1
|
Kong LJ, Cao XY, Sun NB, Min LJ, Duke SO, Wu HK, Zhang LQ, Liu XH. Isoxazoline: An Emerging Scaffold in Pesticide Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8678-8693. [PMID: 40176756 DOI: 10.1021/acs.jafc.4c09612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Isoxazolines are five-membered heterocycle compounds with a wide range of pharmacological and pesticidal activities. Numerous marketed pesticides contain an isoxazoline motif as a key skeleton. Isoxazoline compounds have relatively simple syntheses and wide biological activities against various weeds, bacteria, and other pests. In recent years, they have received increasing attention and are widely used in organic chemistry research, such as intermediate and catalyst ligands in organic synthesis. They also have excellent optoelectronic properties and are widely used in the field of materials. Hence, the exploration of isoxazoline derivatives remains an important research area in pesticide discovery. This review provides an up-to-date overview of isoxazoline heterocycle compounds utilized as pesticides and in pesticide discovery, highlighting their structure and biological properties. It summarizes relevant publications from the last 10 years, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Ling-Jie Kong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xin-Yu Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Stephen O Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, Mississippi 38677, United States
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qin Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Cohen Y, Weitman M. Mobility of oxathiapiprolin in and between tomato plants. PEST MANAGEMENT SCIENCE 2023; 79:1102-1112. [PMID: 36334022 PMCID: PMC10099527 DOI: 10.1002/ps.7280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Oxathiapiprolin (OXPT; FRAC code 49) is a new piperidinyl-thiazole isooxazoline anti-oomycete fungicide that targets oxysterol-binding proteins. The fungicide is known to translocate acropetally from root to shoot to protect plants against fungal attack. RESULTS OXPT is ambimobile. It can also translocate basipetally from shoot to root. OXPT exhibits an unprecedented capacity for trans-plant protection. When two tomato plants are grown in one pot, and one is treated with OXPT (on the stem, leaves or apex), while the other plant and soil surface are adequately covered, both plants become protected against late blight caused by Phytophthora infestans. CONCLUSION Trans-plant systemic protection induced by OXPT involves translocation of the fungicide from the shoot of the treated plant to its root, exudation into the soil and uptake by the root of the neighboring untreated plant to protect it against the disease. Liquid chromatography-tandem mass spectrometry analyses confirmed the occurrence of OXPT in root exudates of OXPT-treated tomato plants in quantities sufficient to protect detached tomato leaves and intact plants against P. infestans. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yigal Cohen
- Faculty of Life Sciences Bar Ilan UniversityRamat GanIsrael
| | - Michal Weitman
- Department of Chemistry Bar Ilan UniversityRamat GanIsrael
| |
Collapse
|
3
|
Molinero-Ruiz L. Sustainable and efficient control of sunflower downy mildew by means of genetic resistance: a review. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3757-3771. [PMID: 35084515 DOI: 10.1007/s00122-022-04038-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The breeding of sunflower (Helianthus annuus L.) for resistance to downy mildew (caused by the oomycete Plasmopara halstedii Farl. Berl. & de Toni) is reviewed in this work under the scope of its sustainability and efficiency. When sunflower turned into an oilseed crop, resistance to the disease was included in its initial breeding strategies. Subsequent development of genomic tools allowed a significant expansion of the knowledge on the diversity of its genetic resistance and its application to the genetic control of the disease. Simultaneously to genetic improvements, and as a consequence of the close interaction between the pathogen and its host plant, an enormous variety of pathotypes has been described in all the sunflower-growing areas worldwide. Thus, the genetic control of sunflower downy mildew is an active research field subjected to continuous evolution and challenge. In practice, genetic resistance constitutes the base tier of Integrated Pest Management against sunflower downy mildew. The second tier is composed of elements related to crop management: rotation, removal of volunteer plants, sowing date, tillage. Biological control alternatives and resistance inducers could also provide additional restraint. Finally, the top tier includes chemical treatments that should only be used when necessary and if the more basal Integrated Pest Management elements fail to keep pathogen populations under the economic threshold.
Collapse
Affiliation(s)
- L Molinero-Ruiz
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain.
| |
Collapse
|
4
|
Liang X, Su W, Chang AK, Zhuang C, Pei Y, Ai J, Li H, Liu K, Li J, Fu H, Liu Y, Liu W, Zhang X. Toxicokinetics of Two Oxathiapiprolin Enantiomers in Rats and Their Stereoselective Interaction with Oxysterol Binding Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12180-12188. [PMID: 36121774 DOI: 10.1021/acs.jafc.2c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxathiapiprolin is a chiral fungicide, and it can affect the metabolism of the cholesterol compounds by inhibiting oxysterol binding protein (OSBP) to exert its fungicidal effect. The application of oxathiapiprolin in agriculture is widespread, and its residue in the environment is a threat to both human and animal health. The two oxathiapiprolin enantiomers differ in their fungicidal activity, biotoxicity, and degradation by environmental forces. However, their biotoxicity has not been reported in animals. The toxicokinetics of a pesticide should be a crucial component for the evaluation of its toxicity in vivo. In this study, we investigated the absorption, bioavailability, tissue distribution, and excretion of the two oxathiapiprolin enantiomers in rats to verify their toxicokinetic process in animals. An ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QQQ/MS) method was established to quantify the two oxathiapiprolin enantiomers in vivo. The two oxathiapiprolin enantiomers were found to have approximately the same absorption rate and bioavailability, and both were excreted mainly in the feces. The half-life of R-(-)-oxathiapiprolin was nearly twice that of S-(+)-oxathiapiprolin. R-(-)-oxathiapiprolin also had greater distribution than S-(+)-oxathiapiprolin in the liver, lungs, heart, spleen, kidneys, stomach, large intestine, small intestine, brain, and pancreas, supporting the notion that R-(-)-oxathiapiprolin could better bind with OSBP. The stereoselectivity of S-(+)-oxathiapiprolin in these tissues may be responsible for it being readily metabolized in vivo. The molecular docking technique was subsequently used to verify the more superior binding between R-(-)-oxathiapiprolin and OSBP compared with the binding between S-(+)-oxathiapiprolin and OSBP. The findings of this study could provide more reliable data for determining the toxicokinetics of a single enantiomer of oxathiapiprolin in animals, thereby providing some theoretical basis for its subsequent toxicological study.
Collapse
Affiliation(s)
- Xiao Liang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Weiping Su
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, P.R. China
| | - Chuchu Zhuang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Ying Pei
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Jiao Ai
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Haoran Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Kai Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Jianxin Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Hongfei Fu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Yuting Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Wenbao Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P.R. China
| | - Xinzhong Zhang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, P. R. China
| |
Collapse
|
5
|
Lacey RF, Fairhurst MJ, Daley KJ, Ngata-Aerengamate TA, Patterson HR, Patrick WM, Gerth ML. Assessing the effectiveness of oxathiapiprolin toward Phytophthora agathidicida, the causal agent of kauri dieback disease. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Phytophthora species cause disease and devastation of plants in ecological and horticultural settings worldwide. A recently identified species, Phytophthoraagathidicida, infects and ultimately kills the treasured kauri trees (Agathis australis) that are endemic to New Zealand. Currently, there are few options for managing kauri dieback disease. In this study, we sought to assess the efficacy of the oomycide oxathiapiprolin against several life cycle stages of two geographically distinct P. agathidicida isolates. The effective concentration to inhibit 50% of mycelial growth (EC50) was determined to be ∼0.1 ng/ml, indicating that P. agathidicida mycelia are more sensitive to oxathiapiprolin than those from most other Phytophthora species that have been studied. Oxathiapiprolin was also highly effective at inhibiting the germination of zoospores (EC50 = 2–9 ng/ml for the two isolates) and oospores (complete inhibition at 100 ng/ml). In addition, oxathiapiprolin delayed the onset of detached kauri leaf infection in a dose-dependent manner. Collectively, the results presented here highlight the significant potential of oxathiapiprolin as a tool to aid in the control of kauri dieback disease.
Collapse
Affiliation(s)
- Randy F Lacey
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Michael J Fairhurst
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Kaitlyn J Daley
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Te Amohaere Ngata-Aerengamate
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Haileigh R Patterson
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Monica L Gerth
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
6
|
Gilley MA, Gulya TJ, Seiler GJ, Underwood W, Hulke BS, Misar CG, Markell SG. Determination of Virulence Phenotypes of Plasmopara halstedii in the United States. PLANT DISEASE 2020; 104:2823-2831. [PMID: 32955406 DOI: 10.1094/pdis-10-19-2063-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Downy mildew, caused by Plasmopara halstedii (Farl.) Berl. and de Toni, is an economically important disease in cultivated sunflowers, Helianthus annuus L. Resistance genes incorporated into commercial hybrids are used as an effective disease management tool, but the duration of effectiveness is limited as virulence evolves in the pathogen population. A comprehensive assessment of pathogen virulence was conducted in 2014 and 2015 in the U.S. Great Plains states of North Dakota and South Dakota, where approximately 75% of the U.S. sunflower is produced annually. The virulence phenotypes (and races) of 185 isolates were determined using the U.S. standard set of nine differentials. Additionally, the virulence phenotypes of 61 to 185 isolates were determined on 13 additional lines that have been used to evaluate pathogen virulence in North America and/or internationally. Although widespread virulence was identified on several genes, new virulence was identified on the Pl8 resistance gene, and no virulence was observed on the PlArg, Pl15, Pl17 and Pl18 genes. Results of this study suggest that three additional lines should be used as differentials and agree with previous studies that six lines proposed as differentials should be used in two internationally accepted differential sets. For effective disease management using genetic resistance, it is critical that virulence data be relevant and timely. This is best accomplished when pathogen virulence is determined frequently and by using genetic lines containing resistance genes actively incorporated into commercial cultivars.
Collapse
Affiliation(s)
- Michelle A Gilley
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | | | | | | | | | | | - Samuel G Markell
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| |
Collapse
|
7
|
Markell SG, Tylka GL, Anderson EJ, van Esse HP. Developing Public-Private Partnerships in Plant Pathology Extension: Case Studies and Opportunities in the United States. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:161-180. [PMID: 32543952 DOI: 10.1146/annurev-phyto-030320-041359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Public-private partnerships (PPPs) can be an effective and advantageous way to accomplish extension and outreach objectives in plant pathology. The greatest opportunities for extension-focused PPPs may be in response to large-scale or emerging disease management concerns or in addressing complex issues that impact agriculture, such as climate change, digital technology, and public perception of science. The most fertile ground for forming PPPs is where the needs and strengths of the public and private sectors are complementary. Developing PPPs depends as much on professional relationships as on technical skills or contracts. Defining and making room for the success of all partners, identifying and addressing barriers to success, and earning and maintaining trust are components that contribute to the effectiveness of PPPs. Case studies in plant pathology demonstrate the positive impact PPPs can have on partners and stakeholders and provide guidance on the formation of PPPs in the future.
Collapse
Affiliation(s)
- Samuel G Markell
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102, USA;
| | - Gregory L Tylka
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | | - H Peter van Esse
- The Sainsbury Laboratory, Norwich, NR4 7UH, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- The 2Blades Foundation, Evanston, Illinois 60201, USA
| |
Collapse
|