1
|
Ortega F, Hill T, Van Deynze A, Garcia-Llanos A, Walker S. Identification of QTLs involved in destemming and fruit quality for mechanical harvesting of New Mexico pod-type green chile. FRONTIERS IN PLANT SCIENCE 2024; 15:1357986. [PMID: 39011303 PMCID: PMC11246910 DOI: 10.3389/fpls.2024.1357986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Introduction Domestic production of pepper (Capsicum spp.) is shrinking while demand within the US is growing. Lack of availability and cost of labor often present an obstacle for domestic producers both practically and economically. As a result, switching to harvesting peppers mechanically is anticipated as a key strategy to help domestic producers compete in the international market. Mechanical harvest efficiency can be improved through breeding. One important trait that mechanical harvest compatible material should have is an easy destemming trait: low force separation of the pedicel and calyx from the fruit. Methods To detect the genetic sources underlying a novel easy destemming trait for the purpose of future breeding efforts in New Mexico pod-type green chile, we performed QTL analysis on three F2:F3 populations, coming from three New Mexico pod-type varieties: 'NuMex Odyssey,' 'NuMex Iliad,' and 'NuMex Joe E. Parker,' each crossed with a parent with an easy destemming trait: MUC14. Genotyping was done through genotyping by sequencing (GBS) and phenotyping was done for destemming and fruit trait measurements. Correlations between measurements were found through the R package hmisc and QTL analysis was done through R/qtl. Results A strong relationship was seen between destemming and aspects of fruit morphology, particularly, destemming force and fruit width (Pearson's correlation coefficient r=0.75). Major QTLs for destemming and fruit size were discovered. Of these, the largest destemming force QTLs for all populations (PVE=34.5-69.9%) were on chromosome 10, and in two populations QTLs for destemming force were found on chromosome 3 (Percent Variance Explained (PVE)=10.7-18.8%). Fruit size-related QTLs in all populations colocalized in these same areas on chromosomes 3 and 10. Discussion This suggests that fruit shape may be genetically linked to destemming, and breeders interested in selecting for easy destemming pepper will also have to pay attention to fruit size and shape.
Collapse
Affiliation(s)
- Franchesca Ortega
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Armando Garcia-Llanos
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Walker
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
2
|
Kaur N, Lozada DN, Bhatta M, Barchenger DW, Khokhar ES, Nourbakhsh SS, Sanogo S. Insights into the genetic architecture of Phytophthora capsici root rot resistance in chile pepper (Capsicum spp.) from multi-locus genome-wide association study. BMC PLANT BIOLOGY 2024; 24:416. [PMID: 38760676 PMCID: PMC11100198 DOI: 10.1186/s12870-024-05097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Current address: Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Dennis N Lozada
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA.
| | | | | | - Ehtisham S Khokhar
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Seyed Shahabeddin Nourbakhsh
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Soum Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
3
|
Quesada-Ocampo LM, Parada-Rojas CH, Hansen Z, Vogel G, Smart C, Hausbeck MK, Carmo RM, Huitema E, Naegele RP, Kousik CS, Tandy P, Lamour K. Phytophthora capsici: Recent Progress on Fundamental Biology and Disease Management 100 Years After Its Description. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:185-208. [PMID: 37257056 DOI: 10.1146/annurev-phyto-021622-103801] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytophthora capsici is a destructive oomycete pathogen of vegetable, ornamental, and tropical crops. First described by L.H. Leonian in 1922 as a pathogen of pepper in New Mexico, USA, P. capsici is now widespread in temperate and tropical countries alike. Phytophthora capsici is notorious for its capability to evade disease management strategies. High genetic diversity allows P. capsici populations to overcome fungicides and host resistance, the formation of oospores results in long-term persistence in soils, zoospore differentiation in the presence of water increases epidemic potential, and a broad host range maximizes economic losses and limits the effectiveness of crop rotation. The severity of disease caused by P. capsici and management challenges have led to numerous research efforts in the past 100 years. Here, we discuss recent findings regarding the biology, genetic diversity, disease management, fungicide resistance, host resistance, genomics, and effector biology of P. capsici.
Collapse
Affiliation(s)
- L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, USA;
| | - C H Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, USA;
| | - Z Hansen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - G Vogel
- School of Integrative Plant Science, Cornell University, Geneva, New York, USA
| | - C Smart
- School of Integrative Plant Science, Cornell University, Geneva, New York, USA
| | - M K Hausbeck
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - R M Carmo
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
| | - E Huitema
- Division of Plant Sciences, University of Dundee, Dundee, United Kingdom
- James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - R P Naegele
- Sugarbeet and Bean Research Unit, USDA, ARS, East Lansing, Michigan, USA
| | - C S Kousik
- US Vegetable Laboratory, USDA, ARS, Charleston, South Carolina, USA
| | - P Tandy
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - K Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
4
|
Singh J, van der Knaap E. Unintended Consequences of Plant Domestication. PLANT & CELL PHYSIOLOGY 2022; 63:1573-1583. [PMID: 35715986 DOI: 10.1093/pcp/pcac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Human selection on wild populations mostly favored a common set of plant traits during domestication. This process of direct selection also altered other independent traits that were not directly perceived or desired during crop domestication and improvement. A deeper knowledge of the inadvertent and undesirable phenotypic effects and their underlying genetic causes can help design strategies to mitigate their effects and improve genetic gain in crop plants. We review different factors explaining the negative consequences of plant domestication at the phenotypic and genomic levels. We further describe the genetic causes of undesirable effects that originate from the selection of favorable alleles during plant domestication. In addition, we propose strategies that could be useful in attenuating such effects for crop improvement. With novel -omics and genome-editing tools, it is relatively approachable to understand and manipulate the genetic and biochemical mechanisms responsible for the undesirable phenotypes in domesticated plants.
Collapse
Affiliation(s)
- Jugpreet Singh
- Center for Applied Genetic Technologies, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Kousik CS, Ikerd JL, Wechter WP, Branham S, Turechek W. Broad Resistance to Post-Harvest Fruit Rot in USVL Watermelon Germplasm Lines to Isolates of Phytophthora capsici Across the United States. PLANT DISEASE 2022; 106:711-719. [PMID: 34579551 DOI: 10.1094/pdis-11-20-2480-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Watermelon is an important cucurbit vegetable crop grown in most of the United States. Phytophthora fruit rot of watermelon caused by Phytophthora capsici has been a major factor, limiting production for the past 15 years in the southeastern United States. The U.S. Department of Agriculture, Agricultural Research Service released five Phytophthora fruit rot-resistant germplasm lines for use in breeding programs. These lines were developed by phenotyping using a local isolate of P. capsici from South Carolina. The present study was undertaken to determine if these resistant lines had broad resistance to diverse P. capsici isolates collected from different states and crops. Five resistant germplasm lines (USVL020-PFR, USVL203-PFR, USVL782-PFR, USVL489-PFR, and USVL531-MDR) and two susceptible cultivars, Sugar Baby and Mickey Lee, used as checks were grown in a field in 2014 and 2015 to produce fruit for evaluation. Mature fruit were harvested and placed in a walk-in growth chamber and inoculated with 20 different P. capsici isolates. The chamber was maintained at 26 ± 2°C and high relative humidity (>95%) using a humidifier. All five resistant germplasm lines were significantly more resistant than the two susceptible checks to all 20 P. capsici isolates. Among the five resistant germplasm lines, USVL020-PFR, USVL782-PFR, and USVL531-MDR had broad resistance. Some P. capsici isolates induced minor lesions and rot on USVL489-PFR compared with the other resistant lines. Variation in virulence and genetic diversity among the 20 P. capsici isolates was also observed. The five watermelon germplasm lines will be useful for developing commercial watermelon cultivars with broad resistance to P. capsici.
Collapse
Affiliation(s)
- Chandrasekar S Kousik
- U.S. Vegetable Laboratory, U.S. Department of Agriculture Agricultural Research Service, Charleston, SC 29414
| | - Jennifer L Ikerd
- U.S. Vegetable Laboratory, U.S. Department of Agriculture Agricultural Research Service, Charleston, SC 29414
| | - W Patrick Wechter
- U.S. Vegetable Laboratory, U.S. Department of Agriculture Agricultural Research Service, Charleston, SC 29414
| | - Sandra Branham
- Coastal Research and Education Center, Clemson University, Charleston, SC 29414
| | - William Turechek
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture Agricultural Research Service, Fort Pierce, FL 34945
| |
Collapse
|
6
|
Lozada DN, Nunez G, Lujan P, Dura S, Coon D, Barchenger DW, Sanogo S, Bosland PW. Genomic regions and candidate genes linked with Phytophthora capsici root rot resistance in chile pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2021; 21:601. [PMID: 34922461 PMCID: PMC8684135 DOI: 10.1186/s12870-021-03387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Phytophthora root rot, caused by Phytophthora capsici, is a major disease affecting Capsicum production worldwide. A recombinant inbred line (RIL) population derived from the hybridization between 'Criollo de Morellos-334' (CM-334), a resistant landrace from Mexico, and 'Early Jalapeno', a susceptible cultivar was genotyped using genotyping-by-sequencing (GBS)-derived single nucleotide polymorphism (SNP) markers. A GBS-SNP based genetic linkage map for the RIL population was constructed. Quantitative trait loci (QTL) mapping dissected the genetic architecture of P. capsici resistance and candidate genes linked to resistance for this important disease were identified. RESULTS Development of a genetic linkage map using 1,973 GBS-derived polymorphic SNP markers identified 12 linkage groups corresponding to the 12 chromosomes of chile pepper, with a total length of 1,277.7 cM and a marker density of 1.5 SNP/cM. The maximum gaps between consecutive SNP markers ranged between 1.9 (LG7) and 13.5 cM (LG5). Collinearity between genetic and physical positions of markers reached a maximum of 0.92 for LG8. QTL mapping identified genomic regions associated with P. capsici resistance in chromosomes P5, P8, and P9 that explained between 19.7 and 30.4% of phenotypic variation for resistance. Additive interactions between QTL in chromosomes P5 and P8 were observed. The role of chromosome P5 as major genomic region containing P. capsici resistance QTL was established. Through candidate gene analysis, biological functions associated with response to pathogen infections, regulation of cyclin-dependent protein serine/threonine kinase activity, and epigenetic mechanisms such as DNA methylation were identified. CONCLUSIONS Results support the genetic complexity of the P. capsici-Capsicum pathosystem and the possible role of epigenetics in conferring resistance to Phytophthora root rot. Significant genomic regions and candidate genes associated with disease response and gene regulatory activity were identified which allows for a deeper understanding of the genomic landscape of Phytophthora root rot resistance in chile pepper.
Collapse
Affiliation(s)
- Dennis N Lozada
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Guillermo Nunez
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Phillip Lujan
- Extension Plant Sciences, Plant Diagnostic Clinic, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Srijana Dura
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Danise Coon
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Soumaila Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Paul W Bosland
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
7
|
Retes-Manjarrez JE, Rubio-Aragón WA, Márques-Zequera I, Cruz-Lachica I, García-Estrada RS, Sy O. Novel Sources of Resistance to Phytophthora capsici on Pepper ( Capsicum sp.) Landraces from Mexico. THE PLANT PATHOLOGY JOURNAL 2020; 36:600-607. [PMID: 33312095 PMCID: PMC7721533 DOI: 10.5423/ppj.oa.07.2020.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Phytophthora capsici Leonian is a major pathogen of pepper worldwide and few resistance sources to this pathogen have been identified so far. The goals of this study were to identify new sources of resistance against P. capsici in Capsicum landraces and analyze the relationship between the resistance indicator of plant symptoms and some plant phenotype parameters of plant height, stem width, leaf length and leaf width. Thirtytwo landraces of pepper were collected from fourteen states in Mexico. From each population, 36 plants were inoculated with 10,000 zoospores of P. capsici under controlled conditions. This experiment was repeated twice. Out of the 32 landraces, six showed high level of resistance, four showed intermediate resistance and five showed low level of resistance when compared with the susceptible control 'Bravo' and the resistant control 'CM334', indicating that these landraces are promising novel sources of resistance to P. capsici. There was no correlation between the symptoms and plant phenotype parameters. However, these parameters were not affected in the group classified as highly resistant, indicating that P. capsici does not affect the growing of these resistant pepper landraces. The other resistant groups were significantly affected in a differently manner regarding their phenotype, indicating that this pathogen reduce their growth in different ways. This study reports novel resistance sources with great potential that could be used in breeding programs to develop new pepper cultivars with durable resistance to P. capsici.
Collapse
Affiliation(s)
- Jesús Enrique Retes-Manjarrez
- Facultad de Agronomía, Universidad Autónoma de Sinaloa, Carretera Culiacán-Eldorado, km 7.5, C.P. 80000, Culiacán, Sinaloa, México
- Wholesum, Carretera Hermosillo-Nogales, km 16, C.P. 84134, Colonia Los Janos, Imuris Sonora, México
| | - Walter Arturo Rubio-Aragón
- Facultad de Agronomía, Universidad Autónoma de Sinaloa, Carretera Culiacán-Eldorado, km 7.5, C.P. 80000, Culiacán, Sinaloa, México
| | - Isidro Márques-Zequera
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Culiacán-El Dorado, km 5.5, Culiacán Sinaloa, México
| | - Isabel Cruz-Lachica
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Culiacán-El Dorado, km 5.5, Culiacán Sinaloa, México
| | - Raymundo Saúl García-Estrada
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Culiacán-El Dorado, km 5.5, Culiacán Sinaloa, México
| | - Ousmane Sy
- Independent Researcher, Dakar, Senegal, C.P. 10200, México
| |
Collapse
|
8
|
Lacaze A, Joly DL. Structural specificity in plant-filamentous pathogen interactions. MOLECULAR PLANT PATHOLOGY 2020; 21:1513-1525. [PMID: 32889752 PMCID: PMC7548998 DOI: 10.1111/mpp.12983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 05/07/2023]
Abstract
Plant diseases bear names such as leaf blights, root rots, sheath blights, tuber scabs, and stem cankers, indicating that symptoms occur preferentially on specific parts of host plants. Accordingly, many plant pathogens are specialized to infect and cause disease in specific tissues and organs. Conversely, others are able to infect a range of tissues, albeit often disease symptoms fluctuate in different organs infected by the same pathogen. The structural specificity of a pathogen defines the degree to which it is reliant on a given tissue, organ, or host developmental stage. It is influenced by both the microbe and the host but the processes shaping it are not well established. Here we review the current status on structural specificity of plant-filamentous pathogen interactions and highlight important research questions. Notably, this review addresses how constitutive defence and induced immunity as well as virulence processes vary across plant organs, tissues, and even cells. A better understanding of the mechanisms underlying structural specificity will aid targeted approaches for plant health, for instance by considering the variation in the nature and the amplitude of defence responses across distinct plant organs and tissues when performing selective breeding.
Collapse
Affiliation(s)
- Aline Lacaze
- Department of BiologyUniversité de MonctonMonctonCanada
| | - David L. Joly
- Department of BiologyUniversité de MonctonMonctonCanada
| |
Collapse
|
9
|
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper ( Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 2020; 21:E2587. [PMID: 32276403 PMCID: PMC7177692 DOI: 10.3390/ijms21072587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers' demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance.
Collapse
Affiliation(s)
- Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| |
Collapse
|
10
|
Siddique MI, Lee HY, Ro NY, Han K, Venkatesh J, Solomon AM, Patil AS, Changkwian A, Kwon JK, Kang BC. Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-by-sequencing-based QTL mapping and genome-wide association study. Sci Rep 2019; 9:9962. [PMID: 31292472 PMCID: PMC6620314 DOI: 10.1038/s41598-019-46342-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/24/2019] [Indexed: 01/16/2023] Open
Abstract
Phytophthora capsici (Leon.) is a globally prevalent, devastating oomycete pathogen that causes root rot in pepper (Capsicum annuum). Several studies have identified quantitative trait loci (QTL) underlying resistance to P. capsici root rot (PcRR). However, breeding for pepper cultivars resistant to PcRR remains challenging due to the complexity of PcRR resistance. Here, we combined traditional QTL mapping with GWAS to broaden our understanding of PcRR resistance in pepper. Three major-effect loci (5.1, 5.2, and 5.3) conferring broad-spectrum resistance to three isolates of P. capsici were mapped to pepper chromosome P5. In addition, QTLs with epistatic interactions and minor effects specific to isolate and environment were detected on other chromosomes. GWAS detected 117 significant SNPs across the genome associated with PcRR resistance, including SNPs on chromosomes P5, P7, and P11 that colocalized with the QTLs identified here and in previous studies. Clusters of candidate nucleotide-binding site-leucine-rich repeat (NBS-LRR) and receptor-like kinase (RLK) genes were predicted within the QTL and GWAS regions; such genes often function in disease resistance. These candidate genes lay the foundation for the molecular dissection of PcRR resistance. SNP markers associated with QTLs for PcRR resistance will be useful for marker-assisted breeding and genomic selection in pepper breeding.
Collapse
Affiliation(s)
- Muhammad Irfan Siddique
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hea-Young Lee
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Na-Young Ro
- National Academy of Agricultural Science, National Agrobiodiversity Center, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Koeun Han
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abate Mekonnen Solomon
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abhinandan Surgonda Patil
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Amornrat Changkwian
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Barchenger DW, Lamour KH, Bosland PW. Challenges and Strategies for Breeding Resistance in Capsicum annuum to the Multifarious Pathogen, Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2018; 9:628. [PMID: 29868083 PMCID: PMC5962783 DOI: 10.3389/fpls.2018.00628] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora capsici is the most devastating pathogen for chile pepper production worldwide and current management strategies are not effective. The population structure of the pathogen is highly variable and few sources of widely applicable host resistance have been identified. Recent genomic advancements in the host and the pathogen provide important insights into the difficulties reported by epidemiological and physiological studies published over the past century. This review highlights important challenges unique to this complex pathosystem and suggests strategies for resistance breeding to help limit losses associated with P. capsici.
Collapse
Affiliation(s)
- Derek W. Barchenger
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul W. Bosland
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
12
|
Naegele RP, Granke LL, Fry J, Hill TA, Ashrafi H, Van Deynze A, Hausbeck MK. Disease Resistance to Multiple Fungal and Oomycete Pathogens Evaluated Using a Recombinant Inbred Line Population in Pepper. PHYTOPATHOLOGY 2017; 107:1522-1531. [PMID: 28762287 DOI: 10.1094/phyto-02-17-0040-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Incorporating disease resistance into cultivars is a primary focus of modern breeding programs. Resistance to pathogens is often introgressed from landrace or wild individuals with poor fruit quality into commercial-quality cultivars. Sites of multiple disease resistance (MDR) are regions or "hot spots" of the genome with closely linked genes for resistance to different pathogens that could enable rapid incorporation of resistance. An F2-derived F6 recombinant inbred line population from a cross between 'Criollo de Morelos 334' (CMM334) and 'Early Jalapeno' was evaluated in inoculated fruit studies for susceptibility to oomycete and fungal pathogens: Phytophthora capsici, P. nicotianae, Botrytis cinerea, Fusarium oxysporum, F. solani, Sclerotinia sclerotiorum, Alternaria spp., Rhizopus oryzae, R. stolonifer, and Colletotrichum acutatum. All isolates evaluated were virulent on pepper. Significant differences in disease susceptibility were identified among lines for each of the pathogens evaluated. P. capsici was the most virulent pathogen, while R. oryzae and one Sclerotinia isolate were the least virulent. Quantitative trait loci associated with resistance were identified for Alternaria spp. and S. sclerotiorum. Positive correlations in disease incidence were detected between Alternaria spp. and F. oxysporum, F. solani, and C. acutatum, as well as between C. acutatum and Botrytis spp., F. oxysporum, F. solani, and P. capsici. No sites of MDR were identified for pathogens tested; however, positive correlations in disease incidence were detected among pathogens suggesting there may be genetic linkage among resistance genes in CM334 and Early Jalapeno.
Collapse
Affiliation(s)
- R P Naegele
- First author: Research Horticulturalist, United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93720; second author: Associate Research Scientist, Dow Agrosciences, Indianapolis, IN 46268; third author: Former Graduate Research Assistant, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824; fourth author: Senior Research Associate, Department of Plant Sciences, University of California, Davis 95616; fifth author: Assistant Professor, North Carolina State University, Raleigh 27695-7550; sixth author: Director of Research, Seed Biotechnology Center, University of California, Davis; and seventh author: Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| | - L L Granke
- First author: Research Horticulturalist, United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93720; second author: Associate Research Scientist, Dow Agrosciences, Indianapolis, IN 46268; third author: Former Graduate Research Assistant, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824; fourth author: Senior Research Associate, Department of Plant Sciences, University of California, Davis 95616; fifth author: Assistant Professor, North Carolina State University, Raleigh 27695-7550; sixth author: Director of Research, Seed Biotechnology Center, University of California, Davis; and seventh author: Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| | - J Fry
- First author: Research Horticulturalist, United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93720; second author: Associate Research Scientist, Dow Agrosciences, Indianapolis, IN 46268; third author: Former Graduate Research Assistant, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824; fourth author: Senior Research Associate, Department of Plant Sciences, University of California, Davis 95616; fifth author: Assistant Professor, North Carolina State University, Raleigh 27695-7550; sixth author: Director of Research, Seed Biotechnology Center, University of California, Davis; and seventh author: Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| | - T A Hill
- First author: Research Horticulturalist, United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93720; second author: Associate Research Scientist, Dow Agrosciences, Indianapolis, IN 46268; third author: Former Graduate Research Assistant, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824; fourth author: Senior Research Associate, Department of Plant Sciences, University of California, Davis 95616; fifth author: Assistant Professor, North Carolina State University, Raleigh 27695-7550; sixth author: Director of Research, Seed Biotechnology Center, University of California, Davis; and seventh author: Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| | - H Ashrafi
- First author: Research Horticulturalist, United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93720; second author: Associate Research Scientist, Dow Agrosciences, Indianapolis, IN 46268; third author: Former Graduate Research Assistant, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824; fourth author: Senior Research Associate, Department of Plant Sciences, University of California, Davis 95616; fifth author: Assistant Professor, North Carolina State University, Raleigh 27695-7550; sixth author: Director of Research, Seed Biotechnology Center, University of California, Davis; and seventh author: Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| | - A Van Deynze
- First author: Research Horticulturalist, United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93720; second author: Associate Research Scientist, Dow Agrosciences, Indianapolis, IN 46268; third author: Former Graduate Research Assistant, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824; fourth author: Senior Research Associate, Department of Plant Sciences, University of California, Davis 95616; fifth author: Assistant Professor, North Carolina State University, Raleigh 27695-7550; sixth author: Director of Research, Seed Biotechnology Center, University of California, Davis; and seventh author: Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| | - M K Hausbeck
- First author: Research Horticulturalist, United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93720; second author: Associate Research Scientist, Dow Agrosciences, Indianapolis, IN 46268; third author: Former Graduate Research Assistant, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824; fourth author: Senior Research Associate, Department of Plant Sciences, University of California, Davis 95616; fifth author: Assistant Professor, North Carolina State University, Raleigh 27695-7550; sixth author: Director of Research, Seed Biotechnology Center, University of California, Davis; and seventh author: Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
13
|
Sun S, Lian S, Feng S, Dong X, Wang C, Li B, Liang W. Effects of Temperature and Moisture on Sporulation and Infection by Pseudoperonospora cubensis. PLANT DISEASE 2017; 101:562-567. [PMID: 30677360 DOI: 10.1094/pdis-09-16-1232-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cucumber downy mildew, caused by Pseudoperonospora cubensis, is a worldwide disease that causes severe damage to cucumber production. The effects of temperature and moisture on sporulation and infection by P. cubensis were investigated by inoculating cucumber ('85F12') cotyledons with sporangia and examining the sporangia produced on the inoculated cotyledons under artificially controlled environments. The result showed that the temperature required for sporangium infection by P. cubensis and sporulation of the downy mildew lesions occurred at 5 to 30°C. The optimal temperature estimated by the fitted model was 18.8°C for sporangium infection and 16.2°C for downy mildew lesion sporulation. The pathogen formed plenty of sporangia when disease cotyledons were wetted or in the environment with relative humidity = 100%. The downy mildew lesions produced only a few sporangia when placed in the environment with relative humidity = 90%. The inoculated cotyledons, which incubated for 5 days at about 20°C in a dry greenhouse, began to form sporangia 4 h after being wetted when incubated in darkness. The quantity of sporangia produced on the downy mildew lesions increased with extension of incubating period (within 12 h), and the relationship between produced sporangia and the incubation period at 15, 20, and 25°C can be described by three exponential models. The observed minimum wetness durations (MWD) required for sporangia to complete the infection process and cause downy mildew were 12, 4, 2.5, 1, 1, and 6 h for 5, 10, 15, 20, 25, and 30°C, respectively. The effect of temperature and wetness duration on infection by sporangia of P. cubensis can be described by the modified Weibull model. The shortest MWD was 0.45 h, about 27 min, estimated by model. The experimental data and models will be helpful in the development of forecasting models and effective control systems for cucumber downy mildew.
Collapse
Affiliation(s)
- Shiling Sun
- Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China and College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Sen Lian
- Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China and College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Shulian Feng
- Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China and College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiangli Dong
- Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China and College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Caixian Wang
- Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China and College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Baohua Li
- Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China and College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China and College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
14
|
Naegele RP, Mitchell J, Hausbeck MK. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum. PLoS One 2016; 11:e0156969. [PMID: 27415818 PMCID: PMC4944943 DOI: 10.1371/journal.pone.0156969] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 12/03/2022] Open
Abstract
Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation.
Collapse
Affiliation(s)
- Rachel P. Naegele
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, United States of America
| | - Jenna Mitchell
- Department of Plant, Soil and Microbial Sciences, Michigan State University East Lansing, MI 48824, United States of America
| | - Mary K. Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State University East Lansing, MI 48824, United States of America
- * E-mail:
| |
Collapse
|
15
|
Quesada-Ocampo LM, Vargas AM, Naegele RP, Francis DM, Hausbeck MK. Resistance to Crown and Root Rot Caused by Phytophthora capsici in a Tomato Advanced Backcross of Solanum habrochaites and Solanum lycopersicum. PLANT DISEASE 2016; 100:829-835. [PMID: 30688608 DOI: 10.1094/pdis-08-15-0888-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora capsici causes devastating disease on many vegetable crops, including tomato and other solanaceous species. Solanum habrochaites accession LA407, a wild relative of cultivated tomato, has shown complete resistance to four P. capsici isolates from Michigan cucurbitaceous and solanaceous crops in a previous study. Greenhouse experiments were conducted to evaluate 62 lines of a tomato inbred backcross population between LA407 and the cultivated tomato 'Hunt 100' and 'Peto 95-43' for resistance to two highly virulent P. capsici isolates. Roots of 6-week-old seedlings were inoculated with each of two P. capsici isolates and maintained in the greenhouse. Plants were evaluated for wilting and plant death three times per week for 5 weeks. Significant differences were observed in disease response among the inbred tomato lines. Most lines evaluated were susceptible to P. capsici isolate 12889 but resistant to isolate OP97; 24 tomato lines were resistant to both isolates. Heritability of Phytophthora root rot resistance was high in this population. Polymorphic molecular markers located in genes related to resistance and defense responses were identified and added to a genetic map previously generated for the population. Resistant lines and polymorphic markers identified in this study are a valuable resource for development of tomato varieties resistant to P. capsici.
Collapse
Affiliation(s)
- L M Quesada-Ocampo
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - A M Vargas
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | - R P Naegele
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | - D M Francis
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Wooster 44691
| | - M K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State University
| |
Collapse
|
16
|
Ultra-High Density, Transcript-Based Genetic Maps of Pepper Define Recombination in the Genome and Synteny Among Related Species. G3-GENES GENOMES GENETICS 2015; 5:2341-55. [PMID: 26355020 PMCID: PMC4632054 DOI: 10.1534/g3.115.020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our ability to assemble complex genomes and construct ultradense genetic maps now allows the determination of recombination rates, translocations, and the extent of genomic collinearity between populations, species, and genera. We developed two ultradense genetic linkage maps for pepper from single-position polymorphisms (SPPs) identified de novo with a 30,173 unigene pepper genotyping array. The Capsicum frutescens × C. annuum interspecific and the C. annuum intraspecific genetic maps were constructed comprising 16,167 and 3,878 unigene markers in 2108 and 783 genetic bins, respectively. Accuracies of marker groupings and orders are validated by the high degree of collinearity between the two maps. Marker density was sufficient to locate the chromosomal breakpoint resulting in the P1/P8 translocation between C. frutescens and C. annuum to a single bin. The two maps aligned to the pepper genome showed varying marker density along the chromosomes. There were extensive chromosomal regions with suppressed recombination and reduced intraspecific marker density. These regions corresponded to the pronounced nonrecombining pericentromeric regions in tomato, a related Solanaceous species. Similar to tomato, the extent of reduced recombination appears to be more pronounced in pepper than in other plant species. Alignment of maps with the tomato and potato genomes shows the presence of previously known translocations and a translocation event that was not observed in previous genetic maps of pepper.
Collapse
|
17
|
Ojiambo PS, Gent DH, Quesada-Ocampo LM, Hausbeck MK, Holmes GJ. Epidemiology and population biology of Pseudoperonospora cubensis: a model system for management of downy mildews. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:223-246. [PMID: 26002291 DOI: 10.1146/annurev-phyto-080614-120048] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of outbreaks of cucurbit downy mildew. The dispersal potential of Pseudoperonospora cubensis appears to be limited primarily by sporangia production in source fields and availability of susceptible hosts and less by sporangia survival during transport. Uncertainty remains regarding the role of locally produced inoculum in disease outbreaks, but evidence suggests multiple sources of primary inoculum could be important. Understanding pathogen diversity and population differentiation is a critical aspect of disease management and an active research area. Underpinning advances in our understanding of pathogen biology and disease management has been the research capacity and coordination of stakeholders, scientists, and extension personnel. Concepts and approaches developed in this pathosystem can guide future efforts when responding to incursions of new or reemerging downy mildew pathogens.
Collapse
Affiliation(s)
- Peter S Ojiambo
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695; ,
| | | | | | | | | |
Collapse
|
18
|
Naegele RP, Tomlinson AJ, Hausbeck MK. Evaluation of a Diverse, Worldwide Collection of Wild, Cultivated, and Landrace Pepper (Capsicum annuum) for Resistance to Phytophthora Fruit Rot, Genetic Diversity, and Population Structure. PHYTOPATHOLOGY 2015; 105:110-118. [PMID: 25054617 DOI: 10.1094/phyto-02-14-0031-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pepper is the third most important solanaceous crop in the United States and fourth most important worldwide. To identify sources of resistance for commercial breeding, 170 pepper genotypes from five continents and 45 countries were evaluated for Phytophthora fruit rot resistance using two isolates of Phytophthora capsici. Genetic diversity and population structure were assessed on a subset of 157 genotypes using 23 polymorphic simple sequence repeats. Partial resistance and isolate-specific interactions were identified in the population at both 3 and 5 days postinoculation (dpi). Plant introductions (PIs) 640833 and 566811 were the most resistant lines evaluated at 5 dpi to isolates 12889 and OP97, with mean lesion areas less than Criollo de Morelos. Genetic diversity was moderate (0.44) in the population. The program STRUCTURE inferred four genetic clusters with moderate to very great differentiation among clusters. Most lines evaluated were susceptible or moderately susceptible at 5 dpi, and no lines evaluated were completely resistant to Phytophthora fruit rot. Significant population structure was detected when pepper varieties were grouped by predefined categories of disease resistance, continent, and country of origin. Moderately resistant or resistant PIs to both isolates of P. capsici at 5 dpi were in genetic clusters one and two.
Collapse
|
19
|
Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK. Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm. PLoS One 2014; 9:e95930. [PMID: 24819601 PMCID: PMC4018448 DOI: 10.1371/journal.pone.0095930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/01/2014] [Indexed: 12/13/2022] Open
Abstract
Eggplant (Solanum melongena L.) is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo), landraces and heirloom cultivars) from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784) was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs). The polymorphism information content (PIC) for the population was moderate (0.49) in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance.
Collapse
Affiliation(s)
- Rachel P. Naegele
- Department of Plant and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Samantha Boyle
- Department of Plant and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Lina M. Quesada-Ocampo
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary K. Hausbeck
- Department of Plant and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|