1
|
Rodriguez-Mena S, Rubiales D, González M. Identification of Sources of Resistance to Aphanomyces Root Rot in Pisum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2454. [PMID: 39273939 PMCID: PMC11397196 DOI: 10.3390/plants13172454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Aphanomyces root rot (ARR), caused by Aphanomyces euteiches, is one of the most devastating diseases that affect the production of peas. Several control strategies such as crop rotation, biocontrol, and fungicides have been proposed, but none provides a complete solution. Therefore, the deployment of resistant cultivars is fundamental. ARR resistance breeding is hampered by the moderate levels of resistance identified so far. The available screening protocols require post-inoculation root assessment, which is destructive, time-consuming, and tedious. In an attempt to address these limitations, we developed a non-destructive screening protocol based on foliar symptoms and used it to identify new sources of resistance in a Pisum spp. germplasm collection. Accessions were root inoculated separately with two A. euteiches isolates, and leaf symptoms were assessed at 5, 10, 14, 17, and 20 days after inoculation (DAI). Although the majority of accessions exhibited high levels of susceptibility, thirty of them exhibited moderate resistance. These thirty accessions were selected for a second experiment, in which they were inoculated with both A. euteiches isolates at two inoculum doses. The objective of this second trial was to confirm the resistance of these accessions by evaluating root and biomass loss, as well as foliar symptoms, and to compare root and foliar evaluations. As a result, a high correlation (R2 = 0.75) between foliar and root evaluations was observed, validating the foliar evaluation method. Notably, accessions from P.s. subsp. humile exhibited the lowest symptomatology across all evaluation methods, representing valuable genetic resources for breeding programs aimed at developing pea varieties resistant to ARR.
Collapse
Affiliation(s)
- Sara Rodriguez-Mena
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
- Campus de Rabanales, University of Cordoba, 14014 Cordoba, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
| | - Mario González
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
| |
Collapse
|
2
|
Lavaud C, Lesné A, Leprévost T, Pilet-Nayel ML. Fine mapping of Ae-Ps4.5, a major locus for resistance to pathotype III of Aphanomyces euteiches in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:47. [PMID: 38334777 DOI: 10.1007/s00122-024-04548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
KEY MESSAGE QTL mapping and recombinant screening confirmed the major effect of QTL Ae-Ps4.5 on pea resistance to pathotype III of Aphanomyces euteiches and fine-mapped the QTL to a 3.06-Mb interval. Aphanomyces root rot, caused by Aphanomyces euteiches, is the most important disease of pea (Pisum sativum L.) worldwide. The development of pea-resistant varieties is a major challenge to control the disease. Previous linkage studies identified seven main resistance quantitative trait loci (QTL), including the QTL Ae-Ps4.5 associated with partial resistance in US nurseries infested by the pea pathotype III of A. euteiches. This study aimed to confirm the major effect of Ae-Ps4.5 on A. euteiches pathotype III, refine its interval, and identify candidate genes underlying the QTL. QTL mapping on an updated genetic map from the Puget × 90-2079 pea recombinant inbred line population identified Ae-Ps4.5 in a 0.8-cM confidence interval with a high effect (R2 = 89%) for resistance to the Ae109 reference strain of A. euteiches (pathotype III) under controlled conditions. However, the QTL mapping did not detect Ae-Ps4.5 for resistance to the RB84 reference strain of A. euteiches (pathotype I). Screening 224-pea BC5F2 plant progeny derived from three near-isogenic lines (NILs) carrying the 90-2079 allele at Ae-Ps4.5 in the Puget genetic background with 26 SNP markers identified 15 NILs showing recombination in the QTL interval. Phenotyping of the recombinant lines for resistance to the Ae109 strain of A. euteiches reduced the QTL to a physical interval of 3.06 Mb, containing 50 putative annotated genes on the Caméor pea genome V1a among which three candidate genes highlighted. This study provides closely linked SNP markers and putative candidate genes to accelerate pea breeding for resistant varieties to Aphanomyces root rot.
Collapse
Affiliation(s)
- Clément Lavaud
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Théo Leprévost
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | |
Collapse
|
3
|
Leprévost T, Boutet G, Lesné A, Rivière JP, Vetel P, Glory I, Miteul H, Le Rat A, Dufour P, Regnault-Kraut C, Sugio A, Lavaud C, Pilet-Nayel ML. Advanced backcross QTL analysis and comparative mapping with RIL QTL studies and GWAS provide an overview of QTL and marker haplotype diversity for resistance to Aphanomyces root rot in pea ( Pisum sativum). FRONTIERS IN PLANT SCIENCE 2023; 14:1189289. [PMID: 37841625 PMCID: PMC10569610 DOI: 10.3389/fpls.2023.1189289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023]
Abstract
Aphanomyces euteiches is the most damaging soilborne pea pathogen in France. Breeding of pea resistant varieties combining a diversity of quantitative trait loci (QTL) is a promising strategy considering previous research achievements in dissecting polygenic resistance to A. euteiches. The objective of this study was to provide an overview of the diversity of QTL and marker haplotypes for resistance to A. euteiches, by integrating a novel QTL mapping study in advanced backcross (AB) populations with previous QTL analyses and genome-wide association study (GWAS) using common markers. QTL analysis was performed in two AB populations derived from the cross between the susceptible spring pea variety "Eden" and the two new sources of partial resistance "E11" and "LISA". The two AB populations were genotyped using 993 and 478 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for resistance to A. euteiches in controlled conditions and in infested fields at two locations. GWAS and QTL mapping previously reported in the pea-Aphanomyces collection and from four recombinant inbred line (RIL) populations, respectively, were updated using a total of 1,850 additional markers, including the markers used in the Eden x E11 and Eden x LISA populations analysis. A total of 29 resistance-associated SNPs and 171 resistance QTL were identified by GWAS and RIL or AB QTL analyses, respectively, which highlighted 10 consistent genetic regions confirming the previously reported QTL. No new consistent resistance QTL was detected from both Eden x E11 and Eden x LISA AB populations. However, a high diversity of resistance haplotypes was identified at 11 linkage disequilibrium (LD) blocks underlying consistent genetic regions, especially in 14 new sources of resistance from the pea-Aphanomyces collection. An accumulation of favorable haplotypes at these 11 blocks was confirmed in the most resistant pea lines of the collection. This study provides new SNP markers and rare haplotypes associated with the diversity of Aphanomyces root rot resistance QTL investigated, which will be useful for QTL pyramiding strategies to increase resistance levels in future pea varieties.
Collapse
Affiliation(s)
- Théo Leprévost
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Gilles Boutet
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | - Pierrick Vetel
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Henri Miteul
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Anaïs Le Rat
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
- KWS MOMONT Recherche SARL, Allonnes, France
| | | |
Collapse
|
4
|
Kiselev A, Camborde L, Carballo LO, Kaschani F, Kaiser M, van der Hoorn RAL, Gaulin E. The root pathogen Aphanomyces euteiches secretes modular proteases in pea apoplast during host infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1140101. [PMID: 37051076 PMCID: PMC10084794 DOI: 10.3389/fpls.2023.1140101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
To successfully colonize the host, phytopathogens have developed a large repertoire of components to both combat the host plant defense mechanisms and to survive in adverse environmental conditions. Microbial proteases are predicted to be crucial components of these systems. In the present work, we aimed to identify active secreted proteases from the oomycete Aphanomyces euteiches, which causes root rot diseases on legumes. Genome mining and expression analysis highlighted an overrepresentation of microbial tandemly repeated proteases, which are upregulated during host infection. Activity Based Protein Profiling and mass spectrometry (ABPP-MS) on apoplastic fluids isolated from pea roots infected by the pathogen led to the identification of 35 active extracellular microbial proteases, which represents around 30% of the genes expressed encoding serine and cysteine proteases during infection. Notably, eight of the detected active secreted proteases carry an additional C-terminal domain. This study reveals novel active modular extracellular eukaryotic proteases as potential pathogenicity factors in Aphanomyces genus.
Collapse
Affiliation(s)
- Andrei Kiselev
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laura Ossorio Carballo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
5
|
Wu L, Fredua-Agyeman R, Strelkov SE, Chang KF, Hwang SF. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. Int J Mol Sci 2022; 23:9744. [PMID: 36077139 PMCID: PMC9456226 DOI: 10.3390/ijms23179744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Aphanomyces root rot, caused by Aphanomyces euteiches, causes severe yield loss in field pea (Pisum sativum). The identification of a pea germplasm resistant to this disease is an important breeding objective. Polygenetic resistance has been reported in the field pea cultivar '00-2067'. To facilitate marker-assisted selection (MAS), bulked segregant RNA-seq (BSR-seq) analysis was conducted using an F8 RIL population derived from the cross of 'Carman' × '00-2067'. Root rot development was assessed under controlled conditions in replicated experiments. Resistant (R) and susceptible (S) bulks were constructed based on the root rot severity in a greenhouse study. The BSR-seq analysis of the R bulks generated 44,595,510~51,658,688 reads, of which the aligned sequences were linked to 44,757 genes in a reference genome. In total, 2356 differentially expressed genes were identified, of which 44 were used for gene annotation, including defense-related pathways (jasmonate, ethylene and salicylate) and the GO biological process. A total of 344.1 K SNPs were identified between the R and S bulks, of which 395 variants were located in 31 candidate genes. The identification of novel genes associated with partial resistance to Aphanomyces root rot in field pea by BSR-seq may facilitate efforts to improve management of this important disease.
Collapse
Affiliation(s)
| | | | | | | | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
6
|
Lai X, Niroula D, Burrows M, Wu X, Yan Q. Identification and Characterization of Bacteria-Derived Antibiotics for the Biological Control of Pea Aphanomyces Root Rot. Microorganisms 2022; 10:microorganisms10081596. [PMID: 36014014 PMCID: PMC9416638 DOI: 10.3390/microorganisms10081596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiosis has been proposed to contribute to the beneficial bacteria-mediated biocontrol against pea Aphanomyces root rot caused by the oomycete pathogen Aphanomyces euteiches. However, the antibiotics required for disease suppression remain unknown. In this study, we found that the wild type strains of Pseudomonas protegens Pf-5 and Pseudomonas fluorescens 2P24, but not their mutants that lack 2,4-diacetylphloroglucinol, strongly inhibited A. euteiches on culture plates. Purified 2,4-diacetylphloroglucinol compound caused extensive hyphal branching and stunted hyphal growth of A. euteiches. Using a GFP-based transcriptional reporter assay, we found that expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlAPf-5 is activated by germinating pea seeds. The 2,4-diacetylphloroglucinol producing Pf-5 derivative, but not its 2,4-diacetylphloroglucinol non-producing mutant, reduced disease severity caused by A. euteiches on pea plants in greenhouse conditions. This is the first report that 2,4-diacetylphloroglucinol produced by strains of Pseudomonas species plays an important role in the biocontrol of pea Aphanomyces root rot.
Collapse
Affiliation(s)
- Xiao Lai
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Dhirendra Niroula
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (X.W.); (Q.Y.)
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: (X.W.); (Q.Y.)
| |
Collapse
|
7
|
Sivachandra Kumar NT, Caudillo-Ruiz KB, Chatterton S, Banniza S. Characterization of Aphanomyces euteiches Pathotypes Infecting Peas in Western Canada. PLANT DISEASE 2021; 105:4025-4030. [PMID: 34142844 DOI: 10.1094/pdis-04-21-0874-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aphanomyces root rot, caused by the soilborne oomycete Aphanomyces euteiches Drechs., has developed into a serious disease in the pea- and lentil-producing areas of the Great Plains of North America. Based on six pea differentials previously used to differentiate 11 pathotypes in France, pathotypes were identified among field isolates from Saskatchewan (14) and Alberta (18). Four isolates from the U.S.A. and standard isolates for pathotypes I and III designated in the French study were also included. Each isolate was tested twice in replicated experiments by inoculating French pea differentials 'Baccara', 'Capella', MN 313, 902131, 552, and PI 80693, along with the Canadian susceptible pea cultivar 'CDC Meadow' and partially resistant USDA line PI 660736 under controlled conditions. Pea plants grown in vermiculite were inoculated 10 days after seeding by pipetting 5 ml of a suspension containing 1 × 103 zoospores ml-1 to the base of each plant. Root discoloration was scored 10 days postinoculation using a 0 to 5 scale. Testing revealed that 38 of the isolates, including standard pathotype I isolate RB84, belonged to pathotype I; four isolates including standard pathotype III isolate Ae109 were pathotype III; and U.S.A. isolate Ae16-01 was a pathotype II isolate. An alfalfa isolate from Quebec was avirulent on all pea genotypes. These findings indicate that pathotype I is predominant on the Canadian prairies.
Collapse
Affiliation(s)
| | - Kiela B Caudillo-Ruiz
- University of Saskatchewan, Crop Development Centre/Department of Plant Sciences, Saskatoon, S7N 5A8, Canada
| | - Syama Chatterton
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Sabine Banniza
- University of Saskatchewan, Crop Development Centre/Department of Plant Sciences, Saskatoon, S7N 5A8, Canada
| |
Collapse
|
8
|
Becking T, Kiselev A, Rossi V, Street-Jones D, Grandjean F, Gaulin E. Pathogenicity of animal and plant parasitic Aphanomyces spp and their economic impact on aquaculture and agriculture. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|