1
|
Wang K, Fu C, Fu X, Qin P, Hu X, Zhang X, Deng Z, Yan T, Jiang N, Li Y, Fu J, Deng Y, Zhou Y, Xiao G, He Z, Yang Y. Enhancing the blast resistance of an elite thermo-sensitive genic male sterile line (TGMS) Longke638S and its derived hybrid varieties by incorporating Pigm gene. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:35. [PMID: 40151760 PMCID: PMC11937461 DOI: 10.1007/s11032-025-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The utilization of host resistance (R) genes in rice breeding program is considered as the most economical, effective, environment-friendly strategy for rice blast control. The R gene Pigm, shows high, broad-spectrum and durable resistance to rice blast. Here, we report the successful integration of Pigm into Longke638S (LK638S), an elite thermo-sensitive genic male sterile (TGMS) line in hybrid rice production in China. The integration significantly enhanced the blast resistance of LK638S and the derived hybrid varieties demonstrated exceptional performance in both yield and blast resistance. The improved line Longzhen36S (LZ36S), which recovered 91.84% of the recurrent parent genome. LZ36S exhibited a high blast resistance frequency of 96.4% against 28 blast isolates. Furthermore, the LZ36S-derived hybrids exhibited enhanced resistance to both seedling and panicle blast compared to LK638S-derived hybrids carrying the heterozygous Pi2 gene, all without yield penalty. A total of ninety LK638S derived hybrid varieties have been state or provincial approved and certified with an annual promoting area exceed 964.0 thousand hectares. The LZ36S-derived hybrids can serve as improved versions with enhanced blast resistance, making them viable replacements for LK638S-derived hybrids in commercial production. Moreover, sixteen LZ36S-derived hybrid varieties, all possessing moderate (MR) or high (R) level blast resistance, along with excellent yield and grain quality, have been state or provincial approved and certificated. These LZ36S-derived hybrids show great potential for rapid commercialization, with promoting area of ~ 200 thousand hectares by 2023. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01555-3.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081 China
- Citic Agricultural Technology Co., Ltd, Beijing, 100027 China
| | - Chenjian Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xingxue Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xiaochun Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xuanwen Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Zhao Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Tianze Yan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Nan Jiang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Yanfeng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Jun Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yanbiao Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Gui Xiao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yuanzhu Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Shanghai Agrobiological Gene Center, Shanghai, 200000 China
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081 China
- Citic Agricultural Technology Co., Ltd, Beijing, 100027 China
| |
Collapse
|
2
|
Pedrozo R, Osakina A, Huang Y, Nicolli CP, Wang L, Jia Y. Status on Genetic Resistance to Rice Blast Disease in the Post-Genomic Era. PLANTS (BASEL, SWITZERLAND) 2025; 14:807. [PMID: 40094775 PMCID: PMC11901910 DOI: 10.3390/plants14050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production, necessitating the development of resistant cultivars through genetic improvement. Breakthroughs in rice genomics, including the complete genome sequencing of japonica and indica subspecies and the availability of various sequence-based molecular markers, have greatly advanced the genetic analysis of blast resistance. To date, approximately 122 blast-resistance genes have been identified, with 39 of these genes cloned and molecularly characterized. The application of these findings in marker-assisted selection (MAS) has significantly improved rice breeding, allowing for the efficient integration of multiple resistance genes into elite cultivars, enhancing both the durability and spectrum of resistance. Pangenomic studies, along with AI-driven tools like AlphaFold2, RoseTTAFold, and AlphaFold3, have further accelerated the identification and functional characterization of resistance genes, expediting the breeding process. Future rice blast disease management will depend on leveraging these advanced genomic and computational technologies. Emphasis should be placed on enhancing computational tools for the large-scale screening of resistance genes and utilizing gene editing technologies such as CRISPR-Cas9 for functional validation and targeted resistance enhancement and deployment. These approaches will be crucial for advancing rice blast resistance, ensuring food security, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Rodrigo Pedrozo
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Aron Osakina
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yixiao Huang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Camila Primieri Nicolli
- Entomology and Plant Pathology Department, University of Arkansas, Rice Research and Extension Center (RREC), Stuttgart, AR 72160, USA;
| | - Li Wang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Yulin Jia
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| |
Collapse
|
3
|
Yuan H, Qian J, Wang C, Shi W, Chang H, Yin H, Xiao Y, Wang Y, Li Q. Exogenous Melatonin Enhances Rice Blast Disease Resistance by Promoting Seedling Growth and Antioxidant Defense in Rice. Int J Mol Sci 2025; 26:1171. [PMID: 39940938 PMCID: PMC11818787 DOI: 10.3390/ijms26031171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
In order to analyze the physiological regulation mechanisms associated with exogenous melatonin on rice blast, this study treated rice seedlings with different concentrations of melatonin (0, 20, 100, and 500 µmol/L) in order to investigate the growth characteristics, root morphology, superoxide dismutase (SOD) activity, peroxidase (POD) activity, catalase (CAT) activity, malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content, and soluble protein content of rice seedlings. The results indicated that 100 µmol/L of melatonin exhibited a significant effect, improving the growth and antioxidant capacity of rice seedlings under rice blast fungus infection. The disease resistance level of rice seedlings against rice blast significantly decreased by 31.58% when compared to the 0 µmol/L melatonin treatment, while the plant height, stem base width, plant leaf area, total root length, aboveground dry weight, aboveground fresh weight, and underground fresh weight significantly increased by 8.72% to 91.38%. Treatment with 100 µmol/L of melatonin significantly increased catalase activities and soluble protein content, with respective increases of 94.99% and 31.14%. Simultaneously, the contents of malondialdehyde and hydrogen peroxide significantly decreased, reaching 18.65% and 38.87%, respectively. The gray relational grade analysis indicated that hydrogen peroxide content and resistance level exhibit the highest gray relational grades with melatonin concentration and, so, can be used to evaluate the effect of melatonin on the severity of rice blast fungus infection. Furthermore, the membership function analysis revealed that the 100 µmol/L melatonin treatment had the highest membership function value, indicating a significant improvement in the resistance of rice seedlings to rice blast disease. In conclusion, 100 µmol/L of melatonin enhances the resistance of rice seedlings to rice blast disease through promoting their growth and strengthening their antioxidant defenses. This study provides new insights into the tolerance mechanisms of rice seedlings against rice blast disease.
Collapse
Affiliation(s)
- Hongliang Yuan
- Department of Agronomy, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (C.W.); (W.S.); (H.C.); (H.Y.); (Y.X.)
| | - Jingya Qian
- The Key Laboratory of Crop Germplasm Innovation and Resource Utilization of Hunan Province, Hunan Agricultural University, Changsha 410128, China;
| | - Chunwei Wang
- Department of Agronomy, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (C.W.); (W.S.); (H.C.); (H.Y.); (Y.X.)
| | - Weixi Shi
- Department of Agronomy, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (C.W.); (W.S.); (H.C.); (H.Y.); (Y.X.)
| | - Huiling Chang
- Department of Agronomy, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (C.W.); (W.S.); (H.C.); (H.Y.); (Y.X.)
| | - Haojie Yin
- Department of Agronomy, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (C.W.); (W.S.); (H.C.); (H.Y.); (Y.X.)
| | - Yulin Xiao
- Department of Agronomy, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (C.W.); (W.S.); (H.C.); (H.Y.); (Y.X.)
| | - Yue Wang
- The Key Laboratory of Crop Germplasm Innovation and Resource Utilization of Hunan Province, Hunan Agricultural University, Changsha 410128, China;
- Yuelu Mountain Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, China
| | - Qiang Li
- Department of Agronomy, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (C.W.); (W.S.); (H.C.); (H.Y.); (Y.X.)
| |
Collapse
|
4
|
Debnath A, Sumpi H, Lap B, Bhutia KL, Behera A, Tyagi W, Rai M. Multi-Population Analysis for Leaf and Neck Blast Reveals Novel Source of Neck Blast Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2475. [PMID: 39273959 PMCID: PMC11397284 DOI: 10.3390/plants13172475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Rice blast is one of the most devastating biotic stresses that limits rice productivity. The North Eastern Hill (NEH) region of India is considered to be one of the primary centres of diversity for both rice and pathotypes of Magnaporthe grisea. Therefore, the present study was carried out to elucidate the genetic basis of leaf and neck blast resistance under Meghalaya conditions. A set of 80 diverse genotypes (natural population) and 2 F2 populations involving resistant parent, a wildtype landrace, LR 5 (Lal Jangali) and susceptible genotypes Sambha Mahsuri SUB 1 (SMS) and LR 26 (Chakhao Poireiton) were used for association analysis of reported major gene-linked markers with leaf and neck blast resistance to identify major effective genes under local conditions. Genotyping using twenty-five gene-specific markers across diverse genotypes and F2 progenies revealed genes Pi5 and Pi54 to be associated with leaf blast resistance in all three populations. Genes Pib and qPbm showed an association with neck blast resistance in both natural and LR 5 × SMS populations. Additionally, a set of 184 genome-wide polymorphic markers (SSRs and SNPs), when applied to F2-resistant and F2-susceptible DNA bulks derived from LR 5 × LR 26, suggested that Pi20(t) on chromosome 12 is one of the major genes imparting disease resistance. Markers snpOS318, RM1337 and RM7102 and RM247 and snpOS316 were associated with leaf blast and neck blast resistance, respectively. The genotypes, markers and genes will help in marker-assisted selection and development of varieties with durable resistance.
Collapse
Affiliation(s)
- Ashim Debnath
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Hage Sumpi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
| | - Bharati Lap
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Karma L Bhutia
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Samastipur 848125, Bihar, India
| | - Abhilash Behera
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Research Program-Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Samastipur 848125, Bihar, India
| |
Collapse
|
5
|
Devanna BN, Sucharita S, Sunitha NC, Anilkumar C, Singh PK, Pramesh D, Samantaray S, Behera L, Katara JL, Parameswaran C, Rout P, Sabarinathan S, Rajashekara H, Sharma TR. Refinement of rice blast disease resistance QTLs and gene networks through meta-QTL analysis. Sci Rep 2024; 14:16458. [PMID: 39013915 PMCID: PMC11252161 DOI: 10.1038/s41598-024-64142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Rice blast disease is the most devastating disease constraining crop productivity. Vertical resistance to blast disease is widely studied despite its instability. Clusters of genes or QTLs conferring blast resistance that offer durable horizontal resistance are important in resistance breeding. In this study, we aimed to refine the reported QTLs and identify stable meta-QTLs (MQTLs) associated with rice blast resistance. A total of 435 QTLs were used to project 71 MQTLs across all the rice chromosomes. As many as 199 putative rice blast resistance genes were identified within 53 MQTL regions. The genes included 48 characterized resistance gene analogs and related proteins, such as NBS-LRR type, LRR receptor-like kinase, NB-ARC domain, pathogenesis-related TF/ERF domain, elicitor-induced defense and proteins involved in defense signaling. MQTL regions with clusters of RGA were also identified. Fifteen highly significant MQTLs included 29 candidate genes and genes characterized for blast resistance, such as Piz, Nbs-Pi9, pi55-1, pi55-2, Pi3/Pi5-1, Pi3/Pi5-2, Pikh, Pi54, Pik/Pikm/Pikp, Pb1 and Pb2. Furthermore, the candidate genes (42) were associated with differential expression (in silico) in compatible and incompatible reactions upon disease infection. Moreover, nearly half of the genes within the MQTL regions were orthologous to those in O. sativa indica, Z. mays and A. thaliana, which confirmed their significance. The peak markers within three significant MQTLs differentiated blast-resistant and susceptible lines and serve as potential surrogates for the selection of blast-resistant lines. These MQTLs are potential candidates for durable and broad-spectrum rice blast resistance and could be utilized in blast resistance breeding.
Collapse
Affiliation(s)
| | - Sumali Sucharita
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Pankaj K Singh
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - D Pramesh
- University of Agricultural Sciences, Raichur, Karnataka, India
| | | | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - C Parameswaran
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Prachitara Rout
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | | | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
6
|
Biswas PS, Ahmed MME, Afrin W, Rahman A, Shalahuddin AKM, Islam R, Akter F, Syed MA, Sarker MRA, Ifterkharuddaula KM, Islam MR. Enhancing genetic gain through the application of genomic selection in developing irrigated rice for the favorable ecosystem in Bangladesh. Front Genet 2023; 14:1083221. [PMID: 36911402 PMCID: PMC9992429 DOI: 10.3389/fgene.2023.1083221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023] Open
Abstract
Increasing selection differential and decreasing cycle time, the rate of genetic improvement can be accelerated. Creating and capturing higher genetic with higher accuracy within the shortest possible time is the prerequisite for enhancing genetic gain for any trait. Comprehensive yield testing at multi-locations at early generations together with the shortest line fixation time can expedite the rapid recycling of parents in the breeding program through recurrent selection. Genomic selection is efficient in capturing high breeding value individuals taking additive genetic effects of all genes into account with and without extensive field testing, thus reducing breeding cycle time enhances genetic gain. In the Bangladesh Rice Research Institute, GS technology together with the trait-specific marker-assisted selection at the early generation of RGA-derived breeding lines showed a prediction accuracy of 0.454-0.701 with 0.989-2.623 relative efficiency over the four consecutive years of exercise. This study reports that the application of GS together with trait-specific MAS has expedited the yield improvement by 117 kg ha-1·year-1, which is around seven-fold larger than the baseline annual genetic gain and shortened the breeding cycle by around 1.5 years from the existing 4.5 years.
Collapse
Affiliation(s)
- Partha S Biswas
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - M M Emam Ahmed
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Wazifa Afrin
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Anisar Rahman
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - A K M Shalahuddin
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Rafiqul Islam
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Fahamida Akter
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Abu Syed
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Ruhul Amin Sarker
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - K M Ifterkharuddaula
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | | |
Collapse
|
7
|
B J, Hosahatti R, Koti PS, Devappa VH, Ngangkham U, Devanna P, Yadav MK, Mishra KK, Aditya JP, Boraiah PK, Gaber A, Hossain A. Phenotypic and Genotypic screening of fifty-two rice (Oryza sativa L.) genotypes for desirable cultivars against blast disease. PLoS One 2023; 18:e0280762. [PMID: 36897889 PMCID: PMC10004593 DOI: 10.1371/journal.pone.0280762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/08/2023] [Indexed: 03/11/2023] Open
Abstract
Magnaporthe oryzae, the rice blast fungus, is one of the most dangerous rice pathogens, causing considerable crop losses around the world. In order to explore the rice blast-resistant sources, initially performed a large-scale screening of 277 rice accessions. In parallel with field evaluations, fifty-two rice accessions were genotyped for 25 major blast resistance genes utilizing functional/gene-based markers based on their reactivity against rice blast disease. According to the phenotypic examination, 29 (58%) and 22 (42%) entries were found to be highly resistant, 18 (36%) and 29 (57%) showed moderate resistance, and 05 (6%) and 01 (1%), respectively, were highly susceptible to leaf and neck blast. The genetic frequency of 25 major blast resistance genes ranged from 32 to 60%, with two genotypes having a maximum of 16 R-genes each. The 52 rice accessions were divided into two groups based on cluster and population structure analysis. The highly resistant and moderately resistant accessions are divided into different groups using the principal coordinate analysis. According to the analysis of molecular variance, the maximum diversity was found within the population, while the minimum diversity was found between the populations. Two markers (RM5647 and K39512), which correspond to the blast-resistant genes Pi36 and Pik, respectively, showed a significant association to the neck blast disease, whereas three markers (Pi2-i, Pita3, and k2167), which correspond to the blast-resistant genes Pi2, Pita/Pita2, and Pikm, respectively, showed a significant association to the leaf blast disease. The associated R-genes might be utilized in rice breeding programmes through marker-assisted breeding, and the identified resistant rice accessions could be used as prospective donors for the production of new resistant varieties in India and around the world.
Collapse
Affiliation(s)
- Jeevan B
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | | | - Prasanna S Koti
- The University of Trans-Disciplinary Health Sciences and Technology, Jarakabande Kaval, Bengaluru, Karnataka, India
| | | | - Umakanta Ngangkham
- ICAR- Research Complex for North- Eastern Hill Region, Manipur centre, Imphal, Manipur, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, AICRIP, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Manoj Kumar Yadav
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India
| | - Krishna Kant Mishra
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Jay Prakash Aditya
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Palanna Kaki Boraiah
- Project Coordinating Unit, ICAR-AICRP on Small Millets, UAS, GKVK, Bengaluru, Karnataka, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
8
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
9
|
Wang W, Su J, Chen K, Yang J, Chen S, Wang C, Feng A, Wang Z, Wei X, Zhu X, Lu GD, Zhou B. Dynamics of the Rice Blast Fungal Population in the Field After Deployment of an Improved Rice Variety Containing Known Resistance Genes. PLANT DISEASE 2021; 105:919-928. [PMID: 32967563 DOI: 10.1094/pdis-06-20-1348-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. Management through the deployment of host resistance genes would be facilitated by understanding the dynamics of the pathogen's population in the field. Here, to investigate the mechanism underlying the breakdown of disease resistance, we conducted a six-year field experiment to monitor the evolution of M. oryzae populations in Qujiang from Guangdong. The new variety of Xin-Yin-Zhan (XYZ) carrying R genes Pi50 and Pib was developed using the susceptible elite variety, Ma-Ba-Yin-Zhan (MBYZ), as the recurrent line. Field trials of disease resistance assessment revealed that the disease indices of XYZ in 2012, 2013, 2016, and 2017 were 0.19, 0.39, 0.70, and 0.90, respectively, indicating that XYZ displayed a very rapid increase of disease severity in the field. To investigate the mechanism underlying the quick erosion of resistance of XYZ, we collected isolates from both XYZ and MBYZ for pathogenicity testing against six different isogenic lines. The isolates collected from XYZ showed a similar virulence spectrum across four different years whereas those from MBYZ showed increasing virulence to the Pi50 and Pib isogenic lines from 2012 to 2017. Molecular analysis of AvrPib in the isolates from MBYZ identified four different AvrPib haplotypes, i.e., AvrPib-AP1-1, AvrPib-AP1-2, avrPib-AP2, and avrPib-AP3, verified by sequencing. AvrPib-AP1-1 and AvrPib-AP1-2 are avirulent to Pib whereas avrPib-AP2 and avrPib-AP3 are virulent. Insertions of a Pot3 and an Mg-SINE were identified in avrPib-AP2 and avrPib-AP3, respectively. Two major lineages based on rep-PCR analysis were further deduced in the field population, implying that the field population is composed of genetically related isolates. Our data suggest that clonal propagation and quick dominance of virulent isolates against the previously resistant variety could be the major genetic events contributing to the loss of varietal resistance against rice blast in the field.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Ocean Science, Minjiang University, Fuzhou 350108, China
| | - Xiaoyan Wei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Zhou
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
10
|
Li C, Zhang J, Ren Z, Xie R, Yin C, Ma W, Zhou F, Chen H, Lin Y. Development of 'multiresistance rice' by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system. PEST MANAGEMENT SCIENCE 2021; 77:1536-1547. [PMID: 33201594 DOI: 10.1002/ps.6178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Weeds, diseases and pests pose serious threats to rice production and cause significant economic losses. Cultivation of rice varieties with resistance to herbicides, diseases and pests is believed to be the most economical and environmentally friendly method to deal with these problems. RESULTS In this study, a highly efficient transgene stacking system was used to assembly the synthetic glyphosate-tolerance gene (I. variabilis-EPSPS*), lepidopteran pest resistance gene (Cry1C*), brown planthopper resistance genes (Bph14* and OsLecRK1*), bacterial blight resistance gene (Xa23*) and rice blast resistance gene (Pi9*) onto a transformable artificial chromosome vector. The construct was transferred into ZH11 (a widely used japonica rice cultivar Zhonghua 11) via Agrobacterium-mediated transformation and 'multiresistance rice' (MRR) with desirable agronomic traits was obtained. The results showed that MRR had significantly improved resistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast relative to the recipient cultivar ZH11. Besides, under the natural occurrence of pests and diseases in the field, the yield of MRR was significantly higher than that of ZH11. CONCLUSION A multigene transformation strategy was employed to successfully develop rice lines with multiresistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast, and the obtained MRR is expected to have great application potential. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanxu Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rong Xie
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Luzhou Branch of National Rice Improvement Center, Deyang, China
| | - Changxi Yin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, Sharma P, Kumar S, Pramesh D, Nabi SU, Bhuvaneshwari S, Anand YR, Dubey SK, Singh TS. Recent Insights in Rice Blast Disease Resistance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech 2019; 9:209. [PMID: 31093479 PMCID: PMC6509304 DOI: 10.1007/s13205-019-1738-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Blast disease caused by fungal pathogen Pyricularia oryzae is a major threat to rice productivity worldwide. The rice-blast pathogen can infect both leaves and panicle neck nodes. Nearly, 118 genes for resistance to leaf blast have been identified and 25 of these have been molecularly characterized. A great majority of these genes encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins and are organized into clusters as allelic or tightly linked genes. Compared to ever expanding list of leaf-blast-resistance genes, a few major genes mediating protection to neck blast have been identified. A great majority of the genetic studies conducted with the genotypes differing in the degree of susceptibility/resistance to neck blast have suggested quantitative inheritance for the trait. Several reports on co-localization of gene/QTLs for leaf- and neck-blast resistance in rice genome have suggested the existence of common genes for resistance to both phases of the disease albeit inconsistencies in the genomic positions leaf- and neck-blast-resistance genes in some instances have presented the contrasting scenario. There is a strong evidence to suggest that developmentally regulated expression of many blast-resistance genes is a key determinant deciding their effectiveness against leaf or neck blast. Testing of currently characterized leaf-blast-resistance genes for their reaction to neck blast is required to expand the existing repertoire resistance genes against neck blast. Current developments in the understanding of molecular basis of host-pathogen interactions in rice-blast pathosystem offer novel possibilities for achieving durable resistance to blast through exploitation of natural or genetically engineered loss-of-function alleles of host susceptibility genes.
Collapse
Affiliation(s)
- S. Kalia
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| | - R. Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| |
Collapse
|
13
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
14
|
Wu Y, Yu L, Xiao N, Dai Z, Li Y, Pan C, Zhang X, Liu G, Li A. Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Xiao G, Borja FN, Mauleon R, Padilla J, Telebanco-Yanoria MJ, Yang J, Lu G, Dionisio-Sese M, Zhou B. Identification of resistant germplasm containing novel resistance genes at or tightly linked to the Pi2/9 locus conferring broad-spectrum resistance against rice blast. RICE (NEW YORK, N.Y.) 2017; 10:37. [PMID: 28779340 PMCID: PMC5544663 DOI: 10.1186/s12284-017-0176-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars. RESULTS In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5' portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, -A15, -A42, -A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance. CONCLUSION The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.
Collapse
Affiliation(s)
- Gui Xiao
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Institute of Biological Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Frances Nikki Borja
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ramil Mauleon
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jonas Padilla
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Mary Jeanie Telebanco-Yanoria
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jianxia Yang
- Fujian Agriculture and Forest University, Fuzhou, 350002 China
| | - Guodong Lu
- Fujian Agriculture and Forest University, Fuzhou, 350002 China
| | - Maribel Dionisio-Sese
- Institute of Biological Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
16
|
Mgonja EM, Balimponya EG, Kang H, Bellizzi M, Park CH, Li Y, Mabagala R, Sneller C, Correll J, Opiyo S, Talbot NJ, Mitchell T, Wang GL. Genome-Wide Association Mapping of Rice Resistance Genes Against Magnaporthe oryzae Isolates from Four African Countries. PHYTOPATHOLOGY 2016; 106:1359-1365. [PMID: 27454702 DOI: 10.1094/phyto-01-16-0028-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Rice blast disease is emerging as a major constraint to rice production in Africa. Although a traditional gene-tagging strategy using biparental crosses can effectively identify resistance (R) genes or quantitative trait loci (QTL) against Magnaporthe oryzae, the mapping procedure required is time consuming and requires many populations to investigate the genetics of resistance. In this report, we conducted a genome-wide association study (GWAS) to rapidly map rice genes conferring resistance against eight M. oryzae isolates from four African countries. We inoculated 162 rice cultivars, which were part of the rice diversity panel 1 (RDP1) and were previously genotyped with the 44,000 single-nucleotide polymorphism (SNP) chip, with the eight isolates. The GWAS identified 31 genomic regions associated with blast resistance (RABR) in the rice genome. In addition, we used polymerase chain reaction analysis to confirm the association between the Pish gene and a major RABR on chromosome 1 that was associated with resistance to four M. oryzae isolates. Our study has demonstrated the power of GWAS for the rapid identification of rice blast R or QTL genes that are effective against African populations of M. oryzae. The identified SNP markers associated with RABR can be used in breeding for resistance against rice blast in Africa.
Collapse
Affiliation(s)
- Emmanuel M Mgonja
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Elias G Balimponya
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Houxiang Kang
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Maria Bellizzi
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Chan Ho Park
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Ya Li
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Robert Mabagala
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Clay Sneller
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Jim Correll
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Stephen Opiyo
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Nicholas J Talbot
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Thomas Mitchell
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| | - Guo-Liang Wang
- First, fourth, fifth, sixth, tenth, twelfth, and thirteenth authors: Department of Plant Pathology, and second and eighth authors: Department of Horticulture and Crop Science, The Ohio State University, Columbus; third and thirteenth authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing; seventh author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; ninth author: Department of Plant Pathology, University of Arkansas, Fayetteville; and eleventh author: School of Biosciences, University of Exeter, UK
| |
Collapse
|
17
|
Feng C, Zhang X, Wu T, Yuan B, Ding X, Yao F, Chu Z. The polygalacturonase-inhibiting protein 4 (OsPGIP4), a potential component of the qBlsr5a locus, confers resistance to bacterial leaf streak in rice. PLANTA 2016; 243:1297-308. [PMID: 26945855 DOI: 10.1007/s00425-016-2480-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/25/2016] [Indexed: 05/05/2023]
Abstract
OsPGIP4 overexpression enhances resistance to bacterial leaf streak in rice. Polygalacturonase-inhibiting proteins are thought to play important roles in the innate immunity of rice against fungi. Here, we show that the chromosomal location of OsPGIP4 coincides with the major bacterial leaf streak resistance quantitative trait locus qBlsr5a on the short arm of chromosome 5. OsPGIP4 expression was up-regulated upon inoculation with the pathogen Xanthomonas oryzae pv. oryzicola strain RS105. OsPGIP4 overexpression enhanced the resistance of the susceptible rice variety Zhonghua 11 to RS105. In contrast, repressing OsPGIP4 expression resulted in an increase in disease lesions caused by RS105 in Zhonghua 11 and in Acc8558, a qBlsr5a resistance donor. More interestingly, upon inoculation, the activated expression of pathogenesis-related genes was attenuated for those genes involved in the salicylic acid pathway, while the activated expression of jasmonic acid pathway markers was increased in the overexpression lines. Our results not only provide the first report that rice PGIP could enhance resistant against a bacterial pathogen but also indicate that OsPGIP4 is a potential component of the qBlsr5a locus for bacterial leaf streak in rice.
Collapse
Affiliation(s)
- Chuanshun Feng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xia Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Fangying Yao
- Biotechnology Research Center, Shandong Academy of Agricultural Science, Jinan, 250100, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2213-25. [PMID: 26183036 DOI: 10.1007/s00122-015-2579-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/27/2015] [Indexed: 05/03/2023]
Abstract
We characterized a novel blast resistance gene Pi50 at the Pi2/9 locus; Pi50 is derived from functional divergence of duplicated genes. The unique features of Pi50 should facilitate its use in rice breeding and improve our understanding of the evolution of resistance specificities. Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, poses constant, major threats to stable rice production worldwide. The deployment of broad-spectrum resistance (R) genes provides the most effective and economical means for disease control. In this study, we characterize the broad-spectrum R gene Pi50 at the Pi2/9 locus, which is embedded within a tandem cluster of 12 genes encoding proteins with nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains. In contrast with other Pi2/9 locus, the Pi50 cluster contains four duplicated genes (Pi50_NBS4_1 to 4) with extremely high nucleotide sequence similarity. Moreover, these duplicated genes encode two kinds of proteins (Pi50_NBS4_1/2 and Pi50_NBS4_3/4) that differ by four amino acids. Complementation tests and resistance spectrum analyses revealed that Pi50_NBS4_1/2, not Pi50_NBS4_3/4, control the novel resistance specificity as observed in the Pi50 near isogenic line, NIL-e1. Pi50 shares greater than 96 % amino acid sequence identity with each of three other R proteins, i.e., Pi9, Piz-t, and Pi2, and has amino acid changes predominantly within the LRR region. The identification of Pi50 with its novel resistance specificity will facilitate the dissection of mechanisms behind the divergence and evolution of different resistance specificities at the Pi2/9 locus.
Collapse
Affiliation(s)
- Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingluan Han
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Liexian Zeng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bo Zhou
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, 1031, Metro Manila, Philippines.
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
19
|
Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol 2014; 36:353-67. [PMID: 25394538 DOI: 10.3109/07388551.2014.961403] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.
Collapse
Affiliation(s)
- S Ashkani
- a Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia .,b Department of Agronomy and Plant Breeding , Shahr-e- Rey Branch, Islamic Azad University , Tehran , Iran
| | - M Y Rafii
- a Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - M Shabanimofrad
- c Department of Crop Science , Faculty of Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia , and
| | - A Ghasemzadeh
- c Department of Crop Science , Faculty of Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia , and
| | - S A Ravanfar
- a Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - M A Latif
- c Department of Crop Science , Faculty of Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia , and.,d Bangladesh Rice Research Institute (BRRI) , Plant Pathology Division , Gazipur , Bangladesh
| |
Collapse
|
20
|
Jiang N, Li Z, Wu J, Wang Y, Wu L, Wang S, Wang D, Wen T, Liang Y, Sun P, Liu J, Dai L, Wang Z, Wang C, Luo M, Liu X, Wang GL. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson. RICE (NEW YORK, N.Y.) 2012; 5:29. [PMID: 27234247 PMCID: PMC5520841 DOI: 10.1186/1939-8433-5-29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/27/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Utilization of broad-spectrum resistance (R) genes is an effective and economical strategy to control the fungal pathogen Magnaporthe oryzae, the causal agent of the rice blast disease. Among the cloned blast resistance genes, Pi9, Pi2 and Piz-t confer broad-spectrum resistance to diverse M. oryzae isolates and were isolated from the Pi2/9 locus on chromosome 6. Identification and isolation of additional R genes with different resistance spectra from this locus will provide novel genetic resources for better control of this important rice disease. RESULTS In this study, we identified a dominant R gene, Pi2-2, at the Pi2/9 locus from Jefferson, an elite U.S. rice cultivar, through genetic and physical mapping. Inoculation tests showed that Jefferson has different resistant specificities to M. oryzae isolates compared rice lines with the Pi9, Pi2 and Piz-t genes. Fine mapping delimited Pi2-2 to a 270-kb interval between the markers AP5659-3 and RM19817, and this interval contains three nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in the Nipponbare genome. Five bacterial artificial chromosome (BAC) clones spanning the region were identified, and a BAC contig covering the Pi2-2 locus was constructed. CONCLUSIONS We identified a new allelic gene at the Pi2/9 locus and fine-mapped the gene within a 270-kb region. Our results provide essential information for the isolation of the Pi2-2 gene and tightly linked DNA markers for rice blast resistance breeding.
Collapse
Affiliation(s)
- Nan Jiang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zhiqiang Li
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jun Wu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Yue Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Liqun Wu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Suhua Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Ting Wen
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Yi Liang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Pingyong Sun
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Jinling Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liangying Dai
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Zhilong Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Chao Wang
- State Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Meizhong Luo
- State Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xionglun Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Guo-Liang Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agronomy, College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128 China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio 43210 USA
| |
Collapse
|