genes. This review highlights recent advances in understanding the functions of APR genes in the well-studied wheat-rust pathosystem, the opportunities to adopt APR genes in other crops and the technology that can speed up the utilisation of new sources of APR in genebank accessions.
Collapse
|
12
|
Source Identification and Genome-Wide Association Analysis of Crown Rot Resistance in Wheat. PLANTS 2022; 11:plants11151912. [PMID: 35893616 PMCID: PMC9329777 DOI: 10.3390/plants11151912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Crown rot (CR) is a soil-borne disease of wheat in arid and semiarid areas of the world. The incidence rate and severity of CR are increasing with each passing year, which seriously threatens the safety of world wheat production. Here, 522 wheat varieties/lines representing genetic diversity were used to identify and evaluate the resistance source to CR disease. Six varieties, including Zimai 12, Xinong 509, Mazhamai, Sifangmai, and Dawson, were classified as resistant ® to CR. Seventy-nine varieties were classified as moderately resistant (MR) to CR, accounting for 15.13% of the tested varieties. The wheat 660 K SNP array was used to identify resistance loci by genome-wide association analysis (GWAS). A total of 33 SNPs, located on chromosomes 1A, 1B, 1D, 4A, and 4D, were significantly correlated with seedling resistance to CR in two years. Among them, one SNP on chromosome 1A and nine SNPs on chromosome 1B showed most significant resistance to disease, phenotypic variance explained (PVE) by these SNPs were more than 8.45%. Except that significant locus AX-110436287 and AX109621209 on chromosome 1B and AX-94692276 on 1D are close to the already reported QTL, other SNPs are newly discovered resistance loci. These results could lay a strong theoretical foundation for the genetic improvement and breeding for CR resistance in wheat.
Collapse
|
13
|
Byrne MB, Thapa G, Doohan FIM, Burke JI. Lactic Acid Bacteria as Potential Biocontrol Agents for Fusarium Head Blight Disease of Spring Barley. Front Microbiol 2022; 13:912632. [PMID: 35935224 PMCID: PMC9355582 DOI: 10.3389/fmicb.2022.912632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease encountered by spring-grown barley. Traditionally, synthetic chemicals have been used to control this disease on small grain cereals. A move toward biological control agents as part of sustainable agriculture is pertinent due to the evolutionary mechanisms employed by fungal diseases to circumvent current protection strategies. This study evaluated the effect of six lactic acid bacteria isolates on the development of FHB under in vitro and glasshouse conditions. The relative expression of Fusarium marker genes and transcription factors under Fusarium infection was examined. Dual-culture assays observed inhibition zones of up to 10 and 17% of total plate area for L. amylovorus FST 2.11 and L. brevis R2Δ, respectively. Detached leaf assays validated the antifungal activity and showed the potential of all test isolates to significantly inhibit sporulation of Fusarium culmorum and Fusarium graminearum strains. Spray inoculation of lactic acid bacteria to barley spikelets prior to Fusarium spore application significantly reduced disease severity for five candidates (P < 0.05) under glasshouse conditions. Mycotoxin analysis revealed the ability of L. amylovorus DSM20552 to significantly reduce deoxynivalenol content in spikelets (P < 0.05). A preliminary gene expression study showed the positive influence of lactic acid bacteria on the expression of important defense-related marker genes and transcription factors upon FHB. These results indicate the potential of lactic acid bacteria to be included as part of an integrated pest management strategy for the management of FHB disease. This strategy will reduce FHB severity and deoxynivalenol (DON) contamination of spring barley, leading to high acceptance in the grain market.
Collapse
Affiliation(s)
- Micheal B. Byrne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ganesh Thapa
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - FIona M. Doohan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James I. Burke
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Hou C, Han J, Zhang L, Geng Q, Zhao L, Liu S, Yang Q, Chen X, Wu J. Identification of resistance to Fusarium head blight and molecular cytogenetics of interspecific derivatives between wheat and Psathyrostachys huashanica. BREEDING SCIENCE 2022; 72:213-221. [PMID: 36408326 PMCID: PMC9653196 DOI: 10.1270/jsbbs.21089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/24/2022] [Indexed: 06/16/2023]
Abstract
Psathyrostachys huashanica is a relative of wheat (Triticum aestivum L.) with many disease resistance genes that can be used to improve wheat disease resistance. In order to enrich the germplasm resources available in wheat genetics and breeding, we assessed Fusarium head blight (FHB) resistance in 45 interspecific derivatives between wheat and Psathyrostachys huashanica during two years from 2017-2018. Two interspecific derivatives comprising, H-34-8-2-6-1 and H-24-3-1-5-19-1 were identified as FHB resistant lines. These two lines were examined based on their morphology and cytogenetics, as well as by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), molecular markers, and 660K genotyping array to determine their genetic construction. The results confirmed H-34-8-2-6-1 as a wheat-P. huashanica 1Ns long arm ditelosomic addition line and H-24-3-1-5-19-1 as a wheat-P. huashanica 2Ns substitution line. Assessments of the agronomic traits showed that H-34-8-2-6 had significantly higher kernel number per spike and self-fertility rate than parent 7182. In addition, compared with 7182, H-24-3-1-5-19-1 had a much lower plant height while the other agronomic traits were relatively similar. The two new lines are valuable germplasm materials for breeding FHB resistance in wheat.
Collapse
Affiliation(s)
- Chenchen Hou
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Han
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liangliang Zhang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Geng
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Wu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
15
|
Li J, Xu X, Ma Y, Sun Q, Xie C, Ma J. An Improved Inoculation Method to Detect Wheat and Barley Genotypes for Resistance to Fusarium Crown Rot. PLANT DISEASE 2022; 106:1122-1127. [PMID: 35341329 DOI: 10.1094/pdis-09-21-1871-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium crown rot (FCR), caused by Fusarium species, is a serious soilborne fungal disease in many wheat growing regions in the world. A reliable FCR assessment method is essential for germplasm screening and host resistance studies. Here, we report a new assay in which we inoculated wheat seedlings grown in a glasshouse for FCR by injecting spore suspensions into the seedling stems. The effects of inoculum concentration and injection time points on disease severity were investigated. Of different treatments, the injection of 107 macroconidia/ml suspension at one leaf and one heart stage gave best results. A collection of 92 emmer-derived hexaploid bread wheats, 43 barley germplasms, and four wheat genotypes with known resistance levels to FCR was used to validate this new method. Repeatability of the two trials in the validation experiments was high (r = 0.97, P < 0.01). Two emmer-derived hexaploid bread wheat and three Chinese barley germplasms showed consistent resistance to FCR in multiple rounds of selection. The short timeframe of this assay for phenotypic screening makes it a valuable tool to eliminate germplasms with undesirable susceptibility to FCR at seedling stage before costly field assays.
Collapse
Affiliation(s)
- Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanling Ma
- The Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qixin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Detecting Crown Rot Disease in Wheat in Controlled Environment Conditions Using Digital Color Imaging and Machine Learning. AGRIENGINEERING 2022. [DOI: 10.3390/agriengineering4010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crown rot is one of the major stubble soil fungal diseases that bring significant yield loss to the cereal industry. The most effective crown rot management approach is removal of infected crop residue from fields and rotation of nonhost crops. However, disease screening is challenging as there are no clear visible symptoms on upper stems and leaves at early growth stages. The current manual screening method requires experts to observe the crown and roots of plants to detect disease, which is time-consuming, subjective, labor-intensive, and costly. As digital color imaging has the advantages of low cost and easy use, it has a high potential to be an economical solution for crown rot detection. In this research, a crown rot disease detection method was developed using a smartphone camera and machine learning technologies. Four common wheat varieties were grown in greenhouse conditions with a controlled environment, and all infected group plants were infected with crown rot without the presence of other plant diseases. We used a smartphone to take digital color images of the lower stems of plants. Using imaging processing techniques and a support vector machine algorithm, we successfully distinguished infected and healthy plants as early as 14 days after disease infection. The results provide a vital first step toward developing a digital color imaging phenotyping platform for crown rot detection to enable the management of crown rot disease effectively. As an easy-access phenotyping method, this method could provide support for researchers to develop an efficiency and economic disease screening method in field conditions.
Collapse
|
17
|
Zhang X, Li C, Xue B, Ji P, Li Y, Sun L, Wang S. Development of a Rapid Sporulation Method of Fusarium graminearum Using Liquid Cultivation. PLANT DISEASE 2022; 106:34-38. [PMID: 34282928 DOI: 10.1094/pdis-05-21-0911-sr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium graminearum is an important fungus causing a variety of maize diseases, including stalk rot, ear rot, and sheath rot. However, conidia of F. graminearum are not easily obtained under normal culture conditions, which seriously affects the identification and pathogenicity assessment of the isolates and screening of resistance sources. This study was undertaken to develop and utilize a rapid sporulation technique of F. graminearum using liquid cultivation, which could meet the needs of various tests. The results show that the optimum conditions for sporulation of F. graminearum were as follows: culture medium, 0.154 mol/liter of saline; temperature, 28 to 30°C; incubation time, 96 h; initial pH, 9 to 10; illumination, continuous ultraviolet light; and shaking speed, 150 rpm. Using this culture method, conidial concentration of tested F. graminearum strains can reach >1.5 × 105 conidia/ml. Compared with the existing methods using mung bean and carboxylmethyl cellulose as matrix, saline is relatively inexpensive, and the culture process, relatively quick. Overall, this study provided a systematic, rapid, and simple method to obtain a large number of conidia of F. graminearum.
Collapse
Affiliation(s)
- Xue Zhang
- Agricultural College, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, P. R. China
| | - Baiyan Xue
- Agricultural College, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA 31794, U.S.A
| | - Yonggang Li
- Agricultural College, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Lei Sun
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P. R. China
| | - Shuang Wang
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P. R. China
| |
Collapse
|
18
|
The Promise of Hyperspectral Imaging for the Early Detection of Crown Rot in Wheat. AGRIENGINEERING 2021. [DOI: 10.3390/agriengineering3040058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crown rot disease is caused by Fusarium pseudograminearum and is one of the major stubble-soil fungal diseases threatening the cereal industry globally. It causes failure of grain establishment, which brings significant yield loss. Screening crops affected by crown rot is one of the key tools to manage crown rot, because it is necessary to understand disease infection conditions, identify the severity of infection, and discover potential resistant varieties. However, screening crown rot is challenging as there are no clear visible symptoms on leaves at early growth stages. Hyperspectral imaging (HSI) technologies have been successfully used to better understand plant health and disease incidence, including light absorption rate, water and nutrient distribution, and disease classification. This suggests HSI imaging technologies may be used to detect crown rot at early growing stages, however, related studies are limited. This paper briefly describes the symptoms of crown rot disease and traditional screening methods with their limitations. It, then, reviews state-of-art imaging technologies for disease detection, from color imaging to hyperspectral imaging. In particular, this paper highlights the suitability of hyperspectral-based screening methods for crown rot disease. A hypothesis is presented that HSI can detect crown-rot-infected plants before clearly visible symptoms on leaves by sensing the changes of photosynthesis, water, and nutrients contents of plants. In addition, it describes our initial experiment to support the hypothesis and further research directions are described.
Collapse
|
19
|
Su J, Zhao J, Zhao S, Li M, Pang S, Kang Z, Zhen W, Chen S, Chen F, Wang X. Genetics of Resistance to Common Root Rot (Spot Blotch), Fusarium Crown Rot, and Sharp Eyespot in Wheat. Front Genet 2021; 12:699342. [PMID: 34249110 PMCID: PMC8260946 DOI: 10.3389/fgene.2021.699342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 12/05/2022] Open
Abstract
Due to soil changes, high density planting, and the use of straw-returning methods, wheat common root rot (spot blotch), Fusarium crown rot (FCR), and sharp eyespot (sheath blight) have become severe threats to global wheat production. Only a few wheat genotypes show moderate resistance to these root and crown rot fungal diseases, and the genetic determinants of wheat resistance to these devastating diseases are poorly understood. This review summarizes recent results of genetic studies of wheat resistance to common root rot, Fusarium crown rot, and sharp eyespot. Wheat germplasm with relatively higher resistance are highlighted and genetic loci controlling the resistance to each disease are summarized.
Collapse
Affiliation(s)
- Jun Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jiaojie Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuyong Pang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Wenchao Zhen
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Shisheng Chen
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|